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Abstract 

Reducing the Radiation Dose in Multi Slice Computerized Tomography MSCT/CT is a 

significant concern. The Non-Linear Bilateral Filter BF was proved to have the property of 

de-noising digital images without jeopardizing the fine structures. This paper tests the BF 

performance on low dose CT by using Image Texture Metrics which have not been reported 

in literature. Set of CT images of dedicated CT phantom were acquired at four different 

radiation doses by means of minimizing the X-Ray Tube Current. As radiation dose is 

lowered, the noise will unavoidably increase degrading the diagnostic value of the CT image. 

The BF was applied to achieve image space noise removal. The value of each BF parameter 

was changed set of times. The quantitative assessment of the amount of noise reduction was 

done using eight metrics based on image texture descriptors that have not been tried before. 

Particularly, we used three histogram moments (Variance, Skewness, Kurtosis) and five co-

occurrence matrix descriptors (Correlation, Contrast, Uniformity, Homogeneity, Entropy). 

The results showed that these descriptors are reliable metrics to assess BF performance. 

Each image descriptor value -after applying BF on low dose CT images- is enhanced toward 

the full dose CT image. Therefore, these metrics have provided additional proofs about the 

capability of BF toward enhancing the diagnostic value of the low dose MSCT. We concluded 

that: 1-) Texture descriptors are reliable measures similar to other metrics that are 

commonly used in literature, and 2-) BF can contribute to reduce X-Ray dose in routine CT. 

Also, the results have leaded to propose the effective procedure to employ BF on CT. 

 

Keywords: Bilateral Filter; Image Texture Descriptors; Histogram Moments; Co-
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1. Introduction  

Multi-slice computerized tomography MSCT/CT exposes patients with the highest 

radiation dose among other X-Ray diagnostic imaging devices [1, 4]. Hence, any attempt to 

reduce radiation dose is of great essence. However, as radiation dose decreases the image 

quality is degraded because of the increase of the image noise [1-3].  

MSCT researchers have introduced set of approaches to reduce radiation does [1, 4]. One 

of which is the applied techniques on the CT image domain. This include software digital 

image processing filtering solutions for noise reduction either at Image space (i.e. 

reconstructed image) or projection space (i.e. sinogram). 
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Many image processing filters were introduced in literature. Chun-yu et al explored the 

Median and adaptive Median filters [5]. They used the peak signal noise ratio PSNR and the 

deterioration degree to evaluate filters performance on CT Chest image with various added 

noise density (i.e. salt and paper noise). Kelm et al evaluated the non-local mean NLM filter 

[6]. They also used PSNR to test the filter's function on CT Chest phantom. Lanzolla et. al., 

tested the Gaussian, Averaging, and Un-sharp smoothing filters followed with applying 

Perwitt and Sobel edge preserving filters [7]. They measured the PSNR on CT chest image 

with added zero mean guassian noise. Attivissimo et al continued the previous work and 

apply Anisotropic Diffusion filter [8]. They used the relative mean square error MSE to 

evaluate filter performance. On the other hand, there are published researches in the 

projection space domain for de-noising CT images. One of which is the experiment done by 

Li et. al., [9]. They generated analytical relationship between variance and mean of 

probability distributed function PDF in order to guide 2-D sinogram smoothing process.  

Bilateral Filter BF is a nonlinear filter developed in 1998 by Tomasi and Manduchi [10]. 

By careful selection of BF parameters, BF has the ability to smooth any arbitrary digital 

image while preserving the edges (i.e. fine information). This property was repeatedly 

deduced by researches such as Vijaya and Feng et. al., [11, 12]. They used PSNR, Donoho's 

method, or wavelet based method in order to estimate the noise variations on non-medical 

digital images. 

The BF functioning on CT images was tested to find out its efficacy in CT dose reduction. 

Giraldo et al demonstrated that dose reduction up to 20 folds can be obtained from Gradient 

Adaptive BF as applied on animal perfusion CT [13]. They measured the time attenuation 

curves on CT images acquired at different folds of exposures. They inferred that the 20 fold 

dose reduction keep the image quality comparable with the full dose image. Also, Giraldo 

with other colleagues compared the performance of BF and NLM filters on CT images [14]. 

