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Abstract 

An efficient implementation of discrete cosine transform (DCT) computations is presented 

based on the Ramanujan ordered number DCT (RDCT), a fast multiplierless DCT algorithm. 

Due to the simple form of the factorized matrices, the derived architecture can be easily 

constructed from the cascade of only two types of parameterized hardware modules: shifters 

and adders. The proposed implementations have many features and advantages, including 

low complexity, high-throughput and regularity. The regularity of RDCT algorithm and 

careful operation scheduling has resulted in a very efficient implementation of a 

multiplierless RDCT in Xilinx Spartan3 FPGA in the terms of logic requirements. 
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1. Introduction 

The DCT algorithms are often implemented with either direct methods or indirect methods. 

The indirect methods implement the DCT algorithm indirectly by embedding it in an efficient 

implementation of the discrete Fourier transform (DFT) algorithm [1-3] or the discrete 

Hartley transform (DHT) algorithms [4, 5]. The CORDIC architecture [6] has been adopted 

as an alternative to the conventional arithmetic unit for realizing the multiplication- addition 

of sine and cosine functions. For example, in [3], an 8-point DCT processor is realized based 

on the SFG of an 8-point IFFT algorithm, using twenty adders and two multipliers, followed 

by three CORDIC rotators. In [5], the DCT is first converted into a DHT formulation through 

the process of data folding. Then the DHT is computed using a CORDIC based systolic array 

using CORDIC units and adders. In [7], the time-recursive 1-D -point DCT/discrete sine 

transform (DST) parallel lattice architecture consists of CORDIC modules; and the 2-D 

DCT/DST parallel architecture consists of CORDIC modules plus some circular shift 

matrices. Note that in these approaches, the number of arithmetic units used is proportional to 

the transform length N. Direct methods include various fast DCT algorithms that reduce the 

computation complexity by factorizing the coefficient matrix into products of simpler 

matrices [8-13]. For the implementation of 8-point DCT, dedicated data path architectures can 

be deduced directly from the signal flow graphs (SFG) of the fast DCT algorithms [14-20]. 

The arithmetic operations involved in these DCT processors are usually realized using either 

the conventional arithmetic units (multipliers and adders) [14-16] or the ROM-based 

distributed arithmetic (DA) [17-20]. The DA-based DCT processors require ROM size 

exponentially increased with transform length, making them only feasible for short-length 

DCT. In the implementations of 2-D DCT, the row-column method is usually adopted where 

a sequence of one-dimensional (1-D) DCT computations are first performed row wise, 

followed by a sequence of 1-D DCT computations performed column wise. If the 8X 8 data 

block is stored on chip, a transpose memory would be required. Although there are also more 

regular DCT architectures [21, 22], in general, they would require large amount of arithmetic 
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processing elements (PEs) and input–output (I/O) channels (in units of words) that are 

proportional to the transform length N.  

A special class of recursive multiplierless transforms for computing Discrete Cosine 

Transform is introduced in [23, 24]. RDCT computation requires evaluation of cosine angles 

which are multiples of 2 N . The algorithm uses Ramanujan ordered Number of degree-2 

which is represented as 2 2l m  . Thus the cosine functions can be computed by shifts and 

adds employing Chebyshev type of recursion. With this algorithm, the floating-point 

multiplication is completely eliminated and hence the multiplierless algorithm can be 

implemented using shifts and additions only. The factorization of the RDCT transformation 

matrix maintains the orthogonality and gives a recursive structure. Thus the recursive RDCT 

reduce the computational complexity. The structure of RDCT shows that the algorithm 

possesses good regularity. 

In this article, we propose a novel direct approach to implement RDCT. We have 

developed custom-designed hardware implementation for the shifter and adder modules 

which are the basic building blocks in the hardware implementation of the fast RDCT 

algorithms. This proposed novel approach exhibits several distinct advantages over existing 

DCT architectures, the architectures proposed are modular, regular, and admit efficient 

pipelined implementation. Extensive comparison indicated that this proposed DCT algorithm 

is better compared with the other DCT implementations. 
 

