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Abstract 

In this paper it is proposed a boundary based classifier that is inspired by SVDD and 

makes an important role for gravity center of training samples. In the proposed method all 

training samples intervene in determining the classifier boundary. Consequently, the relevant 

classifier isn’t placed in the group of the support vector machines. Due to the employment of 

this idea, this method is called "Quasi Support Vector Data Description (QSVDD)". The 

ability of this method to eliminate the effect of noisy training samples on synthetic data is 

shown. Experiments on real data sets show that the proposed method describes more 

accurately lots of real data sets than SVDD. 
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1. Introduction 

The one-class classification problem is an interesting field in pattern recognition and 

machine learning researches. In this kind of classification, we assume the one class of 

samples classified as the target class and the rest of samples are classified as the outlier. One-

class classification is particularly significant in Applications where only a single class of data 

objects is applicable and easy to obtain. Objects from the other classes could be too difficult 

or expensive to be made available. So we would only describe the target class to separate it 

from the outlier class. Since several models of one-class classifier design has been introduced. 

There are two approaches have been proposed to resolve this problem [1]. First way is 

estimate the probability density function of learning samples and uses this probability density 

function with a threshold on its density. One of the popular methods to approximate 

probability density function is Gaussian model, the mixture of Gaussian and parzen density [2, 

3]. In the second approach an optimized boundary around the learning samples was searched. 

KNN and SVDD are examples of boundary methods [4, 5]. 

The SVDD is a kind of one-class classification method based on Support Vector Machine 

[6]. It tries to construct a boundary around the target samples by covering the target samples 

within a minimum hyper sphere. Inspired by the support vector machines (SVMs), the SVDD 

decision boundary described by a few target objects, that known as support vectors (SVs). A 

more flexible boundary can be obtained with the introduction of kernel functions, by which 

samples are mapped into a high-dimensional feature space. The most commonly used kernel 

function is Gaussian kernel [7]. After introducing this method by Tax [5] some of researchers 

try to improve the method for generating better results and some researchers try to reduce the 
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runtime complexity and others try to generate new classifiers based on SVDD. Lee et. al., [8] 

presented an improving support vector data description using local density degree (D-

SVDD); results showed that the D-SVDD had better performance than SVDD and a k-

nearest-neighbor data description method. A method named weighted SVDD [9] in some 

articles has been referred to. This method presented a new approach to eliminate the effect of 

noisy. Zhang et al. [9] proposed a novel fuzzy classifier for multi-classification problems 

based on SVDD and improved PCM, and it reduced the effect of outliers and it yield lower 

error rate.  
Xiao et. al., [10] proposed a new method for designing a one-class classifier based on 

SVDD for multi-distributed samples. Tingting Mu et. al., [11] propose two variations of the 

support vector data description with negative samples that learn a closed spherically shaped 

boundary around a set of samples in the target class by involving different forms of slack 

vectors. Wang et. al., [12] proposed a novel approach to generate artificial outliers for support 

vector data description with boundary value method. Implementing this method leads to 

decrease error rate. Park et al. [13] presented a new denoising method that uses the SVDD, 

the geodesic projection of the noisy point to the surface of the SVDD ball in the feature space, 

and a method for finding the preimage of the denoised feature vectors. Liu et. al., [14] 

proposed a method to reduce runtime complexity in classification process. Huang et. al., [15] 

presented an improved support vector data description method named two-class support 

vector data description (TC-SVDD). The proposed method can give each class of objects in 

the target data set a hyper sphere-shaped description simultaneously, if the target data set 

contains two classes of objects. 
 

2. Support Vector Data Description 

The objective of SVDD is to find a sphere or domain with minimum volume containing all 

or most of the data. Let   d
i R|ix 1,2,...n  be the given training data set. Let a and R 

denote the center and radius of the sphere, respectively. This goal is formulated as a 

constrained convex optimization problem: 
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where i is a slack variable that allows the possibility of outliers in the training data set. The 

parameter C controls the trade-off between the volume and the training errors. Constructing 

the Lagrangian function with Lagrange multipliers αi, γi gives 
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Setting partial derivatives of R, a and i to zero gives the constraints 
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Substituting (3)–(5) into (2), gives dual problem of (1)  
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Solving problem (6) gives a set αi. A training object xi and its corresponding αi satisfy one of 

the three following conditions: 
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The objects with the coefficients αi>0 are called the support vectors. From the above 

relations we can see only the support vectors are needed in the description of the sphere. The 

center of the sphere could be calculated by (4). The radius R of the sphere can be obtained by 

calculating the distance from the center of the sphere to any support vector with 0<αi <C, 

which provides the sparse representation of the domain description. 