They tested the filters on both phantom and abdomen CT images acquired from dual source 

CT system. The assessment was done using spatial resolution module, local contrast module, 

line profile, and the radiologist opinion. They deduced that both filters de-noise the CT image 

quite well, but NLM needs careful choose of its parameters. Steckmann and Kachelrieβ found 

that BF can be used to reduce the blooming artifact encountered during applying 

reconstruction kernels in Cardiac CT [15]. Huang et al employed Ancombe transform and 

Block Matching with 3-D filtering BM3D to reconstruct CT images of Shepp-logan phantom 

[16] (sinogram space). Then, they applied NLM or BF filters on the CT images to preserve 

edge information (image space). They calculated SNR and normalized mean square error 

NMSE for evaluation. Finally, Manduca et al adopted an algorithm based on BF filtering 

applied on CT image space [17]. The BF was applied on thin wire phantom, contrast plate 

phantom, CT colonography data, and five abdominal low-energy (80 kV) CT exams. They 

found that BF is qualified to improve the SNR without jeopardizing image quality. 

Consequently, they proposed that BF can lead to considerable dose reduction.  

This paper focus on applying BF on CT image space. We noted that the image texture 

descriptors have not been used to assess BF performance. In this paper, we observed the BF 

performance on four low dose images of CT plastic phantom by measuring eight image 

texture metrics based on histogram moments and co-occurrence matrix.  
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2. Theory 

2.1. Bilateral Filter 

Bilateral filter is a non-linear digital filter introduced in 1998 [10]. This filter is 

recommended for images -such as CT- so that removing noise is achieved without harshly 

loosing edge information. The BF coefficient weights are determined according to both the 

variation in pixels intensities and the location of pixels in a certain neighborhood. Hence, 

each pixel will have different BF coefficients based on their geometric closeness and their 

intensity similarity with the pixel in the center of the BF window NxN. The BF is equated as: 

 

 

 

 

 

Which {K} is a normalization constant given by : 

 

Equation (1.2) shows that the BF Filter Range is determined by an input constant denoted 

as [r], whereas Equation (1.3) states that the BF Filter Domain is determined by another 

input constant called as [d]. 

 

Hence, the BF has three main parameters. These are the BF window size, the BF filter 

range, and the BF filter domain. 

 

2.2. Digital Image Texture Descriptors 

Image Texture descriptors are a common image processing tools that can be used to 

evaluate the image coarseness and regulatory [18]. Histogram Moments and Co-occurrence 

matrix descriptors are two types of statistical methods to describe Image Texture. 

 

2.2.1. Histogram Moment: These are directly applied on the gray level of the pixels in the 

image. The moment {µ} of order n of gray levels in an image is given by: 

 

  

 
where: {l} is the number of discrete intensities in an image; {z} is a variable used for pixel 

intensity (i.e. gray level); {n} is the Moment order; {p[zi]} is the probability of the pixel 

intensity zi; {m} is the mean of pixel intensities in the image; {µn(z)]} is the moment {n} with 

respect to the mean. 
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Gonzales and Woods [18] explained that the second order moment (i.e. n=2) indicates the 

Variance in pixel intensities; The third order (i.e. n=3) is denoted as "Skewness" which 

indicates the sharpness of the histogram slope; Finally, the fourth order (i.e. n=4) is used to 

describe the flatness of the image histogram and called as "Kurtosis". The moment of higher 

orders do not directly correspond to the shape of histogram so they do not present useful 

differentiators [18]. 

 

2.2.2. Co-occurrence Matrix Descriptors: Histogram moments evaluate the distribution 

intensities of pixels in an image, but it does not consider the relative position of pixels with 

respect to each other (i.e. spatial distribution). Co-occurrence matrix CM examines both the 

distribution of intensities and relative positions of pixels in an image [18].  

The CM calculates how many times each pair of intensities happen in an image. The 

repeated occurrence is also restricted to the preset neighborhood connectivity conditions. 

There are set of Image descriptors which can be derived from the CM in which they 

describe the overall texture of image. We used five CM descriptors: Uniformity, Entropy, 

Correlation, Homogeneity, and Contrast. Their equations are listed below. 

       

 

   
Where: {k x k} is the size of the CM; {i, j} are the discrete gray levels; {Pij} is the 

probability for discrete value {i} to occur beside the discreet value {j}; {mr} and {mc} are the 

mean of gray levels in row and column, respectively; {a} and {b} are the standard deviation 

of gray levels in row and column, respectively.  

