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Abstract

The performance of a number of image processing methods depends on the output quality
of a thresholding process. Typical thresholding methods are based on partitioning pizels
m an image into two clusters. In this paper, a new thresholding method is presented.
The main contribution of the proposed approach is the application of the empirical mode
decomposition (EMD) on detecting an optimal threshold for an input image. The EMD
algorithm can decompose any nonlinear and non-stationary data into a number of intrinsic
mode functions (IMFs). When the image is decomposed by empirical mode decomposition
(EMD), the intermediate IMFs of the image histogram have very good characteristics on
image thresholding. The experimental results are provided to show the effectiveness of the
proposed threshold selection method.

Keywords: Threshold selection, clustering, empirical mode decomposition, ensemble
empirical mode decomposition, intrinsic mode.

1 Introduction

Image thresholding is one of the main and most important tasks in image analysis and
computer vision. Thresholding principle is based on distinguishing an object (foreground)
from the background in order to be extracted useful information from the image. Thresh-
olding is a procedure similar to clustering, which assigns a pixel to one class whether its
gray value is greater than a predefined threshold or not.

In the computer vision literature, various methods have been proposed for image thresh-
olding [17, 21]. However, the design of a robust and an efficient thresholding algorithm is
far from being a simple process, due to the existence of images depicting complex scenes at
low resolution, uneven illumination, scale changes, etc.

Thresholding techniques could be categorized in six groups [21] according to information
being exploited. These categories are:

e Shape-based methods, which analyze the shape of the histogram of the image (i.e., the
peaks, valleys and curvature) [5, 15, 20]. Methods belong to this category achieve,
thresholding based on the shape properties of the histogram. Each method uses
different forms of properties. The distance from the convex hull of the histogram is
investigated in [15, 16], while the histogram is forced into a smoothed two-peaked
representation via autoregressive modeling in [5]. Other algorithms search explicitly
for peaks and valleys, or implicitly for overlapping peaks via curvature analysis [20].
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e Clustering-based methods, which label the gray-level samples as background or fore-
ground (object), or alternatively they model them as a mixture of two Gaussians
[11, 12, 13, 15, 20, 27]. In this category, the gray-level data undergoes a clustering
analysis, with the number of clusters being always equal to two. Some algorithms
search for the midpoint of the peaks, since the two clusters correspond to the two
lobes of a histogram [27]. Other methods are based on the fitting of the mixture
of Gaussians [3]. Mean-square clustering is used in [13], while fuzzy clustering ideas
have been adapted in [9].

e Entropy-based methods, which use the entropy of the foreground and the background
regions, the cross-entropy between the original and the binarized image etc. [10, 18,
29]. These algorithms exploit the entropy of the distribution of the gray levels in an
image. The maximum information transfer is considered to be the maximization of
the entropy of the thresholded image [10, 18]. Other methods minimize the cross-
entropy between the initial gray-level image and the output binary image, in order to
preserve the image information.

e Attribute-based methods, which seek a measure between the gray-level and the bina-
rized images, such as fuzzy shape similarity, edge coincidence, etc. [6, 7, 14]. These
algorithms evaluate the threshold value by using attributes quality or similarity mea-
sures between the initial gray-level image and the output binary image. Some methods
exploit the form of edge matching [6], shape compactness, gray level moments, con-
nectivity, texture or stability of segments objects [14]. In the same category, other
algorithms evaluate directly the resemblance of the initial gray level image to the
binary image, using fuzzy measures [7] or resemblance of the cumulative probability
distributions.

e Spatial methods, which exploit higher-order probability distribution and/or corre-
lation between the image pixels [1, 2]. The algorithms in this category utilize not
only the gray level distribution, but also the dependency of pixels in a neighborhood,
for example, the probabilities, correlation functions, cooccurrence probabilities, local
linear dependence models of image pixels, 2-D entropy etc.

e Local methods, which adapt the threshold value on each image pixel to the local image
characteristics [19, 23, 28]. Algorithms belonging in this class, calculate a threshold
at each image pixel, which depends on some local statistics such as range, variance
[19], contrast [23] or surface-fitting parameters of the pixel neighborhoods [28].