To determine whether a test point z is within the sphere, the distance from z to the center of 

the sphere has to be calculated. A test object z is accepted when this distance is smaller than 

the radius, i.e., 
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The method can be made more flexible, the inner product j

T
i xx can be replaced by a new 

inner product ),( ji xxK satisfying Mercer’s theorem. An ideal kernel function would map the 

target data onto a bounded, spherically shaped area in the feature space and outlier objects 

outside this area. The polynomial kernel and the Gaussian kernel. 

According to (4) and (7) center of sphere is only affected by support vectors. Therefore 

decision boundary tends to be located near the rejected samples that identified as noisy or 

outlier samples. Even reducing the parameter C does not solve the problem and will increase 

training error. Figure 1 demonstrates disability of SVDD to overcome outliers. 
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Figure 1. The Center of Sphere is Affected by Outliers that Results in 
Inappropriate Description for Target Class.  Even Reducing Parameter C does 

not Solve this Problem and will Increase Training Error 

 

To overcome this disadvantage, the "Quasi Support Vector Data Description (QSVDD)" 

method is presented in the next section which the gravity center of the samples has a decisive 

role. 

 

3. Quasi Support Vector Data Description (QSVDD). 

In this section, mathematical model of SVDD will be changed as purposeful. The goal is to 

give importance to gravity center of samples and incorporate this idea with SVDD method. 

Distance between center of sphere and samples gravity center is formulated as: 
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and proposed idea is formulated as a constrained optimization problem: 
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In (10), the parameter, B, implies the importance degree of gravity center and the 

parameter, C, has the same role that it has in SVDD method and i, is a slack variable. 

Constructing the Lagrangian function with Lagrange multipliers αi, γi gives 
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Setting partial derivatives of R, a and i to zero gives the constraints 
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Substituting (12)–(14) into (11), gives dual problem of (10)  
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(15) 

This optimization problem is equivalent to a convex quadratic problem with global 

minimum, when B>-1 holds. Solving problem (15) gives a set αi. A training object xi and its 

corresponding αi satisfy one of the three conditions that are mentioned in (7). The radius R of 

the sphere can be obtained by calculating the distance from the center of the sphere to any 

support vector with 0<αi <C. To determine whether a test point z is within the sphere, the 

distance from z to the center of the sphere has to be calculated. A test object z is accepted 

when this distance is smaller than the radius, i.e., 
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Considering (14), resulted hyper-spherical discriminator gets affected by all training 

samples. Therefore, this method is called "Quasi Support Vector Data Description (QSVDD)". 

Now the capability of QSVDD is revealed in comparison with SVDD in order to overcome 

the problem of outliers. Figure 2 shows that the center of sphere is affected by all training 

samples. Therefore, the effect of outliers in determining the center is decreased. 
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Figure 2. The Center of Sphere is affected by All Target Samples. Thus, the 
Effect of Outliers is Reduced 

 

4. Mathematical Discussion for QSVDD Method 

Optimization problem (10) would be equivalent to (2) in a special case, when B=0 holds. 

Therefore, QSVDD is a more general method than SVDD. Hence, it’s expected to find better 

solutions for QSVDD than SVDD. Regarding (15), problem has a global and unique solution 

when the parameter B take any value in the interval (-1,+). Consequently, if it assumes that 

error function with respect to parameter B is a monotonically increasing or decreasing 

function at the vicinity of zero, then it’s expected to find better solutions for QSVDD than 

SVDD at neighborhood of zero. So, to demonstrate superiority of QSVDD method, in 

experiments it is tried to search at the vicinity of zero for finding optimum value of B. 

Experimental results verify that this assumption is close to reality. Also relation (16) results 

that runtime complexity for QSVDD is O(n) while runtime complexity for SVDD and D-

SVDD[8] is O(|SV|), such that SV is the set of support vector samples. This is a disadvantage 

of QSVDD compared with SVDD and D-SVDD.  

 

5. Experimental Results and Comparative Analysis 

Before conducting our experiments on real datasets, we perform our experiments on 

syntactic data in high dimensional space with RBF kernel. In Figures 3 and 4 flexible 

boundaries that are resulted by SVDD and QSVDD are shown respectively. It is obvious that 

the effect of outliers is reduced when we use QSVDD method. 
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Figure 3. The Description is Affected by Outliers in svdd Method. In this Figure 
Boundary of Description Tends to be Located at Near of the Outliers 

 

 

Figure 4. The Description isn’t affected by Outliers in QSVDD Method  therefore 
Drawback of SVDD is Neutralized 

 

Now we compare results of applying SVDD and QSVDD on image (a) in Figure 5. In our 

experiment we select training samples from the rectangular piece of the flower in image (a) 

and training process is done for SVDD and QSVDD methods with equal parameters for C and 

sigma. After applying test process on image (a), SVDD method yields Image (b) and QSVDD 

method yields Image (c). We observe that the result of QSVDD method is better than SVDD 

in flower identification. 

