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Abstract 

In this paper, we propose an algorithm to locate an object with unknown coordinates 

based on the positive semi-definite programming in the wireless sensor networks, assuming 

that the squared error of the measured distance follows Gaussian distribution. We first obtain 

the estimator of the object location based on the maximum likelihood criterion; then 

considering that the estimator is a non-convex function with respect to the measured 

distances between the object and the anchors with known coordinates, we transform the non-

convex optimization to convex one by the positive semi-definite relaxation; and finally we 

take the optimal solution of the convex optimization as the estimated value of the object 

location. Simulations results show that our algorithm is superior to the R-LS algorithm 

regardless of whether the object is located within the convex hull composed of the anchors. 

 

Keywords: Wireless Sensor Networks; Localization; Positive Semi-definite Programming; 

Convex Optimization 
 

1. Introduction 

Wireless sensor network (WSN) is essential an ad hoc network which is composed of a lot 

of sensor nodes in the monitoring area. WSN could be applied to many domains, such as 

military, industry, traffic, and has wide applications. Localization is an important function and 

is one of the core supporting technologies for the WSN. WSN is mainly used to monitoring 

and tracking, and these two applications in most cases require the location information of the 

target node. And some route protocols and management mechanisms designed for the WSN 

also need the nodes locations. 

Existing localization principles can be roughly divided into the following four categories: 

the first is based on the received signal strength (RSS) or energy [1]; the second is based on 

the signal time of arrival or time difference of arrival [2]; the third is based on the signal angle 

of arrival [3]; and the final is based on the combination of above aspects [4]. Regardless of 

any principle, we need to achieve the distance or angle from the target node with unknown 

coordinates to the anchors with known coordinates, and based on the multilateration or the 
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multangularation, we acquire the maximum likelihood estimator or the least square estimator 

of the object location; and finally estimate the location using the optimization techniques. 

However, the estimator of the object location is usually a non-linear and non-convex 

function of the measured values of the distances, and it is difficult to directly achieve its 

global optimal solution using existing optimization methods. To the best of our knowledge, 

the common concerned solutions could be divided into three categories: first, to make the 

whole optimization problem into a convexity by abandoning the non-linear constraint part [5]; 

second, to linear the optimization problems by plane intersect [6], spherical interpolation [7] 

or spherical intersection Error! Reference source not found.; and the third is based on the 

second order cone relaxation technique [9, 10] or the positive semi-definite cone relaxation 

[11, 12] to convex the optimization problem. In above three methods, the third method is a 

commonly used method.  

Tseng [10] pointed out that positive semi-definite programming can achieve better 

performance than the second order cone programming, so the localization algorithm based on 

the positive semi-definite programming has attracted more researchers. However, 

optimization problems with different object functions and different distance models are 

solved with different positive semi-definite relaxations, which correspond to different 

localization algorithms. Chen [13] proposed a localization algorithm when the square error of 

the measured distance follows Gaussian distribution and objective function is to minimize the 

maximum of the all the distance errors. Different with Chen, Wang [14] is to minimize the 

sum of all the distance errors. Beck [15] and Pinar [16] assume the error of the measured 

distance follows Gaussian distribution, and the objective function is the same to Wang [14]. 

In this paper, we also assume that the squared error of the measured distance follows 

Gaussian distribution and propose an algorithm to locate the object based on the positive 

semi-definite programming. We first obtain the estimator of the object location based on the 

maximum likelihood criterion; then considering that the estimator is a non-convex function 

with respect to the measured distances between the object and the anchors with known 

coordinates, we transform the non-convex optimization to convex one by the positive semi-

definite relaxation; and finally we take the optimal solution of the convex optimization as the 

estimated value of the object location. We compare our algorithm with the R-LS algorithm 

when the object is in and not in the convex hull composed of the anchors, and the results 

show that our algorithm is superior to R-LS algorithm regardless of whether the object is 

located within the convex hull. 

The rests of this paper are organized as follows: Section 2 is the distance model; Section 3 

is the proposed semi-definite programming algorithm; Section 4 is the simulations and 

analysis; and this paper is concluded in Section 5. 
 

2. Distance Model 

We assume that in a d  dimensions space, there are N  sensor nodes which is called 

as anchors with known coordinates denoted as N  column vectors 1, , Ns s , and there is 

one object node with unknown coordinates denoted as a column vector u . Then the 

measured distance id  between anchor i  and the object is expressed by Error! 

Reference source not found.: 

 
2 2|| || ,   1, ,i i id u s n i N                                          (1) 
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where 
in  is the measured noise which follows Gaussian distribution with zero mean and 

variance 
2 . 

Based on the maximum likelihood criterion, we could obtain the estimator û  of the 

object node. 

