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Abstract

This paper presents the evaluation of two approaches, widely used in the inpainting literature,
applied in the context of the atmospheric noise removal, such as fog, clouds - dense and sparse -
and shadows, which often occur in remote sensing images. The presence of such elements affect, in
many ways, the image processing in an environmental or urban monitoring, and also in the steps
of the digital image processing, suchlike segmentation and classification. Whilst one approach uses
a techmique of interpolation for the dissemination of information by a multidimensional Discrete
Cosine Transform (DCT) smoothing method, the other one is based on second-order partial differ-
ential equations methods (PDE). This PDE-based development uses the heat diffusion and thin-plate
spline methods to achieve their solutions with the aid of the finite-difference method. To proceed the
methods evaluation, this work uses the kappa coefficient and the Peak Signal-to-Noise Ratio index
(PSNR). The metrics indicate the effectiveness of the DCT strategy, which produces higher quality
images, specially when comparing the results obtained by the use of differential equations modeled
by thin-plate spline. The visual aspect of images is clearly an important factor for measuring the
effectiveness of any image processing, so, in addition to numerical metrics, are presented the nine
images used to evaluate both methods.

Keywords: Inpainting, Cloud removal, DCT, Heat diffusion.

1 Introduction

Remote sensing images are usually susceptible to the undesirable presence of the atmospheric
interferences, such as fogs, clouds and haze. These occurrences, that are largely present in equato-
rial and tropical warm-to-hot regions, changes the brightness values of pixels at different levels of
saturation, which can corrupt the visual representation of the land surface that is covered by clouds.
The presence of such elements affect, in many ways, the image processing in an environmental or
urban monitoring, and also the segmentation and/or classification methods that are the mainly
responsible for the image information extracting.

Experts worldwide carried out many studies in order to find an effective method to reduce or
eliminate the impact of clouds [30]. Algorithms dedicated to the satellite images processing should
be robust in the sense that this kind of image usually has large dimensions and large spectral
variations (very heterogeneous). In this sense, the encouragement to develop new alternatives for
image interpretation and improvement of efficient known techniques is remarkable.

The method used in treatment of the atmospheric interferences vary according to the clouds
density. It can be dense or thin.

When it comes to the removal of scattered clouds, mist and fog, considered smooth structures,
shown in Figures 1 (a), the most or widely used technique is the application of the homomorphic
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Fig.1. Examples of images contaminated with atmospheric structures: (a) thin
clouds, mists and fogs and (b) dense clouds and shadows.

filter in regions where such components predominate, working in the frequency components and
applying some kind of high-pass filter in the image, as made in [18] and [13].

The dense clouds and shadows [illustrated in Figure 1 (b)] removal is mainly related to the use
of reference images or by the estimative of the covered areas. The first strategy can use a multi-
temporal analysis [30], or can use an other image of the same scene, captured by a different sensor,
as a SAR image [14], both aims to make the interpolation of the affected area. This interpolation
can use similar techniques to those described in [8,17]. These works developed derivations of the
inpainting method in order to fill up some damaged regions or to remove large objects.

In the literature, inpainting techniques are increasingly used in benefits of the satellite images
processing. In [19], is effectively used a technique based on Bandelet transformed with a multi scale
geometrical grouping in clouds removal of images.

Some authors prefer the a priori knowledge approaches as [23, 24], which are based on the max-
imum a posteriori (MAP) algorithm. In MAP, the likelihood probability density function (PDF) is
built on a linear observation model of the image, and a robust model of Huber-Markov is used as

30



International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 5, No. 2, June, 2012

an a priori PDF. It is common in this area, researches reporting the reconstruction of images of
specific sensors, as done by [14], who works in removing the cloud of images produced by ALOS
satellite sensors.

In this work two inpainting based approaches are evaluated. We are interesting in the removal of
the dense clouds and shadows present in satellite images. The presence of dense clouds are related
to the presence of the shadows, formed principally by the sun position in the moment of capture
and because the image capture in off-nadir angle.

