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Abstract 

This paper presents some image processing techniques that can be used for radiographic 

image enhancement. Contrast enhancement, filtering, denoising, and interpolation processes 

are carried out in this paper. Contrast enhancement is carried out using adaptive histogram 

equalization. Filtering is carried out using median, Wiener, Lee, and Kuan filters. Wavelet 

and curvelet transforms are used for image denoising. Three interpolation are carried out. 

The results are evaluated qualitatively and quantitatively using the Peak Signal-to-Noise 

Ratio (PSNR), Root Mean Squire Error (RMSE), Standard Deviation (SD), smoothness, 

entropy, Structural Similarity (SSIM), and execution time. The results show that the contrast 

enhancement improves the radiographic image quality, the Wiener filter achieves better 

enhancement results than other filters, the curvelet transform denoising gives better 

enhancement than wavelet denoising. The bicubic interpolation with resolution factor two is 

promising in terms of the quality assessment metrics. 
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1. Introduction 

Gamma-Radiography Testing (GRT) is one of the important applications of radioisotopes 

in the industry. It is used in several industries to assess the weld quality by evaluating the 

radiographs of the welded components. It has been used to check welds in pipelines that carry 

natural gas or oil. There are several advantages of gamma radiography compared to the other 

technologies. It can be done thoroughly and non-invasively, more rapidly, and cheaply. GRT 

uses gamma radioisotopes to inspect materials defects in the welds, where, a special film is 

taped over the weld around the outside of the pipe.  A machine called a pipe crawler carries a 

shielded radioactive source to the position of the weld.  The radioactive source is remotely 

exposed to the pipe and a radiographic image of the weld is produced on the film.  This film 

is later developed and examined for signs of flaws in the weld. The interpretation of the 

radiographic film can be done automatically or by a skilled operator. For automatic 

interpretation, firstly the image is digitized, and then an enhancement process is carried out. 

After that detection and classification processes are performed. Figure 1 shows the block 

diagram of the automatic interpretation system using GRT.   
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Figure 1. Block Diagram of the Automatic Interpretation System using GRT 
 

The digitalization of radiographic films can be carried out using a digital camera or a 

digital scanner. After the digitization process, the produced images have small contrast 

between the background and the weld defect regions. Also some pronounced granularities are 

found due to digitization and the type of film used in industrial radiographic testing. So image 

enhancement is important in order to remove system noise and radiographic film noise. 

Radiographic image enhancement has been studied by several researchers using various 

techniques and approaches. Movafeghi et. al. used spatial and frequency (wavelet) domain 

techniques based on morphological transformations (Top-Hat and Bottom-Hat transforms) for 

enhancement of radiographic images [1]. Zhang et. al. proposed an enhancement algorithm 

for enhancement of radiographic images based on generalized fuzzy techniques. These 

algorithmic maps the image to the generalized fuzzy space through involving the concept of a 

generalized fuzzy set. Using the characteristics of generalized fuzzy transition with a large 

range, an image can satisfactory enhanced through processing the with a generalized fuzzy 

enhancement algorithm [2]. Wang et. al. used a median filter and wavelet thresholding for 

reducing the radiographic image noise, and used gamma correction and contrast limited 

adaptive histogram equalization to enhance the perception of defects. These processes are 

used to eliminate noise and background artifacts and to smooth sharp edges, in addition to the 

removal of some details in small objects [3]. Arulmozhi et. al. used a wavelet technique for 

denoising radiographic images and to find out the best filter that furnishes the maximum 

details of the radiographic image. The denoising operation is performed using a non 

orthogonal log-gabor wavelet function [4]. Frosio et. al. presented an algorithm for 

maximizing the contrast of a digital radiography automatically using an adequate gray level 

transform, whose parameters are computed on the basis of the image entropy and through 

maximization of the contrast enhancement effect [5]. 

The image quality evaluation remains a challenging task in radiological research. The 

objectives of this paper are performing some image processing techniques for radiographic 

image enhancement, and performing qualitative and quantitative evaluation of these 

techniques. This paper is organnized as follw; Section 2 presents the quality assessment 

metrics that will be used in the quantitative evaluation.  Section 3 presents the contrast 

enhancement of the radiographic image. Section 4 presents the radiographic image filtering. 