 

 
(a)-main image. 

 
(b)-resulted by svdd. 

 
(c)-resulted by Qsvvd. 

Figure 5. This Figure Presents Quality of Flower Identification for SVDD and 
QSVDD Methods 
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To investigate the success of these attempts on real datasets, we conducted various tests in 

which the SVDD, QSVDD and D-SVDD[8] methods are applied to Iris, Haberman, Glass, 

wine and balance-scale Datasets from UCI Repository of machine learning Database
1
. We 

assume that our optimum parameters are those that simultaneously decrease error type-I and 

error type-II. Therefore, we introduce the error function as relation (17) that must be 

minimized in parameter tuning process: 
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(17) 

TP: number of target test samples that classified correctly. 

FP: number of outlier test samples that classified incorrectly. 

TN: number of outlier test samples that classified correctly. 

FN: number of target test samples that classified incorrectly. 

 

The model parameters were found by cross validation for proposed methods. The N-fold M 

times cross validation method is a scheme invoked to predict the error ratio of learning 

technology. The idea is to divide the original data into target data and outlier data. The target 

data is divided randomly into N parts, in each of which the class is presented in 

approximately the same proportions as in the full dataset. Each part is held out in turn and 

learning scheme trained on the remaining (N-l) parts; then its error ratio is calculated on the 

holdout set. Thus the learning procedure is executed a total of N times on different training 

sets. Finally, the N×M error estimates are averaged to yield an overall error estimate. In our 

experiments we Invoke 3 fold 15 times (total of 45 run) method to predict error ratio of 

learning process. The results of our experiments are shown in Tables 1-5. In these 

experiments, the samples are mapped into a high-dimensional feature space with RBF kernel 

for flexible description. 

 

Table 1. Results of QSVDD, D-SVDD and SVDD on Iris Dataset 

Iris 

Dataset 

Target class SVDD QSVDD D-SVDD 

Class1 96.26 97.09 97.97 

Class2 92.78 92.78 92.78 

Class3 90.92 91.12 90.92 

 
Table 2. Results of QSVDD, D-SVDD and SVDD on Haberman Dataset 

Haberman 

Dataset 

Target class SVDD QSVDD D-SVDD 

Class1 60.36 64.14 61.12 

Class2 51.17  52.80 51.17 

 

                                                 
1
 UCI repository of machine learning database, http://archive.ics.uci.edu/ml/datasets.html.. 

http://archive.ics.uci.edu/ml/datasets.html
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Table 3. Results of QSVDD, D-SVDD and SVDD on Glass Dataset 

Glass 

Dataset 

Target class SVDD QSVDD D-SVDD 

Class1 69.54 70.57 69.54 

Class2 69.95 70.88 69.95 

Class3 71.85 72.16 71.85 

Class5 69.67 71.78 69.67 

 
 

Table 4. Results of QSVDD, D-SVDD and SVDD on Wine Dataset 

Wine 

Dataset 

Target class SVDD QSVDD D-SVDD 

Class1 91.82 97.74 98.02 

Class2 77.36 81.24 78.89 

Class3 92.91 95.44 95.17 

 
 

Table 5. Results of QSVDD, D-SVDD and SVDD on Balance-scale Dataset 

Balance-scale 

Dataset 

Target class SVDD QSVDD D-SVDD 

Class1 87.82 87.95 88.12 

Class2 87.67 87.96 87.67 

Class3 87.88 87.88 87.88 

 
If we compare the results that obtained in experiments, we see that the answer of QSVDD 

and D-SVDD method in the worst case is equal to the answer of SVDD method, while each 

of the QSVDD and D-SVDD methods are not dominant over another. 

 

6. Conclusion and Future Works 

We have proposed QSVDD method that emphasis on direct the center of sphere towards 

gravity center of training samples. Our aim is reducing the effect of outlier samples. 

Furthermore, QSVDD is equivalent to SVDD, when B=0 holds. Thus, proposed method is a 

general extension of the SVDD. Moreover, the drawback of proposed method is that it isn’t a 

support vector method and all training samples intervene in determining the classifier 

boundary and runtime complexity is O(n). One possible future research is to examine our 

method for pattern de-noising analogous pattern de-noising based on SVDD that proposed in 

[13]. Another possible future work is extending Two-class svdd [15] by QSVDD. 
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