
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 4, December, 2012 

 

 

131 

 

Locally Kernel-based Nonlinear Regression for Face Recognition 
 
 

Yaser Arianpour
1
, Sedigheh Ghofrani

1
 and Hamidreza Amindavar

2
 

1
Islamic Azad University,  

South Tehran Branch, Electrical Engineering Department, Tehran, Iran 

2
Amirkabir University of Technology,  

Electrical Engineering Department,Tehran, Iran 

st_y_arianpour@azad.ac.ir, s_ghofrani@azad.ac.ir and hamidami@aut.ac.ir 

Abstract 

The variation of facial appearance due to the viewpoint or pose obviously degrades the 

accuracy of any face recognition systems. One solution is generating the virtual frontal view 

from any given non-frontal view to obtain a virtual gallery/probe face. As the state-of-the-art 

face recognition algorithm, linear regression computes a reconstruction matrix from the 

images of each subject and then approximates the probe face image by using the 

reconstruction matrix, but the performance of this linear algorithm is limited due to the 

nonlinear structure of the face images which is caused by variations in illumination, 

expression, pose and occlusion. Following this idea, in this paper, we propose an efficient 

and novel locally kernel-based nonlinear regression (LKNR) method, which generates the 

virtual frontal view from a given non-frontal face image. Because of the high (even infinite) 

dimensionality of the nonlinear transformation functions, it is infeasible to directly calculate 

the corresponding reconstruction matrix and therefore is unable to approximate explicitly the 

probe image. So, with the help of kernel functions, we overcome to this mentioned problem by 

embedding the nonlinear regression in the stage of computing the reconstruction matrix from 

the non-frontal input face and non-frontal face database. The comparison of the proposed 

method with locally linear regression (LLR) and eigen light-field (ELF) methods is also 

provided in terms of the face recognition accuracy. Experimental results show that the 

proposed method outperforms two other methods in terms of robustness and visual effects. 
 

Keywords: Face recognition, kernel function, locally kernel-based nonlinear regression 

(LKNR), reconstruction matrix, virtual frontal view 
 

1. Introduction 

Face recognition has been studied for more than three decades. The state-of-the-art 

recognition technologies can achieve appropriate accuracy under predefined cases, such as 

frontal faces images when the lighting is controlled [3-5]. However, the most current face 

recognition systems are pretty sensitive to pose, lighting, occlusion and aging. It means they 

fail under uncontrolled conditions such as outdoor captured images with uncooperative 

subjects. Among those above mentioned, pose is the bottlenecks because of varying 

appearance of a person with different pose. Therefore, the typical appearance based methods, 

such as eigenface [6], degrade dramatically when non-frontal probes match against the 

enrolled frontal faces.  

Many approaches have been proposed to deal with pose problem, and the view-based 

methods are widely used [7-11]. The drawback of using the view-based method is that it 

usually needs multiple face images with different poses for each subject. Gross, et al., [12-13] 
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proposed the eigen light-field (ELF) method to tackle the pose problem. This approach also 

needs an extra independent training set (differs of gallery) that contains multiple images of 

different poses for each subject. 

Generating virtual view is another possible solution for pose invariant face recognition. By 

generating virtual view, one can either the normalize the all face images to a predefined pose 

(e.g., frontal) or expand the gallery (or the training set) to cover the large pose variations. 

Simply speaking, there are two strategies to generate the virtual view: 3-D model-based 

method [14-20] and learning-based method [21-25].  

Since the variations in appearance caused by pose are closely related to the 3-D face 

structure, it is a natural idea to recover the 3-D model from the input 2-D face image. Thus, 

virtual views under any viewpoint are easily generated by using graphic rendering techniques 