Section 5 presents the denoising of the radiographic image. Section 6 presents the performed 

radiographic image interpolation methods. Finally, Section 7 gives the conclusion remarks. 

 

2. Quality Assessment Metrics 

For quantitative evaluation of the image enhancement processes, some parameters can be 

calculated for the enhanced image. These parameters are the MSE, PSNR, SSIM, entropy, SD, 

smoothness, and the execution time. The MSE is the arithmetic difference between the 

original image and the enhanced image and it measures the loss of image quality [6]. 

Consider the original image F (i, j) and the enhanced image G (i, j) with size M × N, the MSE 

can be defined as [7]: 
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The PSNR is the ratio between the maximum possible power of the image and the power 

of corrupting noise that affects the fidelity of its representation. PSNR is expressed in terms 

of a logarithmic decibel scale, and it is defined for an 8 bit level image as [7]: 
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Logically, the lower value of the MSE means lower error, and hence the higher value of 

the PSNR is better. Here, the signal is the original image, and the noise is the error in 

reconstruction. The SSIM measures the image quality by capturing the similarity of images 

[8]. The similarities are measured in luminance, contrast, and structure. The luminance 

comparison function between the image F and the enhanced image G is defined as: 
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where µ f and µg are the mean values of F and G, respectively, and s1 is a stabilizing constant, 

and it is included to avoid instability when µ f and µg is very close to zero. It is defined as: 
 

s1 = (K1L)
2 
                                           (4) 

 

where L is the dynamic range of the pixel values (255 for 8-bit gray-scale images), and K1  is 

a small constant less than 1. The contrast comparison function is defined as: 
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where σf and σg are the standard deviations of F and G , respectively, and s2 is a stabilizing 

constant. The structure comparison function is defined as: 
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where σfg is the correlation coefficient between and F and G and s3 is a stabilizing constant. 

The SSIM is obtained by combining the three comparison functions [6, 8]: 

 

SSIM(F,G) = [L(F,G)]
 
. [C(F,G)] . Sc[(F,G)]                                   (7) 
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The entropy is a measure of the average information content. If P denotes the probability 

mass function of F, the entropy is defined by [9]: 
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The standard deviation (σ) is a measure of the dispersion of a set of data from its mean. 

The smoothness measures the relative smoothness of the intensity in an image region as 

follows [10]: 
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3. Contrast Enhancement 

Histogram equalization is an image enhancement technique, which improves the visual 

appearance of the image by assigning equal number of pixels to all available intensity values 

[11]. Image contrast can be maximized using adaptive histogram equalization by adaptively 

enhancing the contrast of each pixel relative to its local neighborhood. This process produces 

an improved contrast in the original image [12]. In this process, the histograms are calculated 

for small regional areas of pixels to produce local histograms, and then these local histograms 

are equalized or remapped from the often narrow range of intensity values to a wider range. 

Adaptive histogram equalization can provide better contrast in local areas than that can be 

achieved using traditional histogram equalization methods. The traditional methods process 

the entire image at once, where adaptive histogram equalization utilizes local contextual 

regions. Consider an image of size M × N, and a cumulative histogram H(g). The transfer 

function FHE(g) that maps the original gray levels into the transformed ones is defined as [13]: 
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where Gymax and Gymin are the upper and lower limits of the transformed gray levels, 

respectively.  The adaptive histogram equalization is made adaptively by taking the histogram 

over a local region instead of the whole image as [14]: 

 

AHE

AHE
yyyAHE

MN

gH
GGGgF

)(

)(
)()( minmaxmin                (12) 

 

where HAHE(g) refers to the adaptive cumulative histogram. Figure (2.a) shows a digitized 

radiographic image, while figure (2.b) shows the enhanced image after adaptive histogram 

equalization. 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 2, June, 2012 

 

 

77 

 

Original weld

 
   

(a) Original radiographic image (b) Enhanced image using AHE 

 

Figure 2. Adaptive Histogram Equalization Effect on Contrast Enhancement of 
the Radiographic Image 

 

The above results show that the contrast enhancement improves the radiographic image 

quality. 

