
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

181

Implementation of Multiplierless Ramanujan Ordered Number DCT

on FPGA

Geetha K. S. and Uttara Kumari M.

Department of E & CE, R. V. College of Engineering

geethakomandur@gmail.com, dr.uttarakumari@gmail.com

Abstract

An efficient implementation of discrete cosine transform (DCT) computations is presented

based on the Ramanujan ordered number DCT (RDCT), a fast multiplierless DCT algorithm.

Due to the simple form of the factorized matrices, the derived architecture can be easily

constructed from the cascade of only two types of parameterized hardware modules: shifters

and adders. The proposed implementations have many features and advantages, including

low complexity, high-throughput and regularity. The regularity of RDCT algorithm and

careful operation scheduling has resulted in a very efficient implementation of a

multiplierless RDCT in Xilinx Spartan3 FPGA in the terms of logic requirements.

Keywords: Multiplierless, RDCT, hardware implementation

1. Introduction

The DCT algorithms are often implemented with either direct methods or indirect methods.

The indirect methods implement the DCT algorithm indirectly by embedding it in an efficient

implementation of the discrete Fourier transform (DFT) algorithm [1-3] or the discrete

Hartley transform (DHT) algorithms [4, 5]. The CORDIC architecture [6] has been adopted

as an alternative to the conventional arithmetic unit for realizing the multiplication- addition

of sine and cosine functions. For example, in [3], an 8-point DCT processor is realized based

on the SFG of an 8-point IFFT algorithm, using twenty adders and two multipliers, followed

by three CORDIC rotators. In [5], the DCT is first converted into a DHT formulation through

the process of data folding. Then the DHT is computed using a CORDIC based systolic array

using CORDIC units and adders. In [7], the time-recursive 1-D -point DCT/discrete sine

transform (DST) parallel lattice architecture consists of CORDIC modules; and the 2-D

DCT/DST parallel architecture consists of CORDIC modules plus some circular shift

matrices. Note that in these approaches, the number of arithmetic units used is proportional to

the transform length N. Direct methods include various fast DCT algorithms that reduce the

computation complexity by factorizing the coefficient matrix into products of simpler

matrices [8-13]. For the implementation of 8-point DCT, dedicated data path architectures can

be deduced directly from the signal flow graphs (SFG) of the fast DCT algorithms [14-20].

The arithmetic operations involved in these DCT processors are usually realized using either

the conventional arithmetic units (multipliers and adders) [14-16] or the ROM-based

distributed arithmetic (DA) [17-20]. The DA-based DCT processors require ROM size

exponentially increased with transform length, making them only feasible for short-length

DCT. In the implementations of 2-D DCT, the row-column method is usually adopted where

a sequence of one-dimensional (1-D) DCT computations are first performed row wise,

followed by a sequence of 1-D DCT computations performed column wise. If the 8X 8 data

block is stored on chip, a transpose memory would be required. Although there are also more

regular DCT architectures [21, 22], in general, they would require large amount of arithmetic

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

182

processing elements (PEs) and input–output (I/O) channels (in units of words) that are

proportional to the transform length N.

A special class of recursive multiplierless transforms for computing Discrete Cosine

Transform is introduced in [23, 24]. RDCT computation requires evaluation of cosine angles

which are multiples of 2 N . The algorithm uses Ramanujan ordered Number of degree-2

which is represented as 2 2l m  . Thus the cosine functions can be computed by shifts and

adds employing Chebyshev type of recursion. With this algorithm, the floating-point

multiplication is completely eliminated and hence the multiplierless algorithm can be

implemented using shifts and additions only. The factorization of the RDCT transformation

matrix maintains the orthogonality and gives a recursive structure. Thus the recursive RDCT

reduce the computational complexity. The structure of RDCT shows that the algorithm

possesses good regularity.

In this article, we propose a novel direct approach to implement RDCT. We have

developed custom-designed hardware implementation for the shifter and adder modules

which are the basic building blocks in the hardware implementation of the fast RDCT

algorithms. This proposed novel approach exhibits several distinct advantages over existing

DCT architectures, the architectures proposed are modular, regular, and admit efficient

pipelined implementation. Extensive comparison indicated that this proposed DCT algorithm

is better compared with the other DCT implementations.