2.  Ramanujan ordered DCT (RDCT) 

Computation of DCT requires evaluation of cosine angles which are multiples of 2 N . If 

N, the transform length is chosen such that it can be represented as 2 2l m   , then the cosine 

functions which are the DCT kernel can be computed by shifts and adds employing 

Chebyshev type of recursion. Such integers are called Ramanujan ordered numbers [23].  

With this algorithm, the floating-point multiplication is completely eliminated and hence the 

multiplierless algorithm can be implemented using   shifts and additions only. The 

orthogonality of the recursive DCT kernel is well maintained through matrix factorization to 

reduce the computational complexity. The inherent parallel structure yields simpler 

programming and hardware implementation and provides 
1log

2

3
2  NNN

 additions and 

N
N

2log
2 shifts which is very much less complex when compared to other recent multiplierless 

algorithms. 
 

2.1  2-D RDCT: [23, 24] 

The 2-D RDCT is defined based on the 1-D RDCT as follows: 
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Neglecting the scaling factors and using the property of Seperability, we could write the 

RDCT equation as: 
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where ( , )w n k  represents the RDCT kernel. 
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Figure 1. Computational Flow of DCT Coefficients using RDCT 
 

According to the definition of RDCT from we could represent the RDCT kernel as 
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Where  1 2a   ,  cos 8b   and  cos 3 8c  . 

 

In general, we could define the matrix of the recursive kernel as CN , so that we have the 

RDCT Coefficient matrix defined as  

 

   .N L NA P C                                 (4)                    

 

and     
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Where 

 

(1) [P1] is the permutation matrix to interlace the two halves of the input data sequence as 

 1 .x P x    where  

1 2
1 2

2 2 2
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and  1 2 1, , ,.... ,N Nx x x x x . 

 

(2) [T] is a diagonal trigonometric matrix. For a RDCT matrix of length N, [T] is a 

M M matrix, where M=N/2. 
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N being a Ramanujan Number, the matrix [T] could then be represented as 

 

   1 22 2m ml l
T diag

 
   

where lm1 and lm2 are non-negative integers.  

 

(3)  [P2] is an integer coefficient matrix to perform additions and subtractions of the input 

sequence. For  2 .y P y  

Where 
1 2 1 1 2 1

1 1 1 1
2 2 2 2
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(4) [PL]N  is the product of 2log N 1 sparse factor matrices, if the length of the input 

sequence is N. Each factor matrix is sparse and the non-zero elements are only  1,2 .   
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For length 2N sequence, we have  
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3. DCT Hardware’s Platforms 

There are a number of different alternatives for hardware realization of a DCT. The 

possible selections for digital signal processing system design are, software tools such as the 

PC Digital Signal Processing Programs (MATLAB, IDL), hardware tools such as Application 

Specific Integrated Circuits (ASICs), Dedicated Digital Signal Processors DSPs, and the Field 

Programmable Gate Arrays FPGA e.g., Xilinx, Altera.  

 

3.1  FPGA’s 

Field Programmable Gate Arrays are newer, more efficient than DSPs system-on-chip 

configurable design devices that belong to the Programmable Logic Devices (PLDs) family. 

The first FPGA chip produced to the world was by Xilinx in 1986 (XC2000 family). FPGA 

devices developed because the PLDs chips could not support the rapid increasing demands 

for the greater on-chip logic capacity. The drawback of the CPLD chips was that the ratio of 
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sequential logic resources (flip-flops) compared to combinational logic (logic gates) was 

small and therefore insufficient to implement many tasks. The basic outline architecture of 

FPGA devices consists of a number of arrays of logic blocks connected with interconnection 

bus lines as shown in Figure 2. Sea-of-gate FPGAs consist of a system of logic blocks (flip-

flops, gates, look up tables) together with some amount of RAM. FPGAs have embedded 

processor as well as Giga bit I/O. The configuration of each of the functions of each logic 

block and its connections to other blocks are given by the configuration bit stream loaded 

from outside the FPGA device. FPGAs give system designers a broad scale and flexibility for 

implementing different algorithms. 
 