2 2 2

1

ˆ arg min ( || || )
N

i i
u

i

u d u s


                                        (2) 

 

3. Semi-definite Programming 
 

3.1. Relaxation of the Positive Semi-definite Programming 

Obviously, (2) is non-convex and we can hardly obtain its global minimum. So we need to 

change the expression of (2) and take some relaxation to make it convex.  

Let 
2 2|| ||i i it d u s   , then (2) is equivalent to: 

2

,
1

2 2

ˆ arg min

. .   || ||

i

N

i
u t

i

i i i

u t

s t t d u s





  


                                                  (3) 

Continue to let 
2

i iy t , then (3) could be rewritten to: 

, ,
1

2 2

2

ˆ arg min

|| ||
. .   

i i

N

i
u t y

i

i i i

i i

u y

t d u s
s t

y t





   





                                                    (4) 

Now, we define a column vector [ ,1]T Tu u , which contains 1d   elements, and let 

T U u u ; we also define ( 1) ( 1)d d    matrix , 1, ,
d d i

i T T

i i i

I s
S i N

s s s

  
  

 
, and then 

the equation constraint in (4) could be reformulated as: 

2 ( )i i it d trace SU                                                         (5) 

Substitute (5) into (4), we will get: 

, ,
1

2

2

T

ˆ arg min

( )

. .   
 

1, ,

i i

N

i
U t y

i

i i i

i i

u y

t d trace S U

y t
s t

U u u

i N





  






 



                                                    (6) 
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Obviously, U  is a ( 1) ( 1)d d    semi-definite matrix.  Using semi-definite relaxation, 

i.e. substituting 0U   for 
T U u u , and letting 

1

i i

i

i

y t
Y

t

 
  
 

, (6) is changed to: 

, ,
1

2

ˆ arg min (1,1)

( )

0

0

. .   (2, 2) 1

( 1, 1) 1

(1,2)

1, ,

i i

N

i
U t Y

i

i i i

i

i

i i

u Y

t d trace S U

Y

U

s t Y

U d d

t Y

i N





  



 



   








                                                   (7) 

Observing (7), we could easily find that it is a positive semi-definite programming problem, 

so we could solve it using SeDuMi [18]. It is worthy to notice that although we could obtain 

the global minimum of (7), it is not the global optimal solution of (6) due to the relaxation of 

the constraint in (6).  

 

3.2. SeDuMi Formatting 

In this subsection, we will demonstrate how to transform (7) into the standard format that 

the SeDuMi could dealt with in two dimensions space.  

SeDuMi is a Matlab toolbox provided by a third party and can bee used to solve 

optimization problems including linear programming, quadratic programming and semi-

definite programming.  

The standard primal form for the semi-definite programming is: 

min

. .   

Tc x

Ax b
s t

x K






                                                                  (8) 

And its dual form is  

max

. .   -

T

T

b x

s t c A y K
                                                             (9) 

Where K  is the set of semi-definite cone. 

Usually, we invoke the SeDuMi to solve the semi-definite programming problem by its 

dual form, which means that we should transform (7) to confirm to the dual form. 
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In the two dimensions space, U  is a 3×3 symmetric matrix, and (3,3) 1U  , so U could 

be expressed by 

1 2 3

2 4 5

3 4 1

U U U

U U U

U U

 
 
 
 
 

, which contains 5 variants; Similarly, iY  could be 

expressed by 

1 2

2 1

i i

i

Y Y

Y

 
 
 

, which contains 2 variants. So we conclude that there are 5 3N  

variants in (7), which forms a column vector X  denoted as 
1 5 1 2 1 2

1 1 1[ , , , , , , , , , , ]T

N N NX U U t t Y Y Y Y . 

We let 

5 2

[0, ,0, 1,0, 1,0, , 1,0]

N N

b



    , and then the objective function of (7) could be 

expressed by b X . 

For the first equation in (7), it could be expressed by: 

 

2 1 2 2 2

1 1 1

2 1 2 2 2

1

1 1 1 1 1 2

1

( ) ( )

                  

( ) ( )

                 1 0 2 1 2 0

                 0

N N N N

N N N N N N N N N

N

d s s

d s s

I X



      



  
 
 
   

   



    (10) 

So, we could obviously let : 

 1 1 1 1 1 1 21 0 2 1 2 0N N N N N N N N NA I                                    (11) 

 and  

2 1 2 2 2

1 1 1

1

2 1 2 2 2

1

( ) ( )

( ) ( )N N N N

d s s

c

d s s


  
 

  
   

                                              (12) 

For the second equation in (7), it could be expressed by: 

1 1

4 1

0 0, ,0, 1,0, ,0, 1,0, ,0 0N N

i N N i

X 

  

 
    
  

                      (13) 

So we could let: 

2

4 1

[0, ,0, 1,0, ,0, 1,0, ,0]

i N N i

A

  

   .                                   (14) 

and  

2 10Nc                                                            (15) 
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For the first matrix inequation in (7), it could be expressed by: 

1 2

1 2 3i i iY Y B Y B B                                                         (16) 

where 1

1 0

0 0
B

 
  
 

， 2

0 1

1 0
B

 
  
 

 and 3

0 0

0 1
B

 
  
 

.  