2. Ramanujan ordered DCT (RDCT)

Computation of DCT requires evaluation of cosine angles which are multiples of 2 N . If

N, the transform length is chosen such that it can be represented as 2 2l m  , then the cosine

functions which are the DCT kernel can be computed by shifts and adds employing

Chebyshev type of recursion. Such integers are called Ramanujan ordered numbers [23].

With this algorithm, the floating-point multiplication is completely eliminated and hence the

multiplierless algorithm can be implemented using shifts and additions only. The

orthogonality of the recursive DCT kernel is well maintained through matrix factorization to

reduce the computational complexity. The inherent parallel structure yields simpler

programming and hardware implementation and provides
1log

2

3
2  NNN

 additions and

N
N

2log
2 shifts which is very much less complex when compared to other recent multiplierless

algorithms.

2.1 2-D RDCT: [23, 24]

The 2-D RDCT is defined based on the 1-D RDCT as follows:

   
1 2

1 2

1 1

1 2 1 2 1 2

0 01 2

1 2

4
(,) (,)

,
, ,

N N

n n

r k k x n n w k w k
N N

n n
 

 

  (1)

Neglecting the scaling factors and using the property of Seperability, we could write the

RDCT equation as:

   
1 2

1 2

1 1

1 2 1 2 2

0 0

2 1 1(,) (,) , ,
N N

n n

r k k x n n w kn w n k
 

 


 
 
 

  (2)

where (,)w n k represents the RDCT kernel.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

183

Figure 1. Computational Flow of DCT Coefficients using RDCT

According to the definition of RDCT from we could represent the RDCT kernel as

4

1 1 1 1

 - -

 - -

 - -

b c c b
A

a a a a

c b b c



 
 
 
 
 
 

 (3)

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

184

Where 1 2a  ,  cos 8b  and  cos 3 8c  .

In general, we could define the matrix of the recursive kernel as CN , so that we have the

RDCT Coefficient matrix defined as

   .N L NA P C (4)

and

     2

1 2

2

 0
 0

. . .
0 0

N

N

N

C
I

C P P
C T

 
  

   
   

 (5)

Where

(1) [P1] is the permutation matrix to interlace the two halves of the input data sequence as

 1 .x P x where

1 2
1 2

2 2 2

, , , ,... ,N N N Nx x x x x x x
 

 
  
 

 (6)

and  1 2 1, , ,.... ,N Nx x x x x .

(2) [T] is a diagonal trigonometric matrix. For a RDCT matrix of length N, [T] is a

M M matrix, where M=N/2.

   
  2

2 2 1
cos , = 2

0,1,.... 1

m m

m
T diag

N

m M


  


   

 

 (7)

N being a Ramanujan Number, the matrix [T] could then be represented as

   1 22 2m ml l
T diag

 
 

where lm1 and lm2 are non-negative integers.

(3) [P2] is an integer coefficient matrix to perform additions and subtractions of the input

sequence. For  2 .y P y

Where
1 2 1 1 2 1

1 1 1 1
2 2 2 2

, , ,N N N N N N N Ny y y y y y y y y y y y y 
   

 
       
  (8)

(4) [PL]N is the product of 2log N 1 sparse factor matrices, if the length of the input

sequence is N. Each factor matrix is sparse and the non-zero elements are only 1,2 .

      
2(log 1) 2 1..... .L L N L LN N NN

P P P P
   

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

185

For length 2N sequence, we have

 
 

 

 

 

2

2

2

1 4
(log 1)

(log 1)2 2

(log 1)
2 1 4

00
. ...

0
0

L
L N

N

L L NN N

L N
N N L

PP
P P

P
P







  
        
    

 (9)

where

2(log 1)

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 2 0 0

0 0 0 0 0 0

0 1 0 0 0 0 0 2

L N
N

N

P 

 
 
 
 
 
      
 

 
 
 

  

 (10)

for ex.

    14 4

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 2

L LP P

 
 
  
 
 

 

     2 18 8 8

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
.

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 2 0 0 0 0 0 1 0 2 0 0

0 0 1 0 0 0 2 0 0 0 1 0 0 0 2 0

0 1 0 0 0 0 0 2 0 1 0 0 0 0 0 2

L L LP P P

   
   
   
   
   
    
   
   

    
    
   

       

 (11)

3. DCT Hardware’s Platforms

There are a number of different alternatives for hardware realization of a DCT. The

possible selections for digital signal processing system design are, software tools such as the

PC Digital Signal Processing Programs (MATLAB, IDL), hardware tools such as Application

Specific Integrated Circuits (ASICs), Dedicated Digital Signal Processors DSPs, and the Field

Programmable Gate Arrays FPGA e.g., Xilinx, Altera.