 

Figure 2. Field Programmable Gate Array (FPGA) Internal Basic Structure 
 

FPGAs have advantages over DSPs, since FPGAs permits parallelism, floating-point 

operation, and local memory. The parallel reconfigurable technology would have benefits for 

problems with a parallel nature and when a speed is a requirement for other approaches. 

FPGAs provides a level of both functional and data specialization. They are also extremely 

useful in quickly permitting generic prototyping. The ability to keep up-to-date and follow the 

constantly changing standards in todays advanced technology for example, the latest wireless, 

multimedia and image processing algorithms require a new system-on-chip technology, such 

as state of the art re-configurable FPGA hardware. In actual fact, the hardware description 

languages HDL allows the existing architecture to track the changing standards, removing 

necessitates to run brand new algorithms on yesterday's dedicated hardware architectures. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 3, September, 2012 

 

 

187 

 

4.   Design and Development of Implementation 
 

4.1  Basic Block Diagram 

The algorithm is implemented for 8 point RDCT. The elements of the DCT kernel are in 

the form of a sum of multiples of two. This is achieved by using Ramanujan numbers for 

approximating 2 N  and using Chebyshev recursion for computing the cosine values (which 

are now a sum of multiples of two). Since 32 bit data needs to be given eight times as input 

and also taken as output, Matlab is used to convert input data from real/float to hexadecimal 

and output data from hexadecimal to real/float to simplify the testing. Xilinx simulator is used 

for simulation. The flow of the algorithm is as shown in the Figure 3. 

 

 

Figure 3. Basic Block Diagram 
 

4.1.1  Recursive Adder with Shifter 

The RDCT kernel evaluation handles numbers in the form of power of two and hence there 

a combination of shift/add operations. We use the 32-bit adder/sub block for the 

implementation of the addition and subtraction operations. This block is a two input adder 

with option for subtraction also. A dedicated 32-bit shifter block is used for the shifting 

operations. The output of the shifter is saturated if there is an overflow or underflow. The 

shift/add operations have to be computed repeatedly, hence a separate customized block is 

designed which performs recursive additions of appropriately shifted values of input, to 

obtain the result. Figure 4 shows the design structure of the recursive adder with shifter. 
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Figure 4. Recursive Adder with Shifter 
 

The simulation waveform is as shown in Figure 5. Simulation results show that one 

recursive adder with shifter is implemented successfully and it takes 25 clk cycles. 

 

Figure 5. Simulation Results of Recursive Adder with Shifter 
 

A = 0x4023D70A = 2.56, B = 0x3BA3D70A = 0.005 = 2
-8

 + 2
-10

 + 2
-14

 +…  
C = 0x3C51B712 (after 25 clk cycles) = 0.0128 = (A>>8)+(A>>10)+(A>>14)+... 

 

4.1.2  Chebyshev Recursion for Calculation of Cosine Values 

According to the flow of the RDCT algorithm explained in Figure 1, the value of x is 

approximated as   22 2x N  using Ramanujan ordered numbers. The values of x for 

various values of N are stored in LUT. 2 4

2! 4!

x x
  

 is then computed and the recursion process is 

continued. The flow diagram of the Chebyshev recursion is as shown in Figure 6.  

 

i. Approximate value of x is determined by using the concept of Ramanujan numbers.  
22

2x
N

  
  
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x is stored in LUT (Look Up Table) for different values of N (here N=8). The 

accuracy of x depends on order of Ramanujan number used. 

ii. (1-α) is calculated where 2 4

2! 4!

x x
  

It requires 78 clk cycles to complete the calculation. 

iii. After 78 clk cycles, initial values are assigned before starting Chebyshev recursion. 