The first approach uses a multidimensional Discrete Cosine Transform (DCT) based smoothing
method, similar to those described in [10, 1, 3], whilst the other approach is based in Partial Differ-
ential Equations, that are modeled by two methods: the heat diffusion and thin-plate spline [6,4,
21].

In the sequence are described the techniques used in the approaches, Section 2, the results achieved
and it is discussions, Section 3. At last, we present the work conclusions (Section 4).

2 Methodology

Before apply the cloud removal routines, the image is submitted to a region detection method. The
basis of this clouds and shadows detection process is introduced in [13], where is made a separation
of regions with different features in the image, to then effectively apply the processing techniques in
their respective target regions. This separation is made daaccording to statistical measures of the
image, detecting areas of dense clouds, thin clouds and areas not exposed to any of these types of
noise.

In [25], was added the ability to detect clouds and shadows (mainly originating from the angle of
capture of the image), and two constants sc (shadow constant) and cc (cloud constant), that allowed
a greater flexibility to the task of regions separating with different illumination levels. The function
that represents this process is presented in Equation 1. It is important highlight that this equation
is applied to all bands of the image. For example, a pixel in dim dimensions is considered as a region
of shadow if in all l4im bands has its gray level value less than the multiplication between the cc
constant and the value of the subtraction of the pixels average value and the standard deviation of
the image.

i(z,y) < s¢ X im—dp, i(z,y)e 0,

) _ imfdp < Z(.’E, y) < Z'7n7 ’L(l’, y)E 1a
Laim (2, y) = im < i(z,y) < ce X frmtdp, i(z,y)€ 2, (1)

i(x,y) > cc X imtdp, i(z,y)e 3.

Where i(z,y) is an original image pixel, ¢,, and ¢4, represents the mean and standard deviation
values of the image pixels, respectively, the function l4;m,(z,y) is a mapped matrix that have the
same dimension of the original image. The image {(z,y) have four values (0, 1, 2 and 3), where the
mapped regions as 0 corresponds to the shadows areas; the pixels mapped as 1 represents regions
without atmospheric damages detected; the regions damaged with clouds are divided in regions with
thin clouds (2) and dense clouds (3).

Then, a morphological opening operation is applied on the image l4;,,, extinguishing small objects
contained in larger ones, since small objects contained in large blocks defined as noise can interfere
with the step of applying methods used in this work. Thus, it is advisable to make the opening step
after the regions detection, eliminating this problem and generating a better restoration of image
pixels damaged by atmospheric action.

The restoration of degraded areas of images without prior knowledge of the original scene is a
practice as old as the creation of art itself. This practice is called retouching or inpainting. The goal
of inpainting is to redefine the parts that are missing or are damaged, in order to make it more
readable, restoring their original units. In this work, the regions of shadows and dense clouds will
be interpolated by the inpainting methods.
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It is noticeable that the classical algorithms for noise removal of image does not apply to inpaint-
ing. In common applications of image enhancement, pixels contains information about the real data
and noise (e.g., image plus noise for additive noise), while in the inpainting there is no significant
information about the region to be redefined. The information is obtained mainly from the regions
surrounding the areas to be processed. So then comes the need to develop specific techniques to
solve these problems.

2.1 First approach

The interpolation process depends of the neighborhood of the pixels labeled as 0 and 3. These
pixels, are redefined to p = NaN, which has two neighborhood (horizontal and vertical) described
as (x + 1,y), (x — L,y), (x,y + 1) and (z,y — 1), respectively. Besides these, there are other two
diagonal neighborhoods (z—1,y—1), (x—1,y+1), (x+1,y—1) e (x+1,y+1). These neighborhood
are illustrated by the Fig. 2(a) and Fig. 2(b).

(x, y-1) (x-1,y-1) | (X, y-1) | (x+1,y-1)
(x-1,y) | NaN | (x+1,y) (x-1,v) NaN (x+1,y)
(x, y+1) (x-1,y+1) | (X, y+1) | (x+1, y+1)

@) ()

Fig.2. NaN pixels neighborhood.(a) 4-neighborhood (b) 8-neighborhood [11].