3.1 FPGA’s

Field Programmable Gate Arrays are newer, more efficient than DSPs system-on-chip

configurable design devices that belong to the Programmable Logic Devices (PLDs) family.

The first FPGA chip produced to the world was by Xilinx in 1986 (XC2000 family). FPGA

devices developed because the PLDs chips could not support the rapid increasing demands

for the greater on-chip logic capacity. The drawback of the CPLD chips was that the ratio of

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

186

sequential logic resources (flip-flops) compared to combinational logic (logic gates) was

small and therefore insufficient to implement many tasks. The basic outline architecture of

FPGA devices consists of a number of arrays of logic blocks connected with interconnection

bus lines as shown in Figure 2. Sea-of-gate FPGAs consist of a system of logic blocks (flip-

flops, gates, look up tables) together with some amount of RAM. FPGAs have embedded

processor as well as Giga bit I/O. The configuration of each of the functions of each logic

block and its connections to other blocks are given by the configuration bit stream loaded

from outside the FPGA device. FPGAs give system designers a broad scale and flexibility for

implementing different algorithms.

Figure 2. Field Programmable Gate Array (FPGA) Internal Basic Structure

FPGAs have advantages over DSPs, since FPGAs permits parallelism, floating-point

operation, and local memory. The parallel reconfigurable technology would have benefits for

problems with a parallel nature and when a speed is a requirement for other approaches.

FPGAs provides a level of both functional and data specialization. They are also extremely

useful in quickly permitting generic prototyping. The ability to keep up-to-date and follow the

constantly changing standards in todays advanced technology for example, the latest wireless,

multimedia and image processing algorithms require a new system-on-chip technology, such

as state of the art re-configurable FPGA hardware. In actual fact, the hardware description

languages HDL allows the existing architecture to track the changing standards, removing

necessitates to run brand new algorithms on yesterday's dedicated hardware architectures.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

187

4. Design and Development of Implementation

4.1 Basic Block Diagram

The algorithm is implemented for 8 point RDCT. The elements of the DCT kernel are in

the form of a sum of multiples of two. This is achieved by using Ramanujan numbers for

approximating 2 N and using Chebyshev recursion for computing the cosine values (which

are now a sum of multiples of two). Since 32 bit data needs to be given eight times as input

and also taken as output, Matlab is used to convert input data from real/float to hexadecimal

and output data from hexadecimal to real/float to simplify the testing. Xilinx simulator is used

for simulation. The flow of the algorithm is as shown in the Figure 3.

Figure 3. Basic Block Diagram

4.1.1 Recursive Adder with Shifter

The RDCT kernel evaluation handles numbers in the form of power of two and hence there

a combination of shift/add operations. We use the 32-bit adder/sub block for the

implementation of the addition and subtraction operations. This block is a two input adder

with option for subtraction also. A dedicated 32-bit shifter block is used for the shifting

operations. The output of the shifter is saturated if there is an overflow or underflow. The

shift/add operations have to be computed repeatedly, hence a separate customized block is

designed which performs recursive additions of appropriately shifted values of input, to

obtain the result. Figure 4 shows the design structure of the recursive adder with shifter.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

188

Figure 4. Recursive Adder with Shifter

The simulation waveform is as shown in Figure 5. Simulation results show that one

recursive adder with shifter is implemented successfully and it takes 25 clk cycles.

Figure 5. Simulation Results of Recursive Adder with Shifter

A = 0x4023D70A = 2.56, B = 0x3BA3D70A = 0.005 = 2
-8

 + 2
-10

 + 2
-14

 +…
C = 0x3C51B712 (after 25 clk cycles) = 0.0128 = (A>>8)+(A>>10)+(A>>14)+...

4.1.2 Chebyshev Recursion for Calculation of Cosine Values

According to the flow of the RDCT algorithm explained in Figure 1, the value of x is

approximated as   22 2x N  using Ramanujan ordered numbers. The values of x for

various values of N are stored in LUT. 2 4

2! 4!

x x
  

 is then computed and the recursion process is

continued. The flow diagram of the Chebyshev recursion is as shown in Figure 6.

i. Approximate value of x is determined by using the concept of Ramanujan numbers.
22

2x
N

  
  
 

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

189

x is stored in LUT (Look Up Table) for different values of N (here N=8). The

accuracy of x depends on order of Ramanujan number used.

ii. (1-α) is calculated where 2 4

2! 4!

x x
  

It requires 78 clk cycles to complete the calculation.

iii. After 78 clk cycles, initial values are assigned before starting Chebyshev recursion.