[14, 15, 18]. The 3-D Morphable Model [14-15] is one successful technology for recovering 

the 3-D face model. In this method, the prior knowledge of the face shape and texture is 

modeled by principal component analysis (PCA). Then any new face can be modeled by the 

linear combination of the prototypes, in which the corresponding shape and texture are 

expressed by the exemplar faces respectively. The specific 3-D face can be recovered 

automatically from one or more photographs by simultaneously optimizing the shape, texture 

and mapping parameters through an analysis-by-synthesis strategy. However, it is time 

consuming for most real-world applications. To reduce the complexity, Jiang, et al., [20] 

proposed a simplified version of 3-D morphable model to reconstruct the specific 3-D face 

from a frontal face. Lee [19] also realized the 3-D deformable model for the 3-D face 

reconstruction which was composed of the edge, color region and wire frame models. Generic 

3-D face model has been used in many papers to generate the virtual views to tackle the pose 

problem, such as [16] and [17]. The illumination Cone method [18] can also reconstruct the 

accurate shape and albedo for a specific person from at least seven images under a fixed pose 

but with different lighting conditions.  

Unlike 3-D model-based methods, learning-based approaches generally try to learn how to 

estimate a virtual view directly in 2-D domain [21-25]. Beymer and Poggio proposed an 

example-based algorithm to synthesize novel views from single image and applied them for 

face recognition [22-23]. Vetter, et al., [24-25] proposed a method, in which a face image was 

separated into shape vector and texture vector, and the linear object classes [21] were applied 

to generate the virtual shape and texture under a novel pose. Then the virtual “rotated” images 

are generated easily by combining the generated shape and texture. Evidently, the quality of 

the novel virtual view heavily depends on the accuracy of the face alignment (i.e., the 

separation of shape and texture). 

Chai, et al., [2] proposed the locally linear regression (LLR) method to efficiently generate 

the virtual frontal view from a given non-frontal face image. They partitioned the non-frontal 

face image into multiple patches and applied linear regression to each patch to predict its 

corresponding frontal patch. In comparison with [25], LLR is more efficient because only 

simple linear regression is needed. In addition, LLR requires only the centers of the two eyes 

for alignment rather than accurate face alignment, which is mandatory for the linear object 

classes (LOC) method [21]. However, the performance of this linear algorithm is limited due 

to the nonlinear structure of the face images which is caused by variations in illumination, 

expression, pose and occlusion.  

In this paper, we propose a nonlinear regression method, which is based on kernel 

solutions. Although the linear assumption could dramatically decrease the computational 

consumption, but also eliminate lots of information since the rotation of a human head is 

known as a nonlinear problem, therefore, we propose a kernel-based nonlinear regression 

algorithm for generating virtual frontal view from any given non-frontal view to obtain both a 
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virtual gallery/probe face and effective face recognition. Because of the high (even infinite) 

dimensionality of the nonlinear transformation functions, it is infeasible to directly calculate 

the corresponding reconstruction matrix and thus, it is unable to explicitly approximate the 

virtual frontal view. For this purpose, with the help of kernel functions, we overcome to the 

computational complexity of high dimensional nonlinear transformation functions by 

embedding these functions in the stage of computing the reconstruction matrix from the non-

frontal input face and non-frontal face database. 

This paper is organized as follows. In Section 2, the linear regression is explained. In 

Section 3, the global and local nonlinear regression based on kernel functions are expressed. 

The experimental results of our proposed algorithm are provided in Section 4. Finally, in 

Section 5, we have conclusion.  
 

2. Linear Regression 

Given a non-frontal facial image, this is to generate its virtual frontal view based on a 

training set. Chai et al. [2] formulated this problem mathematically as a regression task. They 

considered the training set as  0( , )PX X , where 1 2

0 0 0 0( , ,..., )NX I I I  and 

1 2( , ,..., )N

P P P PX I I I  
denote the frontal face set and non-frontal face set all with pose P 

belong to N subjects. It is to notify that both i

PI  
and 

0

iI  
correspond to the same person but 

with different pose. The linear regression method [2] implies an specific transform in order to 

convert any non-frontal face 
PI  into its frontal counterpart 

0I , the mapping is written as 

follows: 

0 PI A I ,                                                            (1) 

Let n denotes the number of pixels of an image, in case n N , also the linear operator A  is 

defined as 
0 ( )PA X X  , where  

1

( ) ( ) ( ) ( )T T

P P P PX X X X


   is the pseudo inverse of 
PX . 