2.1.1 Method A.1

In this method, the regions with dense clouds and shadows are reconstructed based on a formu-
lation of a Partial Differential Equation (PDE). These equations contains unknown multivariable
functions and their partial derivatives and are user to formulate problems involving functions of
several variables. PDEs find their generalization in stochastic partial differential equations.

The PDE used in this work is modeled as a heat diffusion, where its approximation is given
by a finite differences. It is applied a two-dimensional Laplacian elliptic equation to the linear
equation system be resolved [27]. According [11], the most simple isotropic derivative operator is
the Laplacian, expressed by the Eq. 2, where the function f(z,y) describes a two-dimensional matrix.

2 2
V2f = or Lo =0. (2)
oxr? = 0y?

To an arbitrary number of undefined pixels n, there are n system equations. The Laplacian
operator is linear to any order derivatives, and in discrete form, the equation, on the x direction, is
defined as

2
oL = ft L)+ S~ 1y) — 2f (), )
and, on the y direction, as
2
%=f(w,y+1)+f(a:,y—1)—2f(a:,y)- (4)

Replacing the Eq. 3 and 4 on the Eq. 2 is obtained the discrete Laplace equation

VQf(x,y):f(:v+1,y)+f(x—l,y)
+f(x7y+1)+f(x,y—1)—4f(90,y)
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Considering that in Eq. 5 the coefficients are representing the pixels in its spatial form, as showed
in Fig. 3, it will be the central pixel redefined by the average of the weights of its neighbors [9].

1
4
1

o|l=0O
o|l=0O

Fig. 3. Coefficients in spatial domain [11].

The linear equations systems are formulated by the undefined pixel neighborhood, according to
the illustrated in Fig. 2(a). The system solution gives the values attributed to the undefined pixel.

This method propagates the smooth information of the edge to the regions identified as containing
shadow or dense cloud. To small regions, this method is more efficient, supposing that the high
frequency elements (typical of the edges) are not totally damaged by the atmospheric noise.

2.1.2 Method A.2

The second method follows the same proceedings of the method A.1, but in this case, the PDE
uses the neighborhood illustrated in Fig. 4.

(x,y-2)
(x-1,y-1) | (x,y-1) | (x+1,y-1)
(x-2y)| (x-1,y) | NaN | (x+1,y) |(x+2y)
(x-1, y+1) | (x, y+1) | (x+1, y+1)
(x,y+2)

Fig. 4. Neighborhood of the undefined pixel (NaN) in method A.2.

According [9], the differential equation model described in this work is more appropriated to a
thin-plate spline model than the heat diffusion model. Spline interpolation technique estimates the
unknown data among known data. Thin-plate spline PDE is a scalar function expressed as a linear
combination of shifted samples of the kernel function added to the polynomial term, and can be
described as

N
f@,y) = a1+ azz +ayy + > wid(|P; — (2,y)]), (6)

i=1
where N is the number of the pixels in an image, @ is called the fundamental solution defined as
a function z(x,y) = —® = —r%log(r) over the (z,y) plan, where r is the Euclidean distance to the
Cartesian origin [7,20]. Given N points with known coordinates P; = (z1,41), Po = (z2,y2), ...,
Py = (xn,yn) of the image it is possible calculate r;; = |P; — P;| between ¢ and j points. The

coefficients a1, a, € a, are coefficients calculated on the basis of homologous points [20].

The thin-plate spline method is based on the fundamental solution of a biharmonic equation ()
that models a metal thin plate over the two-dimensional signal [20]. The mapping of regions to be
restored is driven by energy minimization of curvature of a thin plate of metal, tending to an almost
linear behavior as the neighborhood points become more distant from the undefined [5].

The two-dimensional function f(z,y) is divided into two parts: a sum of functions &(r) of a
lightly flat surface and other part that expressing affine transformation, representing the behavior
of f(z,y) at infinity [2].