 

4. Radiographic Image Filtering 

Image filtering can be used to remove noise, sharpen contrast, or highlight contours in the 

radiographic images. Median and Wiener filters have been used in many previous researches 

[3, 13-16]. In this section, radiographic image filtering is carried out after contrast 

enhancement using median, Wiener, Lee, and Kuan filters in order to select the best filter for 

the radiographic image filtering purpose. 

 

4.1 Median Filter 

The median filter is a nonlinear filter used to remove noise from the image. It can 

potentially remove all the noise without affecting the clean pixels. It is the most frequently 

used filtering technique to remove impulsive noise from radiographic images. The median 

filter considers each pixel in the image and looks at its nearby neighbors, and then replaces 

the pixel value with the median of neighboring pixel values. The median is calculated by first 

sorting all the pixel values from the surrounding neighborhood, and then replacing the pixel 

being considered with the median value. Figures (3.b) and (3.c) show the effect of the median 

filters with 3×3 and 5×5 operating windows on the radiographic image. 

 

4.2 Wiener Filter 

The Wiener filter is designed by minimizing the MSE between the filtered image and the 

original image. It can be applied to the image, adaptively, tailoring itself to the local image 

variance. When the variance is large, it performs little smoothing. When the variance is small, 

it performs more smoothing. Since the intensities of the pixels in the weld area follow a 

Gaussian distribution. The Wiener filter was selected for filtering of radiographic images of 

welds, because it is close to the matched filter in this case [17]. Figure (3.d) shows the effect 

of the Wiener filter on the radiographic image. 
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4.3 Lee Filter 

Lee filter uses the statistical distribution of the pixels in a moving window to estimate the 

value of the pixel of interest [18]. The Lee filter is based on the assumption that the mean and 

variance of the pixel of interest are equal to the local mean and variance of all pixels within 

the moving window. If the pixel value in the input image is xi ,  µ i is the mean value of the 

input image, and  σi is the variance of the input image, then the output pixel value of the 

filtered image using Lee filter is defined as: 
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where K is a weighting factor ranging from 0 to 1 and defined as: 
 

1

22

1

K

K
K

ii 




,       2

2

2

_
1

1 w

i

ww

K 







                                    (14) 

 

where µw and σw are the mean and variance of the pixels in the moving window, respectively. 

Figure (3.e) shows the effect of the Lee filter on the radiographic image. 

 

 4.4 Kuan Filter 

Kuan filter [19] smoothes the image data, without removing edges or sharp features in the 

image. Firstly, it transforms the multiplicative noise model into a signal-dependent additive 

noise model. Then, the minimum MSE criterion is applied to the model. The resulting filter 

has the same form as the Lee filter but with a different weighting function. Because Kuan 

filter makes no approximation to the original model, it is superior to the Lee filter [20]. The 

Kuan filter has the same form as the Lee filter but with a different weighting factor K1 

defined as: 
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Figure (3.f) shows the effect of the Kuan filter on the radiographic image. For quantitative 

evaluation of the image enhancement, the metrics discussed in Section 2 have been calculated 

for the filtered image and tabulated in Table (1). 

 

 

Figure 3. Radiographic Image Filtering 
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Table 1. Quantitative Evaluation of Radiographic Image Filtering 

 
 

 
The above results show that the Wiener filter gives the lowest RMSE as it is designed by 

minimizing the MSE. This leads to its highest PSNR. The values of the entropy, the standard 

deviation, the image smoothness, and the structural similarity have small differences between 

the different filters. Lee and Kuan filters take longer times than the other filters. So, the 

Wiener filter can be considered as the best filter for radiographic image enhancement. 

 

5. Radiographic Image Denoising 

In this section, the radiographic image denoising is carried out using the wavelet and the 

curvelet transforms. 

 

5.1 Wavelet Denoising 

The wavelet transform has been used for image denoising in several applications [21-24]. 