Once the linear operator A  is already estimated based on the training set, when given any 

image 
PI  with pose P, its corresponding virtual frontal image 

0I can be computed according 

to the same linear transformation, i.e. 

0 0 ( )P P PI A I X X I  .                                               (2) 

Considering the virtual view generation in a step further, Chai et al. [2] rewrote the equation 

(2) as: 

0 0I X  ,                                                           (3)  

where ( )P PX I   is named the reconstruction coefficients. Therefore, the reconstruction 

coefficients of pose P are to be obtained at first for virtual view generation, the procedure is 

sketched in Fig. 1. Actually, the above solution of the reconstruction coefficients is the result 

of an optimization procedure aiming at seeking a coefficients vector, which can best represent 

the input image in the P pose image space. This is achieved by minimizing the following 

residue function: 
2

,Re( ) P P cI I    ,                                                   (4) 

where ,Re ,

1

N

P c P P j j

j

I X I 


   is the projection of PI in the P pose image space. In addition, 

from the above analysis, one can understand the linear regression more clearly as follows: the 

virtual frontal view of an input non-frontal face image PI  
with pose P is generated through a 

linear combination by using the same coefficients reconstructing the PI in the P pose image 
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space (Figure 1). Coincidentally, this idea is consistent with the concept of linear object class 

[24], but Chai, et al., [2] formulated the problem differently from the point of view of 

regression. 

 

 

Figure 1. The Block Diagram of Generating the Virtual Frontal View based on 
Using the Linear Regression Method 

 

3. Nonlinear Regression 

The main advantage of using the linear regression in order to generate the virtual frontal 

view is easy implementation and the main drawback is unrobust to variations such as 

viewpoints, illumination or expression. In this paper, in order to overcome to this problem, we 

propose the local nonlinear regression based on kernel method. In following, at first the 

kernel method and three type kernels are explained and then our proposed method, locally 

kernel-based nonlinear regression (LKNR) is explained. 
 

3.1 Kernel Functions 

The linear assumption could dramatically decrease the computational consumption, but 

also eliminate lots of information since the rotation of a human head is known as a nonlinear 

problem. In appearance-based face recognition, many nonlinear methods have been proposed, 

and among them, kernel-based methods are very effective and have been proved that they can 

extract nonlinear features providing better recognition results. Based on Cover’s theorem [26], 

patterns which are separated nonlinearly in an input space may linearly be separated if the 

input space is transformed nonlinearly into a high-dimensional feature space. In kernel-based 

methods, there is a nonlinear mapping   which maps the input data space 
n
 
to the feature 

space F . Suppose that an input vector n

ix   
belongs to the original space. This vector will 

be mapped into a potentially higher dimensional vector: 

:

( ).

n

x x

  



F
                                                          (5) 

Instead of specifically clarifying the nonlinear mapping function  , the inner product 

relationship between vector pairs in feature space is defined: 

( , ) ( ) , ( ) ( ) ( )T

i j i j i jx x x x x x      ,                                   (6) 
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Obviously, it is hard to realize matrix operations in an extremely high dimensional space. 

However, we could accomplish the calculation indirectly. The reconstruction coefficients of 

equation (3) ensure the calculation could be simplified even though the dimension of mapped 

vector is extremely high [27]. In general, there are four important and practical classes of 

kernel functions [28] in pattern recognition and image processing applications, which named 

linear, polynomial, Gaussian and sigmoid kernels. In this paper, we choose three common 

kernels which are explained in following. 

For any 
ix  , 

jx  belong to the input space, the linear kernel [28] is: 

( , ) T

i j i jx x x x c   ,                                                       (7) 

where c is an optional constant. The Polynomial kernel [28] is: 

( , ) ( )T d

i j i jx x x x c   ; 1,2,...,d L .                                       (8) 

Adjustable parameters are the slope  , constant c and polynomial degree d. The 

Polynomial kernel is well suited where the training data has been normalized. The well 

known Gaussian kernel [28] is: 

2

2
( , ) exp

2

i j

i j

x x
x x



 
  
 
 

.                                               (9) 

where parameter   refers to the  standard deviation and play an important role. If it is 

overestimated, the exponential will behave almost linearly and the higher-dimensional 

projection lose its nonlinear power and if it is underestimated, the function will lack 

regularization and the decision boundary will be sensitive to noise for training data. 