Gonzales and Woods [18] explained that Equation (3) calculates the Uniformity (also 

called Energy) of the image. Whereas, equation (4) measures the randomness of the elements 

in the CM and it is called Entropy. Equation (5) quantifies how Correlated is a pixel to its 

neighbor over the entire image. Finally, Equation (6) computes the spatial closeness of the 

distribution of elements in CM to the diagonal, it is named as Homogeneity; Whereas, 

Equation (7) measures the Contrast between pixel and its neighbor in the CM image. 
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3. Materials 

 

 

Figure 1(a-d). CT Phantom Images at four different dose exposures. (a) 200mA, 
(b) 150mA, (c) 100mA, and (d) 50mA 

 

Four images of TOSHIBA CT Phantom were acquired at four different tube currents from 

a 4 slices TOSHIBA Helical CT model "Aquilion". The selected tube currents are: 200, 150. 

100, and 50mA while the tube potential was held at 120 KV. If we choose the 200mA image 

as a reference, the other images would be 75%, 50% and 25% decrement in radiation dose. 

The 200mA was selected as a reference because it is a frequently routine clinical procedure. 

Figure 1 shows those acquired images. The slice thickness was selected to be 2 mm which is 

believed to be adequate to do the research. 

Figure 2 illustrates the variations in image texture due to X-Ray dose variations. A line 

profile of the pixels intensities at the background of the phantom was calculated. We selected 

a line profile of 45 pixels for the sake of demonstration. The position of this line profile is 

illustrated in Figure 2(a) as a red line whereas the red square is going to be used later in the 

discussion. Figure 2(b) shows the resulting line profiles. The red, green, yellow and blue lines 

indicate the pixels intensities line profile for 200, 150, 100, and 50 mA dose, respectively. 

The figure illustrates that as radiation dose is reduced the pixel intensity fluctuations increases. 

Therefore, CT image texture varies with radiation dose.  
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Figure 2. (a) The Location of Line Profile and ROI (i.e. Red line and square).   

(b) Line Profiles of Pixel Intensities for all Low Dose images (Red:200mA, 
Green:150mA, Yellow:100mA, and Blue:50mA) 

 

4. Method 

The BF was applied on the CT images employing different values of [d] and [r]. The 

values of [d] were altered in the following steps: 0.5, 1, 2, 3, 4, 5, 6, 7, and 10. Whilst, the 

values of [r] were changed in the following steps: 0.05, 0.1, 0.2, 0.3, 0.5, and 1. The trial was 

to keep a fixed value for [r], then apply BF according to the above-mentioned different 

values for [d]. The window size of the BF was set to be 7x7. 

This experiment was done on the 150, 100, 50mA images. Each time after applying the BF 

at certain value of [r] and [d], histogram moments in equation (2) were calculated with n=2-

4. Also, the co-occurrence matrix CM was generated; then the five descriptors in equations 

(3-7) were calculated. We chose the 8-nieborhood adjacency condition for the CM generation 

since it is the general case [18]. 

The BF was not applied on the 200mA image but the histogram moments and the CM 

descriptors were measured. The resulting values are used as references to see how much close 

the BF can bring the low dose images to the 200mA image. 

 

5. Results  

Figures 3-10 showed the resulting descriptors values from changing [d] at different [r] 

values. Each figure shows three curves representing one image descriptor calculated after 

applying BF to the three different dose images. Each figure also contains a straight line which 

represents the descriptor's value from the 200mA image plotted as a reference. 

 

5.1. Co-occurrence Matrix Descriptors 

5.1.1. CM Image Uniformity/Energy: The values of this descriptor should be in the range 

"0" to "1" according to equation (3) [18]. When Uniformity is "1", this means that the image 

is a constant gray level image and CM has only single value. Since the low dose image 

contains higher percentage of noise, it should exhibit low uniformity in comparison to the 

high dose image. As noise is removed by BF, the uniformity should enhance. Figures 3(a-b) 

confirm this fact. They show that the 200mA image have the highest energy before applying 

BF. The uniformity of all low dose images has improved after applying BF for any r and d 

values. The best values is when 0<d≤3 and 0.05≤r<1. Beyond these limits (d>3), the 

curves start to reach constant state and become closer to "1" indicating high level of noise 

reduction by BF. If r=1 was selected the working zone becomes linear only within the range 

0<d≤1. These figures show that Uniformity can observe noise removal by BF. 
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Figure 3. Uniformity/Energy Results for the BF Low Dose Images at Various d 

Values at: (a) r=0.05 (left) and (b) r=1 (right) 
 

5.1.2. CM Image Entropy: Equation (4) states that the maximum expected value is 2 log2 K. 

The maximum value happens when all Pij have similar values, corresponding to equal 

repetition of gray levels co-occurrences [18]. This mimics the case of high noise pattern. 