After every 26 clk cycles, a recursion is done to obtain one cosine value. Hence, after

156(6*26) clk cycles the 8 cosine values are obtained. Each recursion is given by

  1 22 1n n nt t t    

Figure 6. Chebyshev Recursion

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

190

The simulation results are as shown in Figure 7.

Figure 7. Simulation Results of Chebyshev Recursion

cos0 = 0x3F800000 = 1 =  cos 0

cos1 = 0x3F7B1585 = 0.9808 ≈ cos
16

 
 
 

cos2 = 0x3F6C865E = 0.9239 ≈ cos
8

 
 
 

cos3 = 0x3F54E1AE = 0.8316 ≈
3

cos
16

 
 
 

cos4 = 0x3F350FEA = 0.7073 ≈ cos
4

 
 
 

cos5 = 0x3F0E49EA = 0.5558 ≈
5

cos
16

 
 
 

cos6 = 0x3EC419D4 = 0.3830 ≈
3

cos
8

 
 
 

cos7 = 0x3E482F80 = 0.1955≈
7

cos
16

 
 
 

4.1.2 RDCT Kernel Calculation

RDCT kernel is calculated using the orthogonal property of RDCT. According to the

Equation 4, we calculate the RDCT kernel using the recursive structure of 8[]C . In

accordance with Equation 11, the 8[]LP is computed and the 8[]A can be calculated as

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

191



iv. The cosine values obtained using Chebyshev recursion are represented as t0 ,

t1 ,t2 ,t3 ,t4 ,t5 ,t6 and t7 .

v. Each element is calculated concurrently, using above matrix equation.

4.1.3 RDCT Calculation for the Given Input

The RDCT kernel is now available with its elements being sums of powers of two. Eight

inputs (8 real numbers) are now taken whose RDCT is required. The RDCT is calculated

using the input elements and the kernel using only shifting and addition operations (because

of the form of the elements in the kernel). 512*52 clock cycles are required for the

calculations. After the specified number of cycles, eight outputs are available in the

hexadecimal format. These values are then ported onto Matlab to view the results in the

decimal format.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

192

Figure 8. RDCT Calculation for a Given Input

4.2 Implementation Results

The design was implemented on Spartan-3 XC3S400 FPGA board. The device has 8064

logic blocks and a Speed grade of 5 with 4 million gates on board with a maximum operating

frequency max of 280MHz.

The simulation results are verified with the matlab results at different stages. The error in

the cosine values obtained by Chebyshev recursion is given in Table 1. From the Table 1, it is

clear that the error of approximation is validated in the implementation also.

Table 1. Error in Cosine Values

Matlab output VHDL output Error

(Actual – VHDL)

Cos (π/16) = 0.9808 0.9808 -1.1832 e-05

Cos(3 π /16) = 0.8315 0.8317 -9.8986 e-05

Cos(5π/16) = 0.5556 0.5558 -0.00024510

Cos(7π/16) = 0.1951 0.1955 -0.00040337

The DCT kernel matrices obtained theoretically, by VHDL for RDCT and error between

them are given in the Figures 9-10 below.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

193

Figure 9. RDCT Kernel obtained through Xilinx Simulator

Figure 10. DCT Kernel Obtained using Matlab in Built Function (floating -point
multiplications)

The error in the values between the Matlab function and the implementation results are

tabulated in Figure 11.

Figure 11. Difference between the RDCT Kernel Values obtained by Xilinx
Simulator and using Matlab Function

The RDCT kernel is calculated for N=8. The implementation results are analyzed

according to the flow of the algorithm where the complexity of Chebyshev Recursion and

RDCT Kernel calculation are evaluated for N=8 only.

For Chebyshev Recursion,

 Since (1-α) is equal to , and it needs 2 Adders, 2 Shifters and 3 Recursive

Adder with Shifter.

 For calculation of t0 to t7, according to Equation 8 of [23], we need 1 Adder, 1 Shifter

and 1 Recursive Adder with Shifter.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

194

The number of adders, shifters and the recursive adders with shifter specified are the

hardware blocks required for the Chebyshev recursion and one shouldn’t interpret these as

operations.

