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Abstract 

Temperature modulation of metal oxide semiconductor (MOS) gas sensors has been widely 

used due to its higher discriminating power. The temperature modulation alters the kinetics of 

the gas-sensor interaction leading to characteristic response patterns.  However, the 

selection of frequencies and duty cycles is based on trial and error method. In this paper, we 

have introduced a method to systematically determine the optimal set of modulation 

frequencies and duty cycles using system identification theory for sensor modeling. Pulse 

modulation being a popular method of feature extraction of MOS sensors, optimization of 

parameters of pulse modulation becomes very significant. In our work, system identification 

has been applied to select the sensor model that provides the most stable and desired sensor 

response, hence solving problem of choosing the best frequency and duty cycle of the 

temperature modulating signal of the MOS sensor. The estimation of model parameters is 

done using iterative prediction-error minimization (PEM) method.  The best suited transfer 

function was chosen for the MOS gas sensors based on the sensor stability and then the 

sensors were operated at the respective best frequencies and duty cycles. Principal 

Component Analysis (PCA) was used to visualize the different sample gas patterns. Data 

classification was performed using supervised neural network classifiers; namely the Multi-

Layer Perceptron (MLP) network and Radial Basis Function (RBF) network and the 

classification percentage before and after optimization were compared henceforth. 
 

Keywords: Temperature Modulation, System Identification, Principal Component Analysis, 

Artificial Neural Network (ANN) 
 

1. Introduction 

Metal oxide semiconductor (MOS) based gas sensors have been widely used in gas 

detection. Their advantages include low cost and high sensitivity along with 

disadvantages such as lack of stability and selectivity. Although MOS sensors show 

such advantages, they exhibit a series of unpleasant characteristics such as cross-

sensitivity, drift, ageing, poisoning etc. They are poorly selective and are prone to 

response drift. In practical applications, various methods are usually used to overcome 

such drawbacks, for example, using chromatographic columns to separate components, 

by operating at different temperatures [1]-[4], by choosing  different  burning- in 

procedures,  dopants,  surface chemical modification [5]-[7] etc. Among the different 

approaches envisaged to overcome these drawbacks, modulating the temperature of gas 

sensors have been remarkably successful in many applications [8]-[11]. 
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2. Temperature Modulation and System Identification in Gas Sensors 
 

2.1. Temperature Modulation 

One of the most established ways of improving the selectivity of MOS sensors is by 

periodically varying the sensors’ operating temperature. Researchers have reported on the 

advantage of temperature modulation on a ceramic metal oxide sensor at two different 

temperatures to detect the presence of carbon mono-oxide [12]-[14]. Work has been carried 

on the temperature modulation using square wave to quantify hydrogen sulphide [15, 16]. To 

discriminate between different gases, modulating patterns such as sawtooth, triangular and 

square were also applied to the sensors [17]. The sinusoidal variation in the temperature also 

enhanced the classification of different gases. A number of works on the cyclic variations of 

the sensor heater voltage have been reported by many authors [8] and [18]. The response of 

the gas sensors to modulating temperature primarily depends on the analytical model which is 

based on the physical and chemical properties of the sensor material. By choosing the best 

function and the best frequency to achieve a stable dynamics that follow the concentration of 

the analyte will be an important optimization strategy of the gas sensor.  

The frequency of modulation is selected on trial and error method in many of the works 

based on temperature modulation. One of the successful methods of selecting optimized 

frequency was based on system identification through multilevel pseudorandom sequences 

[19] and pseudorandom binary sequences [20]. Since pulse modulation is a popular method of 

feature extraction of MOS sensors, optimization of parameters of pulse modulation will be a 

remarkable strategy in this area. To overcome the problem of choosing the best frequency of 

the temperature modulating signal of the MOS sensor, system identification has been applied 

to select the sensor model that provides the most stable and desired sensor response. We have 

chosen a set of optimized frequencies for the first time in MOS sensors using system 

identification theory for sensor modeling. 
 

2.2. System Identification in MOS Sensors 

System identification deals with building of mathematical models of dynamical systems 

based on the observed data from the system. To build mathematical models of dynamical 

systems from measured data, system  identification techniques has been employed which 

includes the optimal design of experiments for efficiently generating informative data for 

fitting such models. This data-driven approach helps to observe the gas sensor as a dynamic 

system and employ suitable methods so that its behavior at different conditions can be 

modeled. We can interpret from the physical phenomenon of the sensor that the MOS sensor 

models rely on the mechanism of adsorption of gas molecules by the sensor film, at an 

elevated temperature and then the change in the electrical conductance of the sensor material. 

The above stages, though looks distinct, physically it is difficult to distinctly segregate the 

whole model into such distinct stages. 

The work focuses on the optimized temperature modulation based on the system 

identification technique. The best suited transfer function was chosen for the MOS gas 

sensors based on the sensor stability and then the sensors were operated at the respective best 

frequencies and duty cycles, the classification of various gases were performed using the 

Artificial Neural Network (ANN). 
 