 

3.2.    Nonlinear Regression with Kernel Functions 

In this section, we use the same marks as them have been represented in Section 2. Let 

 be a specific transform function, which map the n-dimensional vector to a high 

dimensional space. The kernel-based nonlinear regression algorithm for virtual frontal view 

generation is described as follows: At first, from the expression of predicted vector 0I  in the 

former section (i.e., equation (2)), we could straightforward get the expression of 0I  in the 

kernel space: 

0 ( )PI A I  ,                                                       (10) 

where 
0 ( )PA X X    is a nonlinear operator, and the kernel mapping of matrix PX  

is 

1 2( ) ( ) ( ) ... ( )N

P P P PX I I I       . With similar linear regression procedure, we can 

get the pseudo-inverse of ( )PX  as follow: 

                                            
 

1

( ) ( ) ( ) ( )T T

P P P PX X X X


    
 

1 ( )T

PR X  ,                                                             (11) 

 where ( ) ( )T

P PR X X   defines a N N  Gram matrix, and the elements of R  can be 

determined by virtue of the kernel function : 
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( ) , ( ) ( , )i j i j

ij P P P PR I I I I    ; , 1, 2 , ... ,i j N .                         (12) 

In this way, the virtual frontal view can be derived by: 

                                                        
0 0 ( ) ( )P PI X X I      

                                                       

1

0 ( ) ( )T

P PX R X I       

1

0X R S ,                                                                (13) 

 where also ( ) ( )T

P PS X I   defines a 1N   Gram matrix, and the elements of S  can be 

determined by virtue of the kernel function : 

                

1 2( ) , ( ) ( , ) ( , ) ... ( , )k N

k P P P P P P P PS I I I I I I I I          

 ( , )k

P PI I ; 1, 2 , ... ,k N .                                            (14) 

 

3.2.1 Global Kernel-based Nonlinear Regression: Given the above analysis, the virtual 

frontal view from the single non-frontal facial image can be easily derived by using equation 

(13). Note that, when this procedure is implemented, one should carefully align the face 

images. As it is well accepted in face recognition area, one can simply just align the faces 

according to the eye centers, and then the normalized face images in a whole are used to be 

feed into the above prediction. This implementation is called as global kernel-based nonlinear 

regression (GKNR). However the face is not planar in whole, that is to say the absolute linear 

mapping between two different views of a person does not exist, and therefore the nonlinear 

methods should be used. Since we use the kernel functions, this problem is partially solved 

and we get better results than the global linear regression introduced by Chai, et al., [2]. 

Nevertheless, still due to applying the entire surface of a face, some important areas of the 

face such as eyes, nose and mouth may  not be recovered perfectly and so the generating 

virtual view in these areas will be blur (see Figure 3). Therefore, both the reconstruction of 

the input image in pose image space and the prediction in the frontal image space are not as 

precise as expected. Considering that some facial patch is more like a planar surface, a natural 

improvement of GKNR is applying nonlinear regression locally. 
 

3.2.2 Local Kernel-based Nonlinear Regression: Based on the above problems that arise 

due to the intrinsic non-planar structure of the face and applying the entire surface, given that 

a 3-D face surface is composed of many local planar regions, for each small patch, the 

nonlinear mapping will be maintained better both in the single pose image space and across 

different poses than the global case. So we propose a method to synthesize virtual views by 

local kernel-based nonlinear regression (LKNR), in which nonlinear regression is conducted 

in patch-wise mode. Concretely, face images are partitioned into uniformed blocks, and then 

each block are predicted using nonlinear regression, as illustrated in Figure 2. This procedure 

is formally formulated as follows: Firstly, given the training set, each face image should be 

partitioned into M blocks. Due to the pose variation, different modes of partitioning images 

are performed according to their pose categories. In this method, the frontal faces are 

partitioned into regular grids, while the partitioning of images with P pose is completed by 

coarsely seeking for the counterpart of the frontal patches by the aid of an average 3-D face 

model. This ensures the corresponding local patches in frontal and pose image possess the 

same semantics, as can be seen in Figure 2. 
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Figure 2. The Block Diagram of Generating the Virtual Frontal View based on 
using the LKNR Method 