After every 26 clk cycles, a recursion is done to obtain one cosine value. Hence, after 

156(6*26) clk cycles the 8 cosine values are obtained. Each recursion is given by  

  1 22 1n n nt t t      

 

Figure 6. Chebyshev Recursion 
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The simulation results are as shown in Figure 7.  

 

Figure 7. Simulation Results of Chebyshev Recursion 
 

cos0 = 0x3F800000 = 1 =  cos 0   

cos1 = 0x3F7B1585 = 0.9808 ≈ cos
16

 
 
 

 

cos2 = 0x3F6C865E = 0.9239 ≈ cos
8

 
 
 

 

cos3 = 0x3F54E1AE = 0.8316 ≈ 
3

cos
16

 
 
 

 

cos4 = 0x3F350FEA = 0.7073 ≈ cos
4

 
 
 

 

cos5 = 0x3F0E49EA = 0.5558 ≈ 
5

cos
16

 
 
 

 

cos6 = 0x3EC419D4 = 0.3830 ≈ 
3

cos
8

 
 
 

 

cos7 = 0x3E482F80 = 0.1955≈ 
7

cos
16

 
 
   

 

4.1.2  RDCT Kernel Calculation 

RDCT kernel is calculated using the orthogonal property of RDCT. According to the 

Equation 4, we calculate the RDCT kernel using the recursive structure of 8[ ]C . In 

accordance with Equation 11, the 8[ ]LP is computed and the 8[ ]A can be calculated as  
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

iv. The cosine values obtained using Chebyshev recursion are represented as t0 , 

t1 ,t2 ,t3 ,t4 ,t5 ,t6 and t7 .  

v. Each element is calculated concurrently, using above matrix equation.  

 

4.1.3  RDCT Calculation for the Given Input 

The RDCT kernel is now available with its elements being sums of powers of two. Eight 

inputs (8 real numbers) are now taken whose RDCT is required. The RDCT is calculated 

using the input elements and the kernel using only shifting and addition operations (because 

of the form of the elements in the kernel). 512*52 clock cycles are required for the 

calculations. After the specified number of cycles, eight outputs are available in the 

hexadecimal format. These values are then ported onto Matlab to view the results in the 

decimal format.  
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Figure 8. RDCT Calculation for a Given Input  
 

4.2  Implementation Results 

The design was implemented on Spartan-3 XC3S400 FPGA board. The device has 8064 

logic blocks and a Speed grade of 5 with 4 million gates on board with a maximum operating 

frequency max of 280MHz.  

The simulation results are verified with the matlab results at different stages. The error in 

the cosine values obtained by Chebyshev recursion is given in Table 1. From the Table 1, it is 

clear that the error of approximation is validated in the implementation also.  

 

Table 1. Error in Cosine Values 

Matlab output VHDL output Error 

(Actual – VHDL) 

Cos (π/16)    = 0.9808 0.9808 -1.1832 e-05 

Cos(3 π /16) = 0.8315 0.8317 -9.8986 e-05 

Cos(5π/16)  = 0.5556 0.5558 -0.00024510 

Cos(7π/16)  = 0.1951 0.1955 -0.00040337 

 

The DCT kernel matrices obtained theoretically, by VHDL for RDCT and error between 

them are given in the Figures 9-10 below. 
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Figure 9. RDCT Kernel obtained through Xilinx Simulator  
 

 

 

Figure 10. DCT Kernel Obtained using Matlab in Built Function (floating -point 
multiplications) 

 

 

The error in the values between the Matlab function and the implementation results are 

tabulated in Figure 11.  

 

 

Figure 11. Difference between the RDCT Kernel Values obtained by Xilinx 
Simulator and using Matlab Function 

 

The RDCT kernel is calculated for N=8. The implementation results are analyzed 

according to the flow of the algorithm where the complexity of Chebyshev Recursion and 

RDCT Kernel calculation are evaluated for N=8 only. 