For DCT kernel calculation,

 To calculate C4, according to Equation 5, two Recursive Adder with Shifter are

needed.

 To calculate C8, according to Equation 5, (after thorough optimization) 04 Recursive

Adder with Shifter are required.

 To calculate A8, which is the final RDCT kernel, according to Equation 4, five

Adders and 1 Shifter are required.

Table 2 shows clock requirements of each block, and number of sub-blocks (Adders,

Shifters and Recursive Adder with Shifter) used for implementation. The operating frequency

is 280MHz, and hence it takes 1µs from the time of entering the input to the time of getting

the final result. This is considerably fast although the simulation needs to be more optimized.

After decomposing Recursive Adder with Shifter, totally 29 Adders and 12 Shifters are

required for complete RDCT kernel calculation. This complies with the computational

complexity inferred in Chapter 4.

Table 2. Timing and Hardware Requirements

Block No. of

Clock

Cycles

No. of

Adders

No. of

Shifters

No. of

Recursive

Adder with

Shifter

Recursive

Adder with

Shifter

25 1 1 -

Chebyshev

Recursion

235 03 03 04

RDCT

Kernel

Calculation

299 18 01 04

RDCT

Calculation

of Input

325 7 0 9

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

195

Table 3. Device Utilization Report

Blocks Recursive

Adder

with shifter

RDCT kernel Final

RDCT

output

No. of Slices Used 697 896 1147

Available 3584 3584 3584

Utilization 19% 25% 32%

No. of 4 input

LUT’s

Used 1315 3505 3964

Available 7168 7168 7168

Utilization 18% 49% 55%

No. of logic

cells

Used 325 1961 2678

Available 8064 8064 8064

Utilization 4% 24% 33%

No. of Slice

Flip-Flops

Used 74 1405 1720

Available 7168 7168 7168

Utilization 1% 19% 24%

Table 3 gives the complete implementation results in terms of the utilization of the

individual blocks.

5. Conclusions

Ramanujan ordered number DCT (RDCT) was implemented on a target device namely

Spartan-3 XC3S400 FPGA. The device is of CMOS technology and has 8064 logic blocks

with gate capacity of 4 million. RDCT algorithm consisted of evaluation of coefficients using

only shifts and adders, hence existing architecture techniques like the Distributed arithmetic

or the CORDIC architecture could not be used. Hence, a dedicated block of Recursive adder

with shifter was designed. Synthesis results shows that this block consumed 10.4% area

consisting of different blocks on an average. The simulation results show that the block

evaluated the output in 25 clock cycles. RDCT kernel calculation involves evaluation of

values using Chebyshev recursion which consumed around 29% area on an average including

all the blocks. This block takes requires 299 clock cycles. The final output takes 325clock

cycles and occupies 38% utilization area. Finally the RDCT coefficients are evaluated at 1 µs

(from the time of giving the input to the time of getting the output). The number of shifters

and adders required for implementation is same as that discussed in theoretical evaluation of

1-D RDCT. These results clearly show that the RDCT algorithm has a simple structure and

exhibits regularity.

References

[1] R. M. Haralick, “Astorage efficientway to implement the discrete cosine transform”, IEEE Trans. Comp., vol.

25, (1976) July, pp. 764–765.

[2] M. J. Narasimha and A. M. Peterson, “On the computation of the discrete cosine transform”, IEEE Trans.

Commun., vol. 26, no. 6, (1978), June, pp. 934–936.

[3] S. Yu and E. E. Swartzlander Jr., “A scaled DCT architecture with the CORDIC algorithm”, IEEE Trans.

Signal Process., vol. 50, no. 1, (2002) January, pp. 160–167.

[4] H. Malvar, “Fast computation of discrete cosine transform through fast Hartley transform”, Electron. Lett.,

vol. 22, (1986), pp. 352–353.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 5, No. 3, September, 2012

196

[5] J. H. Hsiao, L. G. Chen, T. D. Chiueh and C. T. Chen, “High throughput CORDIC-based systolic array

design for the discrete cosine transform”, IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 3, (1995)

June, pp. 218–225.

[6] J. E. Volder, “The CORDIC trigonometric computing technique”, IRE Trans. Eletron. Comput., vol. 8,

(1959), pp. 330–334.