 

There by, given an input image PI  whose pose is P, they partition it into M small patches 

 (1, ) (2, ) ( , )...P P P M PI I I I as is done for the P pose training images. Predicting the 

corresponding i-th frontal patch 
( ,0)iI

 
for the i-th non-frontal patch 

( , )i PI
 
follows two steps: 

Estimating the reconstruction coefficients for the  i-th small input patch in the specific patch 

space by: 
1

i i iR S  ,                                                           (15) 

where ( , ) ( , )( ) ( )T

i i P i PR X X   and ( , ) ( , )( ) ( )T

i i P i PS X I  ; 1, 2 , ... ,i M  are Gram 

matrices and also  1 2

( , ) ( , ) ( , ) ( , )... N

i P i P i P i PX I I I
 
is the i-th patches with P pose from the 

training set. 

Obtaining the virtual frontal patch by: 

( ,0) ( ,0)i i iI X  ,                                                       (16) 

where  1 2

( ,0) ( ,0) ( ,0) ( ,0)... N

i i i iX I I I  is the i-th patch from the frontal images in the training 

set.  

After performing such prediction for each patch in the PI , all the small virtual frontal patches 

are combined into a whole vector, that is the target virtual frontal 

view  0 (1,0) (2,0) ( ,0)... MI I I I . The resulting normalized frontal view can then be used 

for recognition. 

 

4.    Experimental Results 

In this paper, we use the CMU PIE [29] and NCKU CSIE [30] face database in order to 

show the performance of our proposed method. The CMU PIE database includes 41,368 face 

images belong to 68 persons with 13 different poses, 43 different illumination conditions, and 

4 different expressions. We use five pose subsets of CMU PIE database, which are pose sets 

37 and 11 (i.e. yawing about 45  degree), pose sets 05 and 29 (i.e. yawing about 22.5  

degree), and pose set 27 (nearly frontal face). The NCKU CSIE database includes 6660 face 

images belong to 90 persons with 37 different real poses and 37 different synthesized poses. 
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In this work, we use three pose subsets of NCKU CSIE database, which are the natural frontal 

faces and the poses yawing about 40 degrees.  
 

4.1 Generating the Virtual Frontal Face  

In this work, the all face images are normalized to the same size with 160 160  pixels after 

fixing the eyes positions and keeping the aspects of face, as shown in Fig. 3, where Fig. 3-a 

and Fig. 3-c are the input non-frontal views from PIE P11 and PIE P29 subsets respectively. 

Fig. 3-b and Fig. 3-d illustrate the prediction results of GKNR for Fig. 3-a and Fig. 3-c 

respectively, i.e., using the whole 160 160  patch for prediction, and Fig. 3-e is its ground 

truth frontal views from PIE P27 subset. Two parameters are to be still obtained, i.e. the size 

of patches and the sampling step for a patch, though the face size is fixed. In the following 

experiments, in spite of using the linear kernel function is simpler than others, we use the 

polynomial kernel functions, due to controlling the contrast of produced image by varying the 

polynomial degree d. In this paper the polynomial degree d is considered to have a value 

between 0 and 1 for different input images. In addition, in order to reduce the computational 

cost, we do not use the Gaussian kernel function. 