A survey of thresholding methods can be found in the excellent review publication that
has appeared in the literature [21]. Four well-known thresholding methods will be reviewed
in this paper: (i) Otsu’s thresholding method [13], (ii) Huang and Wang’s fuzzy entropy
measure-based thresholding method [7], (iii) Kittler’s thresholding algorithm [11], and (iv)
Kwon’s thresholding method [12].

Otsu [13] has suggested a thresholding method that minimizes the weighted sum of
within-class variances of the foreground and background pixels Jp = [Pl Py(my — m2)2] /(02 +
03), in order to establish an optimum threshold 7. P; and P are the number of pixels
belonging to the two classes, i.e. the foreground and background, m; and msg are the aver-
age gray level of each class and o7 and o3 are their variances. Recall of the minimization
of within-class variances is tantamount to the maximization of between-class scatter. This
method gives satisfactory results when the number of pixels in each class are close to each
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other.

Huang and Wang [7] have developed a fuzzy entropy-based thresholding method, which
utilizes the histogram image pixels, thus it is not necessary to deal with each pixel in-
dividually. This method creates an index of fuzziness by measuring the distance be-
tween the gray-level image and its binary version. The image I is represented as the
array pg(l), where 0 < puy(f) < 1 represents the fuzzy measure of belonging to the fore-
ground. Given the fuzzy membership value for each image pixel, an index of fuzziness for
the whole image can be obtained via the Shannon entropy, which is used as a cost func-
tion. The optimum threshold is calculated by minimizing the index of fuzziness defined in
terms of class (foreground and background) medians or means and membership functions
Jr = =k 52 s (9)in(ug(9)) + (1 — pus(9))in(1 — s (g).

Kittler and Illingworth [11] assume that the image can be characterized by a mixture
distributions of foreground and background pixels and addresses a minimum error Gaussian
density-fitting problem Jr = Pilog(o1) + Palog(o2) — Pilog(Py) — Pylog(P). Py and P»
are the number of pixels belonging to the two classes (foreground and background), and o
and o9 are the standard deviations of each class.

Kwon [12] has recently developed a clustering-based algorithm, addressing the minimiza-
tion of an intra-class and inter-class similarity problem Jr = [P%(0? +02)+1/2((m1 —m)+
(ma —m))]/(m1 —ma)?. P is the total number of image pixels, m; and my are the average
gray level value of each class (foreground and background) and o1 and o9 are their standard
deviations.

This paper presents a novel, fast and robust image thresholding method. The method is
based on the decomposition of the histogram of the image by the Empirical Mode Decompo-
sition (EMD) [8] to its Intrinsic Mode Functions (IMFs). More specific, the decomposition
is performed by the Ensemble Empirical Mode Decomposition (EEMD) [25], which provides
noise resistance and assistance to data analysis. The properties of the desired IMFs [8, 25]
will be shown that provide an efficient threshold for the image under examination.

The remainder of the paper is organized as follows. The Empirical Mode Decomposition
(EMD) with its ensemble mode (EEMD) is presented in Section 2. In Section 3, the thresh-
olding method is introduced. Experimental results are shown in Section 4 and conclusions
are drawn in Section 5.

2 Empirical Mode Decomposition (EMD)

In this Section, the empirical mode decomposition (EMD) and the derived intrinsic mode
functions (IMF's), which are used in order to determine the image threshold, will be briefly
reviewed. More details regarding the decomposition process, its properties and all the
adopted assumptions are presented in [8, 25].

The basic idea embodied in the EMD analysis is the decomposition of any complicated
data set into a finite and often small number of intrinsic mode functions, which have
different frequencies, one superimposed on the other. The main characteristic of the EMD,
in contrast to almost all previous decomposition approaches, is that EMD works directly
in temporal space, rather than in the frequency space. The EMD method, as Huang et al.
pointed out [8], is direct intuitive and adaptive with an a-posteriori defined basis based
on and derived from the data and therefore, highly efficient. Since the decomposition of
the input signal is based on the local characteristic time scale of the data, the EMD is
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applicable to nonlinear and non-stationary process.

The IMFs obtained by the decomposition method, constitutes an adaptive basis, which
satisfies the majority of properties for a decomposition method, i.e., the convergence, com-
pleteness, orthogonality and uniqueness. Moreover, EMD algorithm copes with stationarity
(or the lack of it) by ignoring the concept and embracing non-stationarity as a practical
reality [8].