Obviously, we could obviously let: 

 4 (5 ) 1 2

2 ( 1) 2 ( )

0 ,0, ,0, ( ), ( ),0, ,0Yi N

i N i

A vec B vec B 

   

 
   
  

                   (17) 

and  

3( )Yic vec B                                                          (18) 

For the second matrix inequation in (7), it could be expressed by: 

1 2 3 4 5

4 5 6 7 8 9U U B U B U B U B U B B                                  (19) 

Where 4

1 0 0

0 0 0

0 0 0

B

 
 


 
  

， 5

0 1 0

1 0 0

0 0 0

B

 
 


 
  

， 6

0 0 1

0 0 0

1 0 0

B

 
 


 
  

， 7

0 0 0

0 1 0

0 0 0

B

 
 


 
  

，

8

0 0 0

0 0 1

0 1 0

B

 
 


 
  

and 9

0 0 0

0 0 0

0 0 1

B

 
 


 
  

.  

Obviously, we could let : 

9 5 4 5 6 7 8

2

0 , ( ), ( ), ( ), ( ), ( ),0, ,0U

N

A vec B vec B vec B vec B vec B

 
      
  

             (20) 

 and  

9( )Uc vec B                                                          (21) 

Finally, we let : 

1 2 1( ; ; ; ; ; )Y YN UC c c c c C                                             (22) 

and  

1 2 1( ; ; ; ; ; )Y YN UAt A A A A A                                           (23) 

and (7) is transformed to the dual form and could be solved by SeDuMi now. 

 

4. Simulations and Analysis 

We assume that in the 2D space, there are four anchors with coordinates are (0, 0), (0, 

10), (10, 10) and（10, 0）respectively and one object node, which is shown in Figure 2. 
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In order to evaluate the performance of our algorithm, we compare it with the R-LS 

algorithm Error! Reference source not found..  

According to the R-LS algorithm, the objective location is formulated as: 

2

1

min ( || ||)
N

i i
u

i

d u s


                                                    (24) 

Based on a serial of transformation and SDP relaxation, (24) is changed to: 

2

1,
,

1

1, 1 3,3

min ( 2 )

( )

0
. .

0

1

N

ii i N i i
X G

i

ii i

N N

G d G d

G Trace CU

G
s t

U

G U





 

 








  



                                        (25) 

Where 1
1

T
u

U u
 

     
 

 and 2

i

i T

i i

I s
C

s s

 
  

  

. 

Figure 2 and Figure 3 show the estimation location distributions of the two 

algorithms when the variance of the measure noise is 1 meter and object node locating 

at [5, 5]. From these two figures, we could roughly understand the performance of the 

two algorithms. We can see that all the estimation locations are around the true location 

of the two algorithms.  
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Figure 1. Placement of Anchors and Objects 
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Figure 2. Estimation Location Distribution of Our Algorithm 
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Figure 3. Estimation Location Distribution of R-LS Algorithm 
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Figure 4. Location Estimation Error Under Different Measure Noise  
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Figure 4 shows the location error when the object node locating at [5, 5] which is 

within the convex hull comprised by the four anchors and [15,  15] which is out of the 

convex hull, and the variance of the measure noise varies from 0.5m to 1.5m. From the 

figure we could see that the performance of the two algorithms is better when object 

node is out of the convex hull than within the convex hull and our algorithm is superior 

to R-LS regardless of whether the object is located within the convex hull.  

 

5. Conclusions 

In this paper, we assume that the squared error of the measured distance follows 

Gaussian distribution and propose an algorithm to locate the object based on the 

positive semi-definite programming. We first obtain the estimator of the object location 

based on the maximum likelihood criterion; then considering that the estimator is a non -

convex function with respect to the measured distances between the object and the 

anchors with known coordinates, we transform the non-convex optimization to convex 

one by the positive semi-definite relaxation; and finally we take the optimal solution of 

the convex optimization as the estimated value of the object location. We compare our 

algorithm with the R-LS algorithm when the object is in and not in the convex hull 

composed of the anchors, and the results show that our algorithm is superior to R-LS 

algorithm regardless of whether the object is located within the convex hull.  
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