Therefore, as dose decreases the entropy should increase because of the increase of noise 

pattern in the image. This fact is supported in Figure 4(a-b) in which all the low dose images 

present higher Entropy value than the 200mA image before applying BF. After applying the 

BF, entropy starts to decrease because of noise removal. For all low dose images, the curves 

in the figures showed that the useful operating part of the curves take place when 0<d≤4 and 

0.05≤r≤1. Beyond this limit, there is no significant variation in Entropy. These figures also 

illustrate that Entropy is a successful metric to monitor the noise removal by BF. 

 

 

Figure 4. Entropy Results for the BF Low Dose Images at Different d Values at: 

(a) r=0.05 (left) and (b) r=1 (right) 
 

5.1.3. CM Image Correlation. Equation (5) states that the correlation varies between -1 to 

+1, corresponding to perfect negative and perfect positive correlation between pixels [18]. 

Therefore, one anticipates that low dose images should possess low correlation in comparison 

to the high dose image. This is due to the fact that the low dose image exhibits lower quality 

than the high dose one. Figures 5(a-b) show that all low dose images displayed lower 

correlation than the 200mA image. The BF improves the correlation between pixels due to 

noise removal. The working zone is when 0<d≤3 and 0.05≤r≤1. Beyond these limits, the 

curves reach steady state indicating no significant variation in the correlation value. These 

figures disclosed that the correlation can be used as a quantifier to the noise removal by BF. 
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Figure 5. Correlation Results for the BF Low Dose Images at Different d Values 

at: (a) r=0.05 (left) and (b) r=1 (right) 
 

5.1.4. CM Image Homogeneity: The value of this descriptor is in the range "0" to "1" as 

equation (6) states [18]. When homogeneity is "1", this means that all gray levels in the image 

have equal repetition. Therefore, as noise is increased in the image the homogeneity should 

decrease. In other words, the high dose image has higher homogeneity than the low dose 

image. This is proved in Figures 6(a-b). They show that the 200mA image has higher 

homogeneity than all low dose images before applying BF. The BF improves the 

homogeneity when 0.05≤r≤1 and 0.5<d≤4. Beyond the previous limits, homogeneity 

increases till it reaches steady values indicating, again, the excessive smoothing of the images. 

However, it is true to conclude that homogeneity is also a possible quantifier to the amount of 

noise removal by BF. Also, if d<0.5 and r=1 there is a slight decrease in homogeneity. This 

means that we should always select d>0.5 with this metric. 

 

 

Figure 6. Homogeneity Results for the BF Low Dose Images at Different d 

Values at: (a) r=0.05 (left) and (b) r=1 (right) 
 

5.1.5. CM Image Contrast: according to Equation (7), CM contrast varies between 0 to [k-

1]
2
. When its value is "0", this means that the CM is constant; hence, noisy images lead to 

high CM contrast [18]. Hence, one expects that the low dose images should have higher CM 

contrast than the 200mA image because they contain higher percentage of noise. This is 

confirmed in Figures 7(a-b). Applying BF has improved all low dose images. The figures 

showed that the useful zone is when 0<d≤3 and 0.05≤r≤1. Curves reach steady values when 

the BF is applied at higher r  and d values than the previous limits. Hence, Contrast of the 

CM can also be used to successfully observe the noise removal by BF. 
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Figure 7. Contrast Results for the BF Low Dose Images at Different d Values 

at: (a) r=0.05 (left) and (b) r=1 (right) 
 

5.2. Histogram Moments 

5.2.1. Variance: It is the second moment which tells us about the histogram uniformity. 

Histogram variance increases as dose decreases due to noise increase. Therefore, one expects 

that the low dose images show higher variance than the high dose images. This is confirmed 

in Figures 8(a-b). They reveal that the lower the dose the higher the variance before applying 

BF. The variance of all low dose images improve after applying BF for any r and d values. 