[7] J. Chen and K. J. Ray Liu, “A complete pipelined parallel CORDIC architecture for motion estimation”,

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 45, no. 6, (1998) June, pp. 653–660.

[8] W. -H. Chen, C. H. Smith and S. C. Fralick, “A fast computational algorithm for the discrete cosine

transform”, IEEE Trans. Commun., vol. 25, no. COM-9, (1977) September, pp. 1004–1009.

[9] B. G. Lee, “A new algorithm to compute the discrete cosine transform”, IEEE Trans. Acoust., Speech, Signal

Process., vol. ASSP-32, no. 6, (1984) December, pp. 1243–1245.

[10] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine transform”, IEEE Trans. Acoust.,

Speech, Signal Process., vol. ASSP–35, no. 10, (1987) October, pp. 1455–1461.

[11] C. Loeffler, A. Lightenberg and G. Moschytz, “Practical fast 1-D DCT algorithms with 11 multiplications”,

Proc. IEEE ICASSP, vol. 2, (1989) February, pp. 988–991.

[12] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine transform”, IEEE Trans. Signal Process.,

vol. 40, no. 9, (1992) September, pp. 2174–2193.

[13] V. Britanak and K. R. Rao, “Two-dimensional DCT/DST universal computational structure for block sizes 2

_ 2”, IEEE Trans. Signal Process., vol. 45, no. 11, (2000) November, pp. 3250–3255.

[14] Madisetti and A. N. Willson Jr., “A 100 MHz 2-D 8_8 DCT/IDCT processor for HDTV applications”, IEEE

Trans. Circuits Syst. Video Technol., vol. 5, no. 2, (1995) April, pp. 158–165.

[15] Y.-P. Lee, T.-H. Chen, L.-G. Chen, M.-J. Chen and C.-W. Ku, “A costeffective architecture for 8_8 two-

dimensional DCT/IDCT using direct method”, IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 3,

(1997) June, pp. 459–467.

[16] T. Xanthopoulos and A. P. Chandrakasan, “A low-power IDCT macrocell for MPEG2MP@MLexploring

data distribution properties for minimal activity,” IEEE J. Solid-State Circuits, vol. 34, no. 5, (1999) May, pp.

693–703.

[17] M. T. Sun, T. C. Chen and A. M. Gottlieb, “VLSI implementation of a 16X16 discrete cosine transform”,

IEEE Trans. Circuits Syst., vol. 36, no. 4, (1989), pp. 610–617.

[18] S. Uramoto,Y. Inoue, A. Takabatake, J. Takeda,Y. Yamashita, H. Terane and M.Yoshimoto, “A 100-MHz 2-

D discrete cosine transform core processor”, IEEE J. Solid-State Circuits, vol. 27, no. 4, (1992) April, pp.

492–498.

[19] T. Xanthopoulos and A. P. Chandrakasan, “A low-power DCT core using adaptive bitwidth and arithmetic

activity exploring signal correlations and quantization”, IEEE J. Solid-State Circuits, vol. 35, no. 5, (2000)

May, pp. 492–498, 740–750.

[20] S. Yu and E. E. Swartzlander Jr., “DCT implementation with distributed arithmetic”, IEEE Trans. Comp., vol.

50, no. 9, (2001) September, pp. 985–991.

[21] Y.-T. Chang and C.-L.Wang, “New systolic array implementation of the 2-D discrete cosine transform and its

inverse”, IEEE Trans. Circuits Syst.Video Technol., vol. 5, no. 2, (1995) April, pp. 150–157.

[22] S. B. Pan and R. -H. Park, “Unified systolic arrays for computation of the DCT/DST/DHT”, IEEE Trans.

Circuits Syst. Video Technol., vol. 7, no. 2, (1997) April, pp. 413–419.

[23] K. S. Geetha and M. Uttarakumari, “A new multiplierless discrete cosine transform based on the Ramanujan

ordered numbers for image coding”, in International Journal of Signal Processing, Image Processing and

Pattern Recognition, ISSN: 2005-4254, vol. 3, no. 4, (2010) December, pp. 1-14, published by Science &

Engineering Research Support Center, Republic of Korea.

[24] V. K. Ananthashayana and K. S. Geetha, “Multiplierless Recursive algorithm using Ramanujan ordered

Numbers”, IETE Journal of Research, ISSN: 0377-2063, vol. 56, no. 4, (2010) July-August, pp. 182-188.