The possibly non-linear signal, which may exhibit varying amplitude and local frequency
modulation, is linearly decomposed by EMD into a finite number of (zero mean) frequency
and amplitude modulated signals. The remainder signal, called as a residual function,
exhibits a single extremum and is a monotonic trend or is simply a constant.

In the EMD algorithm, the data z(t) is decomposed in terms of IMFs ¢;, as follows:

N
o(t) =) ci+rn, (1)
=1

where 7y is the residue of data x(t), after N number of IMF's are extracted. IMF's are simple
oscillatory functions with varying amplitude and frequency, and hence have the following
basic properties:

e Throughout the whole length of a single IMF, the number of extrema and the number
of zero-crossings must either be equal or differ at most by one (although these numbers
could differ significantly for the original data set).

e At any data location, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

In practice, the EMD is implemented through a “sifting process” that uses only local
extrema. From any data r;_1, the procedure is as follows:

1. Identify all the local extrema (the combination of both maxima and minima), connect
all these local maxima (minima) with a cubic spline as the upper (lower) envelope,
and calculate the local mean m; of the two envelopes.

2. Obtain the first component h = r;_1 — m; by taking the difference between the data
and the local mean of the two envelopes.

3. Treat h as the data and repeat steps 1 and 2 as many times as required until the
envelopes are symmetric with respect to zero mean under certain criteria.

The final h is designated as ¢;. The procedure can be repeatedly applied to all subsequent
r;, and the result is

x(t)—caa = n
rn —cC2 = T2 (2)
'N—1 —CN = N.

The decomposition process finally stops when the residue, ry, becomes a monotonic
function or a function with only one extremum from which no more IMF can be extracted.
By summing up equation (2), one can derive the basic decomposition equation (1). That
is, a signal x(¢) is decomposed to N-1 IMF's (¢;) and a residual ry signal.

The very first step of the sifting process is depicted in Figure 1. Figure 1(a) depicts the
original input data, while Figures 1(b) and 1(c) show the extrema (maxima and minima)
of the data with their corresponding (upper and lower) envelopes. Figure 1(d) depicts the
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(o)

Figure 1. The very first step of the sifting process. (a) is the input data, (b) identifies
local mazima and plots the upper envelope, (c) identifies local minima and plots the
lower envelope, (d) plots the the mean of the upper and lower envelope, and (e) the
residue, the difference between the input data and the mean of the envelopes.

I I I I I I
0 100 200 300 400 500 600

Figure 2. The intrinsic mode functions (IMFs) of the input data displayed in Figure

1(a).

average of the two (upper and lower) envelopes, and Figure 1(e) illustrates the residue
signal, the difference between the original data and the mean envelope. This procedure is
repeated, as mentioned above, and all the IMF's are extracted from the original input signal.
An example of the EMD algorithm and the extracted IMFs for the input data shown in
Figure 1(a), is presented in Figure 2.

Based on this simple description of EMD, Flandrin et al. [4] and Wu and Huang [24]
have shown that, when the data consists of white noise, the EMD behaves as a dyadic
filter bank: the Fourier spectra of various IMF's collapse to a single shape along the axis of
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logarithm of the period or the frequency. Then the total number of IMFs of a data set is
close to logo N, with N being the number of total data points. On the other hand, when
the data is not pure noise, some scales could be missing, and as a consequence, the total
number of the IMFs might be fewer than logsN. Additionally, the intermittency of signals
in certain scale would also cause mode mixing.

One of the major drawbacks of EMD is mode mixing. Mode mixing is defined as a single
IMF either consisting of signals with widely disparate scales or consisting of a signal with
a similar scale residing in different IMF components. Mode mixing is a consequence of
signal intermittency. The intermittency could not only cause serious aliasing in the time-
frequency distribution but could also make the individual IMF lose its physical meaning
[8]. Another side effect of mode mixing is the lack of physical uniqueness. Supposing that
two observations of the same oscillation are made simultaneously, one contains a low level
of random noise and the other does not. The EMD decompositions for the corresponding
two records are significantly different [26].