The figures show that the optimum working zone for all low dose images is when 0<d≤4 and 

0.05≤r≤1. Again, curves reach steady values when the BF is applied at higher r  and d 

values than the previous limits. However, Variance can effectively quantify the amount of 

noise removal of BF. 

 

 

Figure 8. Variance Results for the BF Low Dose Images at Different d Values 

at: (a) r=0.05 (left) and (b) r=1 (right) 

5.2.2. Skewness: It is the third histogram moment which measures the sharpness of the image 

histogram. As the dose increases the amount of noise decreases leading to sharp histogram 

slopes because the better image quality of the objects in the image. This, in turn, gives higher 

skewness value. Figures 9(a-b) have proved this fact because they show that the lower the 

dose the lower the skewness is. Applying BF enhances the skewness. The curves in the 

figures show that the ideal part for all low dose images is when 0<d≤3 and 0.05≤r≤1. These 

figures imply that skewness is a possible effective quantifier of noise removal by BF. 
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Figure 9. Skewness Results for the BF Low Dose Images at Different d Values 

at: (a) r=0.05 (left) and (b) r=1 (right) 
 

5.2.3. Kurtosis. This is the fourth histogram moment that estimates the flatness of the image 

histogram. In low dose image the noise increases affecting the spatial resolution of an image. 

This should lead to decrease the histogram flatness (i.e. Kurtosis). Figures 10(a-b) have 

verified this fact because they show that all low dose image exhibit low kurtosis. Applying 

BF decreases the amount of noise and consequently increases the kurtosis. The figures show 

that the optimum working zone for all low dose images is when 0<d<3 and 0.05≤r≤1; 

whilst, curves reach steady values when the BF is applied at higher r  and d values. 

 

 
Figure 10. Kurtosis Results for the BF Low Dose Images at Different d Values 

at: (a) r=0.05 (left) and (b) r=1 (right) 
 

6. Discussion 

Figures 3-10 have revealed that all descriptors can be used to measure the noise removal 

after applying BF similarly to other common metrics, which are used to observe the BF 

performance, such as the SNR [5-7, 11-12, 16-17] or the MSE [8,16]. The entropy curves in 

Figure 4(a-b) showed that it has the highest slope for d<0.5. This means it exhibits the 

highest sensitivity to any small variance in r and d. Whilst, figure 6(b) show that d should 

be at least bigger than 0.5 in order to use homogeneity as a metric (i.e. d≥0.5). 

Table 1 summarizes the optimum BF values for r and d which allow each texture 

descriptor to quantify the BF performance. This table discloses that the general BF optimum 

parameters for all Texture descriptors is choosing 0.05≤r≤1 and 0<d≤3. These limits 

guarantee that all texture descriptors will successfully quantify the noise removal by BF. 

Choosing r<0.05 should not affect the previous finding. 

However, it is important to mention that these results are obtained for this CT phantom. 

Although choosing other phantom or clinical MSCT image may need different optimum r 
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and d zones than those listed in Table 1, it is still valid to claim that these texture descriptors 

have the potential to quantify the noise removal by BF on low dose CT images. 

 

Table 1. BF Optimum Parameters for each Texture Descriptor to Observe the 
BF Noise Reduction on Low Dose MSCT Images 

 r d 

Co-occurrence Matrix 

Descriptors 

Uniformity/Energy 0.05≤r<1 0<d≤3 
Entropy 0.05≤r≤1 0<d≤4 

Correlation 0.05≤r≤1 0<d≤3 
Homogeneity 0.05≤r≤1 0.5<d≤4 

Contrast 0.05≤r≤1 0<d≤3 

Histogram Moment 
Variance 0.05≤r≤1 0<d≤4 
Skewness 0.05≤r≤1 0<d≤3 
Kurtosis 0.05≤r≤1 0<d≤3 

Also, there is a second point that it needs to be clarified. Despite the fact that the curves in 

Figures 3-10 are in some cases have intersected its measured value on the full dose image, 

this does not imply that the image quality of the BF low dose image becomes similar to the 

quality of the full dose image. Occasionally, the curves come to value better than that 

obtained from the full dose image. This also does not imply that the BF low dose image 

exceeds the quality of the full dose image. To further explain this point we generated the 