 

 

Figure 3. The Normalized Non-frontal Images belong to PIE P11 (a) and PIE 
P29 (c) Subsets. The virtual frontal view, (b) and (d), that generated by using 
GKNR from (a) and (c) respectively. (e) The normalized ground truth frontal 

image from PIE P27 
 

Table 1. Example Results and the Corresponding PSNR (dB) of LKNR with 
Various Patch Size and Step 
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To evaluate the prediction accuracy, the PSNR is calculated by using the following 

equation: 

2

10 2

1 1

255
10 log

1 ˆ( , ) ( , )
W H

i j

PSNR

f i j f i j
WH  

 

 
 

,                          (17) 

where ( , )f i j  is the ground truth frontal view, ˆ ( , )f i j  is the predicted virtual frontal view, and 

W and H are the width and height of the image respectively. According to our experimental 

results which are shown in Table 1, the patch size is to be considered neither too large nor too 

small. A too large patch may cause the break of linear assumption in local linear regression 

although the proposed method makes use of kernel functions and a too small patch may result 

in serious mis-alignment since we use a generic 3-D model. Therefore, a small patch size may 

result in more artifacts, especially for patch size 20 20  and the large patch size may result in 

more blurring effect, especially for the nose and mouth parts. As for the sampling step, it is a 

tradeoff between over smoothing and blocking effect. Especially, more blocking effects can 

be observed, when the patches are sampled without any overlapping, i.e., the step is as large 

as the patch size. On the contrary, a small step such as 1 pixel always results in very 

smoothing face images. 

The experimental results for two methods, GKNR and LKNR, are shown in Figure 3 and 

Table 1, where the three patch sizes ( 20 20 , 40 40 and 80 80 ) and five sampling steps (5, 

10, 20, 40 and 80) are being used. According to our achievements, the PSNR is the largest for 

patch size 40 40  with steps 10 and 20 pixels and patch size 80 80  with steps 20 and 40 

pixels. Our experience with more example images shows that, from the point of view of both 

the visual effects and PSNR, the patch size 80 80  with step 20 and patch size 40 40  with 

step 10 usually achieve the best results. Despite the higher PSNR for patch sizes 40 40  and 

80 80  with steps 20 and 40 respectively, than patch sizes 40 40  and 80 80  with steps 10 

and 20 respectively, due to the more blurry its visual effects, the results of the last two 

patches are preferred. Since patch size 40 40  with step 10 is more time consuming than 

patch size 80 80  with step 20, we use the patch size 80 80  with step 20 in our following 

experiments for pose-invariant face recognition. Figure 4 shows three examples of generated 

virtual frontal views from CMU PIE face database with two angles, 22.5 and 45 degrees. In 

addition, we show four samples of generating the virtual frontal views for the pose yawing 

over 40 degrees which belong to NCKU CSIE face database (see Figure 5). According to our 

experimental results, we conclude that the LKNR method is an efficient and robust method 

for generating the virtual frontal view under different circumstances, i.e. different poses of 

individual persons. 
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Figure 4. Examples of LKNR-based virtual frontal view generation from CMU 
PIE face database. From top to bottom, the upper row includes the original 
non-frontal faces with the pose yawing about 22.5 degree (P29), the second 

row is the generated virtual frontal views from P29, the third row includes the 
original non-frontal faces with the pose yawing about 45 degree (P11), the 
fourth row is the generated virtual frontal views from P11 and the last row 

shows the ground truth frontal images (P27) 

 

 

Figure 5. Examples of LKNR-based virtual frontal view generation from NCKU 
CSIE face database for the pose yawing about 40 degree. The upper row is the 

original non-frontal faces, the middle row is the virtual frontal views and the 
lower row is the original ground truth frontal views 

 

4.2.    Recognizing the Virtual Frontal Face  

After generating the virtual frontal view from an image with non-frontal pose, it turns to 

use an efficient face recognition algorithm. Although, afterward the virtual frontal view is 

generated by LKNR we can employ any face recognition method, in this paper, we use the 

Fisher linear discriminant analysis (FLDA) [31], which is one of the most successful methods 

of classification, to validate the effectiveness of the proposed method. In general, FLDA is 

trying to find a linear transformation whereas the feature clusters are being separated well. 