33



International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 5, No. 2, June, 2012

To map regions corrupted by clouds is necessary to solve a system of equations formed by the
Equations 7, 8 and 9 restricted to the conditions described in [7,20]:

N

Z w; = 0, (7)
=1

N
i=1

N
> wiyi = 0. (9)
i=1

These conditions ensure that the sum of the weights w; are null, and the multiplication by the
P; coordinates (x,y) also are null [20]. The matrix K of dimension N x N that is a &(r) function
is defined as follows:

Knun = D(re1) 0 ... D(ran) (10)
&(ryn1) P(rye) ... 0
A matrix P of dimension N x 3 is constructed through points coordinates:
1z wn
Pros = 1 11 vy ' (11)
1 zy yn

Based on the K and P matrices, it can compose the matrix called L with dimension (N + 3) x

(N +3):
K |P
Lv4ayx(v4s) = {?—«5} ) (12)
where O is a null matrix 3 x 3.

Combining the N homologous points P| = (2}, 1), Py = (4,95), ..., Py = (2'y, Y ), the matrix
V' of dimension 2 X N can be constructed [20]:

xh ol .. ah
V- = L2 N}. 13
N {yé Yo oo Yh 13)

The matrix Y is obtained by adding three columns to the matrix V with zero values:

Yinyayxz = (V[000)". (14)

Multiplying the inverse of the matrix L with the matrix Y is possible obtain a new matrix
containing the coefficients w, wa, ..., wn, a1, a; and ay, used in the method.

W:Ll_\,i_?’Yg = (w) wa ... WN a1 Ay ay)T. (15)

Each column of the matrix L~'Y provides the coefficients w; to the mapping function in one
component (x and/or y) [20].

Because the model uses the relative distance between the points, some numerical problems can
occur. Points too much distant or too much closer causes rows or column linearly dependents (or
almost that) in a K matrix, consequently, this matrix becomes ill-conditioned and its inverse becomes
unstable [20].
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2.2 Second approach

This method was proposed by [10], and so as in [1], is based on information propagation by
smoothing, from the regions surrounding one where the data needs to be redefined. The specificity
of this approach is related to the use of the Discrete Cosine Transform (DCT) and its inverse to
simplify and solving linear systems, producing an efficient smoothing.

2.2.1 Smoothing by Penalized Least Squares Regression

In statistics and data analysis, smoothing is used to reduce experimental noise or information on
a small scale and keeping the most important marks of a data set. Consider the following model for
the one-dimensional noisy signal y from the Eq. 16.

y=19+e, (16)

where ¢ represents a Gaussian noise with zero mean and unknown variance, and ¢ is the so-called
smoothing, i.e., has continuous derivatives up to some order (usually > 2) throughout the domain.
The smoothing of y depends on the best estimate of ¢ and this operation is usually performed by
parametric or nonparametric regression.

A classic approach to smoothing is the penalized least squares regression. This technique consists
in minimizing a criterion that balances fidelity to the data, measured by the residual sum-of-squares
(RSS) and a penalty term (P), which reflects the robustness of the smoothed data. So, the Eq. 17
should be minimized.

F(g) = RSS+sP(y) = 9 -y | sP(y), (17)

where ||.|| is the Euclidean norm. The parameter s is a positive real scalar that controls the grade of
smoothing, so that, as it increases, the degree of smoothing of ¢ increases too. When the Robustness
penalty is written in terms of the integral square of the p—th derivative of g, the penalized regression
is known as smoothing spline.

Another simple and straightforward approach to express the robustness is by using a second-order
divided difference, which produces an one-dimensional array of data, shown in Eq. 18

P(g) =[l D) |I*, (18)
where D is a three-diagonal square matrix defined by

2 -2 2
—Dii=—+, D= i, 19
hi—1(hi—1 + h;) ' hi—1h; b hi(hi—1 + h;) (19)

for 2 < i < n — 1, where n is the number of elements of § and h; is the step size between gy; and
Yiv1-
Assuming repeated edge elements (yo = y1 € Yn+1 = Yn), it follows that

D;i—1 =

—D11 =Dy

2 = 790 n, = n o= . (20)
h% h2 1

These boundary conditions lead to further numerical simplifications involving evenly spaced data,
as an image.