Histogram Accumulation at region of interest ROI of the full dose image and the low dose 

image after and before applying BF. This was done selecting r and d values within the 

ranges listed in Table 1. The ROI is shown as red square in Figure 2(a). Figures 11(a-c) show 

the results. These figures demonstrate that applying BF on low dose images enhance the low 

dose image toward the appearance of full dose image. This conclusion is more obvious on the 

100 and 50mA than the 150mA. On the other hand, careful selection of BF parameters for the 

150mA image may come very close to the appearance of the 200mA image. This confirms 

that BF can contribute to reduce X-Ray dose in routine MSCT. 

The previous argument (i.e. BF low dose image never reaches the same appearance of the 

full dose image) can be attributed to the fact that BF removes noise without affecting edges of 

the image is not an absolute statement. Actually the correct is to say that as BF parameters are 

low the BF effect on edges is very minimal to be observed. When BF parameters (r and d) 

start to increase the BF effect on edges starts to increase as well.  

Hence, as far as the CT is concerned, the BF has a successful role in enhancing the low 

dose images by removing the resulting noise in the low dose CT images as long as low values 

for r and d are selected. This shall expand the diagnostic value of the low dose CT image. 

However, it will not reach the same quality of the full dose image or any higher dose image. 

What has been lost due to lowering the dose cannot be retrieved. 

Therefore, we propose that the ideal scenario using BF is to be applied as a real-time 

procedure on the CT image until the radiologist satisfaction. Simple algorithm can be added 

to the current CT systems. The algorithm should have two key bars allowing the radiologist to 

select a value for [r] and adjust the values of [d] or vice versa. From the experiments, we 

suggest that the best way is to set a small value to [r] and change values of [d] until the 

satisfaction of observer. The size of the BF window can be added as another option. We 

expect that this scenario will help in expanding the diagnostic value of the low dose CT 
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images. For instance, it may allow medical physicist to examine pediatrics or to enroll serial 

CT imaging of young patients. Finally, this strategy will adapt elegantly with the fact that 

radiologist visual perception to the radiographic CT features varies among them (i.e. using the 

same preset value of [r] and [d] for all CT images will not take in consideration the 

variation in the radiologist perception and experience). 

 

  

 

Figure 11. ROI Histogram Accumulation for: (a) 200mA and 50mA image before 

and after apllying BF with r=0.3 and d=1, and (b) 200mA and 100mA image 

before and after apllying BF with r=0.2 and d=1, and (c) 200mA and 150mA 

image before and after apllying BF with r=0.1 and d=0.75 
 

In comparison to literature, this paper tested new metrics (Figures 3-10) to evaluate the BF 

performance on low dose CT phantom images. All these metrics have showed that they are 

possible quantifier to noise removal from low dose images by BF. However, we expect the 

CM descriptors would be more precise than histogram moments because they take in 

consideration the recurrence of grey levels unlike the histogram moments which are global 

measures. Also, as the experiments were focusing on the previous findings, this paper also 

supported the work in literature that BF has the potential to contribute to reduce X-Ray dose 

in routine CT.  

The validation of these results on clinical CT exams, which are believed to be more 

complex than the phantom, can be forwarded to future research. We expect that the findings 

of this paper will not be affected. 
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7. Conclusions 

We tested the feasibility of using Image Texture descriptors to evaluate the BF 

performance on noise reduction of low dose CT images. The phantom images were collected 

from a CT device at four different radiation doses by means of changing tube current. After 

applying BF with various combination of r and d values, the amount of noise removal was 

assessed by calculating three histogram moments and five CM descriptors. All these 

descriptors showed capability in quantifying the BF performance on low dose CT images.  

Also, the results in this paper support the potential of BF in removing noise from low dose 

CT images. So, the diagnostic value of low dose CT is subject to be enhanced. However, the 

results showed that this is restricted by selecting low values of r and d.  

Additionally, observing the role of filter range r and filter domain d has led us to state 

that the best scenario to use BF is to set a small value of [r] and modify [d] until the 

satisfaction of observer. Inverting the BF parameters scenario is also possible. This maintains 

the finding in literature that noise reduction in CT by applying BF on CT image space is 

feasible. 
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