This transformation is done through the scattering matrix analysis. So an input face image is 

transformed into a subspace where scattering the between-class is maximum and scattering 
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the within-class is minimum by maximizing the Fisher separation criterion. When designing a 

FLDA classifier, one has to deal with the within-class scatter matrix carefully, because it may 

be singular. To avoid the singularity problem, PCA is first conducted to reduce the 

dimensionality to less than N-C, where N is the number of training examples, and C is the 

number of classes. The PCA transformed features are then fed into the final FLDA for 

classification. For this purpose, we use CMU PIE and FERET databases [32]–[33] as the 

testing and the training images, respectively. As our goal is performing the proposed face 

recognition algorithm on CMU PIE database, we use three subsets from the FERET pose 

database, i.e., “ba” (frontal), “be”(right rotation of 15 degrees) and “bf”(left rotation of 15 

degrees), to form the training set in our experiments. Some example training images are 

shown in Figure 6. Due to the fact that the imaging conditions between the FERET and 

CMUPIE databases are different, the evaluation results on PIE database are expected to have 

a good generalizability. After PCA and FLDA models are obtained by using the FERET face 

images, the face recognition based on PCA+FLDA is performed on the 68 subjects in the 

CMU PIE dataset. 

 

Figure 6. Example Images from the FERET Database for the Training of 
PCA+FLDA Method 
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Figure 7. Comparing the Performance of Pose-invariant Face Recognition 
System PCA+FLDA without and with Kernel-based Nonlinear Methods 
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Table 2. The Face Recognition Rate of Our Proposed Algorithm and LLR and 
ELF Methods  

 
 

According to Figure 7, it is found that the recognition rate can be improved by using the 

virtual frontal view which was generated from the non-frontal face. Using the generated 

images via LKNR in the face recognition system the accuracy of system performance is 

increased. From Figure 7, since the quality of generated images via GKNR is lower than 

LKNR, therefore, its efficiency in face recognition is less, but however, GKNR has better 

performance than direct use of original non-frontal images in face recognition. In addition, 

since a small patch size may lead to more artifacts, especially the patch sizes 20 20  
and 40 40 , also given that these patches will consume more time, LKNR by using patch size 

80 80  shows better results in different poses. Also, it is to be considered that the dense 

sampling can remove the blocking effects efficiently, therefore the step size of 20 pixels is the 

best choice where the patch size is 80 80  for LKNR method. 

The ELF algorithm is the well known method for recognizing faces with different poses 

[13]. According to the results comparing the performance of LLR [2] and ELF methods that 

are written in Table 2, one can find that the proposed method with the step size equal 20 

pixels and the patch size equal 80 80  outperforms the ELF on all probe sets. It should be 

noted that the results of LLR and ELF in Table 2 are directly cited from [2] and [13], 

respectively. Based on this, the average recognition rate of our method is 14.15% higher than 

the ELF method. In comparison with the implementation complexity, both LLR and LKNR 

need only the two eyes alignments, so they are simple than ELF. In addition, the main 

advantage of using LKNR in comparison with LLR is that it acts as a nonlinear method and it 

can handle nonlinear variations in images, therefore, the average recognition rate of our 

method is 2.5% higher than LLR and this is acceptable and not unexpected. 
 

5.    Conclusion 

In this paper, we proposed a nonlinear method for generating the virtual frontal view from 

a non-frontal face image in order to improve the pose-invariant face recognition rate. As a 

linear method it may be inability when the face patterns are subject to large variations in 

viewpoints, illumination and expression. Indeed the linear assumption could dramatically 

decrease the computational consumption, but however, since the rotation of a human head is 

known as a nonlinear problem, the linear method eliminates lots of information. According to 

Cover’s theorem [26], nonlinearly separable patterns in an input space will become linearly 

separable with high probability if the input space is transformed nonlinearly into a high-

dimensional feature space. So, we proposed a kernel-based nonlinear regression algorithm in 

order to achieve better results in face images with large variations, because the kernel 

functions can be used in any algorithm that solely depends on the dot product between two 

vectors, in other words, wherever a dot product is used it is replaced by a kernel function. 

Accordingly, with the help of kernel functions, we were overcome to the computational 
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complexity of high dimensional nonlinear functions by embedding these functions in the 

stage of computing the reconstruction matrix from the non-frontal input face and non-frontal 

face database. After converting non-frontal face images into the virtual frontal view, we used 

the PCA+FLDA method for pose-invariant face recognition. 
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