However, since the cause of the problem is due to mode mixing, one expects that the
decomposition would be reliable if the mode mixing problem is alleviated or eliminated. To
achieve the latter goal, i.e., to overcome the scale mixing problem, a new noise-assisted data
analysis method was proposed, named as the ensemble EMD (EEMD) [26]. The EEMD
defines the true IMF components as the mean of an ensemble of trials, each one consisting
of the signal with white noise of finite amplitude.

The ensemble EMD (EEMD) algorithm could be summarized as follows:

1. add a white noise series w(t) to the original input data z;(t) = z(t) + w;(t),
2. decompose the data with added white noise into IMFs c; (%),

3. repeat steps 1 and 2 but with different white noise series each time, and

N
1
4. obtain the (ensemble) means of corresponding IMFs ¢;(t) = lim N Z cjk(t) of the
k=1

N—oo

decomposition as the final result.
The critical concepts advanced in EEMD are based on the following observations:

e A collection of white noise cancels each other out in a time-space ensemble mean.
Therefore, only the true components of the input data can survive and persist in the
final ensemble mean.

e Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to
exhaust all possible solutions.

e The physically meaningful result of the EMD is not from the data without noise, but
it is designated to be the ensemble mean of a large number of EMD trials of the input
data with the added noise.

The mode mixing is largely eliminated using EEMD, and the consistency of the decom-
positions of slightly different pairs of data is greatly improved. Indeed, EEMD represents
a major improvement over the original EMD. Furthermore, since the level of the added
noise is not of critical importance and of finite amplitude, EEMD can be used without
any significant intervention. Thus, it provides a truly adaptive data analysis method. The
EMD, with the ensemble approach (EEMD), has become a more mature tool for nonlinear
and non-stationary time series (and other one dimensional data) analysis.
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3 Threshold Selection Based-On EEMD

In this Section, the image threshold selection method is introduced. This method is fully
automated and is based on the IMFs extracted by the EEMD algorithm applied on the
histogram of the image under examination.

50 00 0 20 250 0

Figure 3. An image for color blindness test and its probability mass function.

The histogram h(k) is computed for an input image [ with £ =0...G and G being the
maximum luminance value in the image I, typically equal to 255 when 8-bit quantization
is assumed. Then, the probability mass function (PMF) of the image histogram is defined
as the normalized histogram by the total pixel number:

p(k) = N (3)

where N is the total number of image pixels. An example of an image and its normalized
histogram is depicted in Figure 3. Also, the cumulative normalized histogram (probability
mass function) is given by:

P(k) = Z p(i). (4)

0 50 100 150 200 250

Figure 4. The IMF's of the histogram for the image depicted in Figure 3 with a noise
of amplitude 0.2 and 1000 trials are performed.
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The normalized histogram p(k) of an image could provide very useful information when
it is properly analyzed. In the proposed method, the EEMD algorithm has been selected in
order to analyze the histogram into its IMFs, in order to find an efficient threshold for the
image under examination. The IMF's of the histogram of the image shown in Figure 3, are
presented in Figure 4. The IMF's are produced using the EEMD algorithm with a noise of
amplitude equal to 0.2 and 1000 trials are performed. The number of the extracted IMFs
(including the residue function) for a 8-bit quantized image is log2(256) = 8.

0.04

0.03

0.02

0.01

-0.01

-0.02

L L L L L
0 50 100 150 200 250

Figure 5. The histogram of the image shown in Figure 3 (thin line) and the summation
of the ¢y to cs IMF's (fat line).

One can easily see in Figure 4 that the first IMF ¢; mainly carries the histogram “noise”,
irregularities and the sharp details of the histogram, while IMF's c¢g, ¢y and the residue R
mostly describe the trend of the histogram. On the other hand, IMFs cs to c5 describe
the initial histogram with simple and uniform pulses. This is the main reason that the
proposed method is focused on co to ¢5 IMFs. Let us define the summation ¢, of these

IMF's as follows: ;

Cm = Zcz (5)

Figure 5 depicts the summation ¢, (fat line) in contrast to the initial histogram (thin
line). Ome can notice that this summation ¢, describes the main part of the histogram
leaving out all its meaningless details.