It is a mathematical operation used to divide a given image into different subbands of 

different scales to study each scale separtely. The Discrete Wavelet Transform (DWT) is fast, 

linear and invertible. Hence, wavelet reconstruction is possible. DWT chooses a subset of 

scales and positions to calculate. A sample version of the wavelet coefficients ),( aWF  can 

reconstruct the original signal in an efficient way if the family of scaled and shifted mother 

wavelets of the selected a  and η constitute an orthonogonal and complete basis [25].  The 

DWT of a signal F is calculated by passing it through a series of filters. Firstly, the samples 

are passed through a low pass filter with impulse response GL resulting in a convolution of the 

two: 
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The signal is also decomposed simultaneously using a high-pass filter with impulse 

response GH. The outputs give the detail coefficients from the high-pass filter and the 

approximation coefficients from the low-pass. It is important that the two filters are related to 

each other to allow a perfect recomstruction. However, half of the signal frequencies have 
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now been removed, half of the samples can be discarded according to Nyquist’s rule. The 

filter outputs are then subsampled by 2 as follows: 
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where L is the length of the filter  

 

The 2-D DWT is essentially a 1-D analysis of a 2-D image. It is performed by analyzing 

the rows and columns of an image in a separable fashion [26]. The first step applies the 

analysis filters to the rows of an image. This produces two new images, where one image is 

an approximation of row coefficients and the other is a set of detail row coefficients. After 

that, analysis filters are applied to the columns of the image, to produce four different images 

called subbands. Rows and columns are analyzed with a high pass filter and a low pass filter. 

Each subband provides different information about the image. The wavelet transform is 

constituted with different levels. The maximum level to apply the wavelet transform depends 

on how many data points contained in a data set, since there is a down-sampling by 2 

operations from one level to the next one. The number of decomposition levels of the wavelet 

transform affects the noise removal from the image. There are several kinds of wavelets such 

Haar, Daubechies, Symlet and Biorthogonal. The choice of the wavelet determines the final 

waveform shape.  

There are two common methods for thresholding of the resulting wavelet coefficients; hard 

thresholding and soft thresholding. In the hard thresholding, the coefficients with absolute 

values below the threshold are set to zero. The soft thresholding goes one step further and 

decreases the magnitude of the remaining coefficients by the threshold value. Hard 

thresholding maintains the scale of the signal but introduces ringing and artifacts after 

reconstruction due to the discontinuity in the wavelet coefficients. Soft thresholding 

eliminates this discontinuity resulting in smoother signals but slightly decreases the 

magnitude of the reconstructed signal [27]. Radiographic images after contrast enhancment 

and filtering using Wiener filter have been denoised using four wavelet types; Haar, 

Daubechies 4, Symlet, and Biorthogonal wavelets with different decomposition levels (DL) 

and soft thresholding. The results are shown in figure 4, and the quantitative evaluation is 

shown in Table 2. 
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Figure 4. Image Denoising using Wavelet 
 

5.2 Curvelet Denoising 

The curvelet transform has been developed in the last few years to overcome inherent 

limitations of traditional multi-scale representations such as the wavelet transform [28]. One 

of the DWT disadvantages in image processing is that it gives a large number of coefficients 

in all scales corresponding to the edges of the image. This means that many coefficients are 

required in order to exactly reconstruct the edges in an image. This makes the DWT 

inefficient for handling long curved edges. Recent approaches like the ridgelet and curvelet 

transforms are more efficient in handling long linear and curvilinear singularities in an image 

[29, 30].  The curvelet transform is used to decompose the image into different subbands and 

partitioning is used to break each subband into tiles. Finally, the ridgelet transform is applied 

to each tile [31]. In this way, the image edges can be represented, efficiently by the ridgelet 

transform, because the image edges will now be almost like straight lines. Thus, the curvelet 

transform is an extension of the ridgelet transform to detect curved edges, effectively [32]. 

The curvelet transform can be obtained as the follows. The image is split up into four 

subbands Δ1, Δ2, Δ3 and P3, and tiling is performed on the subbands Δ1, Δ2, and Δ3. The 
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discrete ridgelet transform is performed on each tile of the subbands Δ1 and Δ2, and Δ3. The 

general curvelet reconstruction formula is given by [33]: 

n

n

l

l PP 




1

1

                             (19) 

    

where the planes Δl contain high-frequency details and Pn is a low-frequency approximation 

component. The curvelet transform has been used for image denoising [34- 35]. The curvelet 

denoised image is shown in figure (5), and the quantitative evaluation is shown in Table (2). 