 

For Chebyshev Recursion, 

 Since (1-α) is equal to , and it needs 2 Adders, 2 Shifters and 3 Recursive 

Adder with Shifter. 

 For calculation of t0 to t7, according to Equation 8 of [23], we need 1 Adder, 1 Shifter 

and 1 Recursive Adder with Shifter. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 3, September, 2012 

 

 

194 

 

The number of adders, shifters and the recursive adders with shifter specified are the 

hardware blocks required for the Chebyshev recursion and one shouldn’t interpret these as 

operations. 

For DCT kernel calculation, 

 To calculate C4, according to Equation 5, two Recursive Adder with Shifter are 

needed. 

 To calculate C8, according to Equation 5, (after thorough optimization) 04 Recursive 

Adder with Shifter are required. 

 To calculate A8, which is the final RDCT kernel, according to Equation 4, five 

Adders and 1 Shifter are required. 

Table 2 shows clock requirements of each block, and number of sub-blocks (Adders, 

Shifters and Recursive Adder with Shifter) used for implementation. The operating frequency 

is 280MHz, and hence it takes 1µs from the time of entering the input to the time of getting 

the final result. This is considerably fast although the simulation needs to be more optimized. 

After decomposing Recursive Adder with Shifter, totally 29 Adders and 12 Shifters are 

required for complete RDCT kernel calculation. This complies with the computational 

complexity inferred in Chapter 4.  

 

Table 2. Timing and Hardware Requirements 

Block No. of 

Clock 

Cycles 

No. of 

Adders 

No. of 

Shifters 

No. of 

Recursive 

Adder with 

Shifter 

Recursive 

Adder with 

Shifter 

25 1 1 - 

Chebyshev 

Recursion 

235 03 03 04 

RDCT 

Kernel 

Calculation 

299 18 01 04 

RDCT 

Calculation 

of Input 

325 7 0 9 
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Table 3. Device Utilization Report 

Blocks Recursive 

Adder 

with shifter 

RDCT kernel Final 

RDCT 

output 

No. of Slices Used 697 896 1147 

Available 3584 3584 3584 

Utilization 19% 25% 32% 

No. of 4 input 

LUT’s 

Used 1315 3505 3964 

Available 7168 7168 7168 

Utilization 18% 49% 55% 

No. of logic 

cells 

Used 325 1961 2678 

Available 8064 8064 8064 

Utilization 4% 24% 33% 

No. of Slice 

Flip-Flops 

Used 74 1405 1720 

Available 7168 7168 7168 

Utilization 1% 19% 24% 

 

Table 3 gives the complete implementation results in terms of the utilization of the 

individual blocks.  
 

5.  Conclusions 

Ramanujan ordered number DCT (RDCT) was implemented on a target device namely 

Spartan-3 XC3S400 FPGA. The device is of CMOS technology and has 8064 logic blocks 

with gate capacity of 4 million. RDCT algorithm consisted of evaluation of coefficients using 

only shifts and adders, hence existing architecture techniques like the Distributed arithmetic 

or the CORDIC architecture could not be used. Hence, a dedicated block of Recursive adder 

with shifter was designed. Synthesis results shows that this block consumed 10.4% area 

consisting of different blocks on an average. The simulation results show that the block 

evaluated the output in 25 clock cycles. RDCT kernel calculation involves evaluation of 

values using Chebyshev recursion which consumed around 29% area on an average including 

all the blocks. This block takes requires 299 clock cycles. The final output takes 325clock 

cycles and occupies 38% utilization area.  Finally the RDCT coefficients are evaluated at 1 µs 

(from the time of giving the input to the time of getting the output).  The number of shifters 

and adders required for implementation is same as that discussed in theoretical evaluation of 

1-D RDCT. These results clearly show that the RDCT algorithm has a simple structure and 

exhibits regularity.  
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