Now, using Eq. 17 and Eq. 18, the minimization of F(§) results in a linear system expressed in
Eq. 21, which allows the smoothed data determination.

(In +sD"D)j =y, (21)

where I, is the identity matrix n x n and DT represents the transpose of D. Since (I,, +sD? D) is a
penta-diagonal symmetric matrix, the last equation can be solved numerically in a computationally
efficient way.
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2.2.2 Smoothing Equally Spaced Data

The Eq. 21 can be solved using the so-called left division matrix applied to sparse matrices. Solving
this linear system, however, can be time consuming for a large amount of data. This algorithm can
be greatly simplified and accelerated if the data are evenly spaced, a situation that occurs in images,
where pixels are equally spaced.

An efficient algorithm for smoothing uniformly sampled data is described in this section. Assum-
ing now that the data are equally spaced with h; = 1Vi, the divided differences matrix D (Eq. 21)
can be rewritten as a simple difference matrix

-11
1 =21

1 -2 1
1 -1
A self-decomposition of D yields
D=UAU?, (23)
being A the diagonal matrix containing the self-values of D defined by
A =diag(A1, -y An), (24)

where \; = —2 + 2cos((i — 1)7/n). Since U is an unitary matrix, i.e. (U~ = UT e UUT = I,,)
Eq. 21 leads to

§=UI,+ s\ 'UTy =UIrU"y,. (25)

The components of the diagonal matrix I', according to Eq. 24, are given by:

I =[1+s(2—2cos((i —1)7/n))? L. (26)

by

taking I3 ; = 0 if i # j. Note that U and U are actually the type 2 matrices n x n of the DCT and
its inverse, respectively, as observed in [26]. Thus, the output smoothing § can also be expressed as:

j=UI'DCT(y) = IDCT(I'DCT(y)), (27)

where DCT and IDCT refer to the Discrete Cosine Transform and its inverse, respectively.

It is more convenient to use an algorithm based on Eq. 27, instead of Eq. 21, when the data are
equidistant. DCT has a computational complexity of O(nlog(n)), while Eq. 21, which requires a
Cholesky factorization, has computational complexity of O(n?).

As described in [10], the task of smoothing can be performed by an iterative process to ensure
greater convergence of the process, as shown in Eq. 28. Can also be seen that when there are
undefined values in the image, smoothing is also responsible for interpolation of data, functioning
as an inpainting method.

i1 = IDCT(I'DCT (yr)). (28)

Where k is the number of iterations.
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2.2.3 Multidimensional Smoothing

Whereas multidimensional DCT is basically a composition of one-dimensional DCTs along each
dimension, Eq. 28 can be immediately extended to equally spaced data in two (for images), or up
to N dimensions, as shown in [3]. In general terms, to a N-dimensional data, the Eq. 28 becomes

Gkt1 = IDCTN(I'N o DCTN (y.)). (29)

Where o is the Schur product (element-to-element), while, I'™, represents a tensor of rank N defined
by

I =1 = (1Y 4 s A" oA™). (30)

Here, the operator + symbolizes the division element by element, and 1V is a tensor of rank N
composed by 1’s. A is the following tensor of rank N [3]

N

o
/\'ﬁ[,...,sm = Z (—2 + 2 cos 7(% . )ﬂ> ) (31)

j=1 J

where n; denotes the size of A" along the j-th dimension.
2.2.4 Specification of the inpainting technique used

In order to accelerate the convergence, the proposal of [10] starts the process by performing
nearest neighbor interpolation on the image to be restored.