 

Table 2. Quantitative Evaluation of Radiographic Image Denoising 

 
 

 

 

 
Figure 5. Image Denoising using Curvelet 

 

The above results show that the standard deviation and the image smoothness are constant 

for all wavelet types at different decomposition levels. The Haar wavelet transform gives the 

highest PSNR, highest SSIM and the lowest RMSE values. By increasing the decomposition 

level, the PSNR is decreased and the processing time is increased. So, using the Haar wavelet 

with decomposition level 2 is the best for wavelet denoising. Curvelet denoising provides a 

little improvement in the PSNR compared to wavelet denoising. 
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6. Radiographic Image Interpolation 

The image interpolation process aims to estimate intermediate pixels between the known 

pixel values by guessing the intensity values at missing locations. In 1-D interpolation, it is 

performed row-by-row and then column-by-column. If we have a discrete sequence f(xk) of 

length N and this sequence is filtered and down-sampled by 2, then we get another sequence 

g(xn) of length N/2. The interpolation process aims to estimate a sequence l(xk) of length N, 

which is as close as possible to the original discrete sequence f(xk). For equally spaced 1-D 

sampled data g(xn), several interpolation functions can be used. The value of the sample to be 

estimated l(xk+1) can be written in the form [31]: 


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n
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where )(x  is the interpolation basis function. From the classical sampling theory [32], if g 

(xn) is band-limited to     [-,] then: 
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    This is known as ideal interpolation, but it is not practical due to the slow rate of decay of 

the interpolation kernel. So, approximations such as the bilinear, bicubic and cubic spline 

interpolation formulas are used as alternatives [32,33]. If the distance between xk+1 and xn is s, 

then the distance between xk+1 and xn+1 is 1-s, the value of )( 1kxl  can be written in the form 

[33]: 
 

)()()1()( 11   nnk xsgxgsxl                         (22) 
 

Bicubic interpolation produces noticeably sharper images than the previous two methods, 

and may achieve the ideal combination of processing time and output quality. The value of 

)( 1kxl  in bicubic interpolation is written as [33]: 
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     In cubic spline interpolation, the value of )( 1kxl  is written as [36-38]: 
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 Figure (6) shows the results of the three interpolation methods with different resolutions, 

and Table (3) shows the quantitative evaluations of images enhancement using interpolation. 

The Resolution Factor (RF) represents the ratio between the resolution of the interpolated 

image and the resolution of the available image. 
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Table 3. Quantitative Evaluations of Images Enhancement using Image 
Interpolation 

 

Time 

(Sec) 
Smoothness SD 

Entropy 

 

Resolution 

factor 

Interpolation 

method 

1.21 0.0214 0.1479 6.6054 2 Bilinear 

2.40 0.0214 0.1479 6.6122 5 
 

7.57 0.0214 0.1479 6.9038 10 

2.39 0.0214 0.1479 6.9038 2 Bicubic 

4.45 0.0214 0.1479 6.9052 5 
 

11.75 0.0214 0.1479 6.9053 10 

3.06 0.0214 0.1479 6.8744 2 Spline 

5.56 0.0214 0.1479 6.8712 5 
 

14.71 0.0214 0.1479 6.8991 10 

  

 

 

Figures (6) Radiographic image interpolation 

 

The above results show that the bicubic interpolation gives the highest entropy, while the 

standard deviation and the image smoothness are not affected by the interpolation method or 

by the resolution factor. Increasing the resolution increases the entropy, but at the expense of 

time. So, bicubic interpolation with RF=2 can be considered suitable for radiographic image 

interpolation. 
 

7. Conclusions 

The paper presented some image processing techniques for radiographic image 

enhancement. The results have been evaluated qualitatively and quantitatively considering the 

PSNR, RMSE, standard deviation, smoothness, entropy, structural similarity, and execution 
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time. The radiographic image enhancement techniques discussed in the paper can constitute a 

solid basis for efficient weld defect detection applications from radiographic images.  
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