The minimum of summation ¢, is given by:

T = i T 6
ore { minn(D)]. )
where T™ is the desired image threshold. Since the summation ¢, provides a better, more
clear and uniform formation of the image histogram, its minimum can be considered as an
optimal threshold for the input image and its efficiency will be experimentally shown in the
next Section.
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In this Section, the performance of the proposed method is examined by presenting
numerical results using the introduced thresholding approach on various synthetic and real
images, with different types of histogram. The obtained results are compared with the
corresponding results of four well-known thresholding methods [7, 11, 12, 13]. In all the
experiments, the EEMD algorithm was used with a noise of amplitude equal to 0.2 and

1000 trials are performed.
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Figure 6. Various images (left column) and their corresponding thresholded images
produced by the proposed method (right column).

Table 1. Threshold values determined by five threshold selection methods with the
corresponding area difference measure results.

Method Color blindsness MRI image Doc. image 1 Doc. image 2
(Fig. 6(a)) (Fig. 6(b)) (Fig. 6(c)) (Fig. 6(d))
Proposed 0.006 (46) 0.006 (135)  0.017 (126) 0.136 (75)
Kittler’s [11] 0.738 (179) 0.834 (193)  0.998 (195) 0.136 (75)
Otsu’s [13] 0.615 (136) 0.100 (86) 0.091 (45) 0.781 (140)
Huang’s [7] 0.711 (169) 0.230 (1) 0.085 (170) 0.760 (122)
Kwon’s [12] 0.577 (110) 0.228 (48) 0.063 (152) 0.730 (101)

Figure 6 presents various real and synthetic images and their corresponding thresholded
images obtained by the proposed approach. The left column shows the initial images,
while the right column depicts the corresponding thresholded images produced by the
proposed algorithm. One can clearly see that the proposed method can efficiently threshold
the images under examination. Table 1 confirms the results in terms of the well known
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Figure 7. Thresholded images: (a) ground truth, (b) proposed method, (c) Kittler’s
method, (d) Otsu’s method, (e) Huang’s method and (f) Kwon’s method.

Tanimoto/Jaccard error [22] E(-) defined here as:
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where I, and I, are the extracted and the desired thresholded images respectively. In
Table 1, the desired thresholded images have been extracted manually and then, compared
(7) with the acquired thresholded images produced by the proposed method and four well
known thresholding methods [7, 11, 12, 13]. The errors of the proposed methods are small
enough to enforce one to claim that they are insignificant. On the contrary, the other four
methods produce larger errors, a fact that is also depicted in Figure 7. The thresholded
images produced by the proposed algorithm are more efficient. In Table 1, is also shown,
the thresholds produced by the corresponding algorithms (the value in the parenthesis).

A\

Figure 8. Various images (left column) and their corresponding thresholded images
produced by the proposed method (right column).

Figure 7 presents the thresholded images extracted by the proposed and the rest algo-
rithms [7, 11, 12, 13]. Figure 7a shows the ground truth which manually extracted in order
to calculate the numerical results depicted in Table 1. Figure 7b depicts the thresholded
images produced by the proposed algorithm, while Figures 7c-7f show the thresholded im-
ages acquired by the Kittler’s method [11] (Fig. 7c), Otsu’s method [13] (Fig. 7d), Huang’s
method [7] (Fig. 7e) and Kwon’s method [12] (Fig. 7f).

Finally, Figure 8 shows various images (left column) and their corresponding thresholded
images acquired by the proposed method. All images in Figure 8 depict complex scenes,
especially Figure 8(d). However, the proposed algorithm thresholds these images in a very
reasonable way, a fact that is also proved in Figures 6 and 7 and in parallel provides better
performance than the other four methods.

5 Conclusion

In this paper, a novel image thresholding method is introduced. The proposed approach
exploits ensemble empirical mode decomposition (EEMD) to analyze the histogram of the
image under examination. The EEMD algorithm can decompose any nonlinear and non-
stationary data into a number of intrinsic mode functions (IMFs). The proposed algorithm
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uses only specific components, the intermediate IMF's of the EEMD decomposition, in order
to evaluate an optimal image threshold. The effectiveness of the proposed threshold selec-
tion method is proved in the experimental results Section where the proposed thresholding
algorithm is applied to various images with simple and complex scenes. The extension of
the proposed method for multi-level thresholding and color images is an open problem and
being studied.
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