The nearest neighbor interpolation takes a points x to be interpolated and a few other neighbor
points xj, which are a sample portion of an image fj. It is calculated the Euclidean distance among
the value to be estimated and its neighbors, according following equation

di = ||z — |- (32)

The value of x; that produces the lower value of dj has its intensity information attributed to x
point. This measure repeats until to fulfill all undefined pixels [12].

Summarizing, for the inpainting performing in this work, initially is applied the nearest neighbor
interpolation, following is used iteratively the Eq. 29 for two-dimensional data, i.e., N = 2. As
proposed by [10], the smoothing parameter is set at 3, for which we obtain better results.

3 Results and Discussions

The methods evaluation has been done by its application on 9 satellite images from different
sensors, with visible areas damaged with dense clouds and shadows. Following, the methods efficiency
was numerically measured according the Kappa coefficient, which is based on the confusion matrix of
the sample image [13]. To complete the evaluation was computed the Peak Signal-to-Noise (PSNR)
index, which is based on the information similarity between the reference image and the interpolated
image [22, 15].

To produces the reference or ground-truth images, the original damaged images has the atmo-
spheric noises manually removed, simulating an optimal one, allowing the methods evaluation.

Firstly, was compared the A.1 and A.2 method, the both methods that use PDE in their for-
mulations. The Table 1 shows that the A.1 method was superior than A.2 method, according the
adopted criteria. The execution time of the method based in heat diffusion is considerably lower
than thin-plate spline based method. As showed in Fig. 6 to Fig. 5, is evidenced the visual quality
produced by the A.1 method (Fig. 6(c) to Fig. 5(c)) over the A.2 method results. Whilst, the images
produced by the A.2 method presented noisily results, as showed in Fig. 6(b) to Fig. 5(b).
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Table 1. Numerical evaluation considering the PDE-based methods. The PSNR index
is given in dB.

A.1 method A.2 method
Kappa | PSNR | Kappa | PSNR
0.7608 | 24.62 | 0.3917 | 17.29
0.6941 | 25.02 | 0.5805 | 20.27
0.4449 | 21.15 | 0.3493 | 19.09
0.8329 | 30.25 | 0.3873 | 19.52
0.8173 | 28.94 | 0.8105 | 26.38
0.6442 | 25.68 | 0.6603 | 24.546
0.7440 | 28.40 | 0.6901 | 24.870
0.7572 | 22.36 | 0.6854 | 20.40
0.7624 | 28.34 | 0.7183 | 26.39

Image

OO || T | W DN —

Associating numerical and visual factors, the A.2 method shows as an unfeasible algorithm to
atmospheric noise removal, presenting white and black spots, that represents integer values too
much larger or smaller than their neighbors. Concludes that the Laplacian function of the image
intensity becomes too much larger around the noisily pixels, furthermore, the function associated to
the diffusion coefficient is set to decrease quickly to preserves its edges. This effect is clearly noted,
in Fig. 13(b) and in Fig. 5(b), principally.

The function related to the finite differences equation solution has small values around the noisily
pixels, therefore, the spots tends to damage the images, as well observed in [28].

Table 2. Numerical evaluation of the methods PDE-based (A.1) and DCT-based (B5).
The PSNR index is given in dB.

Image

A.1 method B method
Kappa | PSNR | Kappa | PSNR
0.7608 | 24.62 | 0.7566 | 23.67
0.6941 | 25.02 | 0.6935 | 24.98
0.4449 | 21.15 | 0.4435 | 20.95
0.8329 | 30.25 | 0.8232 | 29.41
0.8173 28.94 | 0.8120 | 28.61
0.6442 | 25.68 | 0.6414 | 25.56
0.7440 | 28.40 | 0.7375 | 28.30
0.7572 | 22.36 | 0.7531 | 22.53
0.7624 | 28.34 | 0.7622 28.34

O 00 | O T | W DN —

Finally, comparing the A.1 and B methods, observing the Table 2, both methods have similar
performance. The methods efficiency is also similar in the visual results, as showed in Fig. 6(c) and
Fig. 6(d) to Fig. 5(c) and Fig. 5(d).

As well the other inpainting methods, the approaches studied in this work do not fulfill lager
damaged regions, these reconstructed areas tend to becomes blurred and without texture infor-
mation [16,8]. This fact is explained by the only use of the edge pixels information in diffusion.
Examples are noted in Fig. 13, Fig. 12, Fig. 10 and Fig. 7, which have large areas damaged with
dense clouds, in contrast with the Fig. 6 and 5 that present smaller undefined regions. In this figures
it is possible note that in higher damage areas is generated homogeneous spots without texture
information when large areas are interpolated.

The Fig. 12, Fig. 10 and Fig. 7 suffer from the presence of large amount of dense clouds. However,
the case of the latter is worse, due to the excess of these elements, the resulting image from the

38



International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 5, No. 2, June, 2012

inpainting process becomes almost completely filled with information that is clearly unrealistic. The
Fig. 12, cloud regions to be removed are over rough texture area (urban area), interfering in the
inpainting process.

Fig.5. (a)lmage 1 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

In another case, Fig. 8, Fig. 9 and Fig. 11 show dense clouds surrounded by scattered clouds, which
also complicates the process of inpainting. Since the nearest neighbor, or the pixels surrounding these
dense regions, are used in propagation of the information which produces some homogeneous spots
in place of these areas.

On the other hand, Fig. 6 and Fig. 5 have predominantly small blocks of clouds, which are
redefined in a more efficient way, since they are more suitable for the inpainting operation. According
as illustrated, Fig. 5 contains a dense cloud area surrounded by scattered clouds, suffering the same
problems mentioned, but with regards to the visual results of inpainting, it is the image that the B
method visibly overcomes the A.1 method.

Generalizing, in Figures (b) are noted the result of ill-conditioned regions viewed in black and
white areas, which makes the method unreliable for the restoration of the image, given the instability
that can be generated by the matrix @, which depends of the reference region geometry in relation
to the indefinite point. The discrepancy between the restored image and the image reference to the
quantitative results evaluated by the Kappa coefficient and PSNR index presented low performance
of the A.2 method in compared to the A.1 and B methods.

In the case of Figures (c), there is a spread of smoothness of neighboring pixels to the region of
restoration, which compromises the restoration of areas of high frequency, typically edges. In [29],
for instance, was carried out the combination of heat diffusion with isotropic diffusion to better
control the flow of information.

The results, metric and visual, obtained by A.1 (Figures (c)) are similar to the method B (Figures
(d)). There is a lack of texture on the restored areas, despite the smoothing parameter to be defined
by the multidimensional DCT, which can extract texture features dominant.
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Fig. 6. (a)lmage 2 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

Fig.7. (a)lmage 3 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

40



International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 5, No. 2, June, 2012

Fig. 8. (a)lmage 4 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

Fig. 9. (a)lmage 5 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

41



International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 5, No. 2, June, 2012

(b}

Fig. 10. (a)image 6 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

Fig.11. (a)ilmage 7 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.
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Fig. 12. (a)lmage 8 of the Table 1 (b)Visual aspect produced by A.2 method (c)Visual
aspect produced by A.1 method (d)Visual aspect produced by B method.

4 Conclusion

In this work was evaluated two different inpainting approaches applied in the clouds removal
field. The first approach is based in differential partial equations modeled by heat diffusion and by
thin-plate spline. The second approach uses a multidimensional DCT-based smoothing method.

As showed in Table 1 as well in Table 2, the use of the thin-plate spline model did not achieved
satisfactory results. Moreover, this method presented an unacceptable execution time. The A.1
method, based in heat diffusion, had a similar to the results achieved by the approach based in
nearest neighbor interpolation. The visual aspect of these methods was also similar, where the B
method was slight more efficient than A.1 method, generally.

These methods were applied to other images, that follows the same interpretation. In some
instances, the A.1 method was superior than B method, but in most of the opportunities the B
method presented better results in terms of PSNR and Kappa values, as well as more consistent
visual appearance.
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