3. State-Space Models 

The system identification technique helps in model analysis and transformation, such as 

reducing model order and converting between discrete-time and continuous-time 
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representations and also simulation or prediction of future output using the model. In our 

study the estimated model is a Linear Time Invariant (LTI) model in which the following 

model conversions are implemented: 

i. Continuous time. 

ii. Discrete time  

iii. State-space 

iv. Transfer function 

v. Zero-pole gain 

The estimation of model parameters is done using iterative prediction-error minimization 

(PEM) method. This method is the basic estimation procedure that supports both time domain 

and frequency domain signals. If the data is continuous time (frequency-domain) data, a 

corresponding continuous time state-space model is estimated.  

In a continuous linear time invariant (LTI) system, the state-space model representation is:  

( ) ( ) ( )x t Ax t Bu t             (1) 

( ) ( ) ( )y t Cx t Du t                                                                                                       (2) 

where the vectors x(t), y(t) and u(t) are state vector, output vector and  input vector 

respectively. The matrices A, B, C and D are state matrix, input matrix, output matrix and 

feedforward matrix respectively of proper dimensions. Since the system identification has 

been performed from the discrete data of input-output, the discrete state space model is more 

relevant than continuous time model. The discrete state-space model is given by: 

( ) ( ) ( )x KT T Ax KT Bu KT            (3) 

( ) ( ) ( )Y KT Cx KT Du KT            (4) 

where K is the sampling instant and T is the sampling interval. The LTI system can be 

represented in continuous time transfer function as- 

( ) ( )y t Hu t             (5) 

where the transfer function H in Laplace domain can be represented using state-matrices as- 

1ˆ ( ) ( )H s C sI A B D             (6) 

and it can be reduced to a form, 
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Further the z-transform of the LTI model can be represented as- 
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The dynamic measurement, when the sensor temperature is modulated, the complicated 

response transients are considered to be related to different reaction kinetics of the gas 

molecules. At low temperatures mainly surface reactions occur while at high temperatures 

bulk reactions between point defects in the semiconductor lattice and gaseous oxygen 

molecules occur. In both cases, the adsorption at active sites occurs first followed by some 

catalytic reactions. The oxygen adsorbates are partly consumed by oxidation of target gases 

on the semiconductor surface during the static measurement. The amount of chemisorbed 

oxygen decreases and hence the conductance increases. Therefore the resistance change of 

MOS sensors shows that the concentration of chemisorbed oxygen changes at the grain 

boundary. In the adsorption process the conductance increases with decrease in the 

concentration of chemisorbed oxygen.  

The frequency and duty cycle of the pulse temperature signal significantly influences the 

dynamics of the sensor. This is because, the time for the reaction kinetics should match to the 

time for the sensor heating process. In this work the sensor model equations has been derived 

for the pulse frequencies of 10mHz, 40mHz, 80mHz and 120mHz and duty cycles of 50% 

and 75% i.e. eight different sensor models for each of the sensors have been identified. The 

stability of the models has been verified by calculating the overshoot percentage and from the 

pole-zero plots. This analysis gives an interesting result that the sensor models can be chosen 

with the best dynamic performance based on stability analysis and accordingly the 

corresponding best frequency and duty cycle has been determined. We are able to derive the 

various transfer functions under stable and unstable modes by PEM technique in MATLAB. 
 

4. Sensor Data Classification 

In many works [21]-[23], the authors described techniques for extracting and using the 

steady-state, the slope as well as the transient response information from the sensor’s 

response. The classification of gas species has been carried out based on the features that 

depend on the reaction time and recovery time [24, 25].  

The classification involves the following steps namely: feature extraction and pre-

processing of the sensor response, principal component analysis (PCA) and then classification 

using ANN. The traditional method for feature extraction is Principal Component Analysis 

(PCA).  This was done to reduce the dimensionality of the measurement space, and to extract 

relevant information for ‘pattern recognition’. Moreover, optimum feature extraction helps in 

removing a major portion of redundant data, which may be perceived as noise in the signal. 

The resulting low-dimensional feature vector was then used for the classification of the data. 

PCA is used for data visualization. It is useful for visualizing any patterns existing in the 

response of a multisensory array data. 

 Pattern recognition techniques based on artificial neural networks (ANN) approaches were 

very widely used for gas sensors [26]. Two different NN structures namely MLP and RBF 

were adopted for this stage of data classification. The MLP learns by supervision, during the 

training phase it is presented with training vectors together with the associated targets 

corresponding to the specific tea aromas. It learns from the input data by adjusting the 

weights in the network using its specific learning algorithm; many different training 

algorithms exist that can be applied to the MLP. The purpose of this algorithm is to minimise 

the difference between the generated network output and the desired output; termed the error. 

The RBF network has been shown to be an efficient approach for interpolating scattered data 

and has been applied in various fields. It has a similar architecture to the MLP, exhibiting 

fully inter-connected layers. The MLP learns by supervision and the purpose of this algorithm 

is to minimise the difference between the generated network output and the desired output; 
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termed the error. The RBF network has been shown to be an efficient approach for 

interpolating scattered data and has been applied in various fields [27]. 

 The work focuses on the achieving of better classification percentage of the sample gases 

with the optimized temperature modulation. The time constant of the sensor response has also 

been used as a feature of ANN classifier in [28]. In this work also the classification has been 

performed by using time constant of response curve of the dynamic classification.  
 

5. Experiment 

Two MOS gas sensors (TGS-2611 and TGS-842 of Figaro, Japan) was conducted for 

different pulse modulating temperature in the presence of input odor. Figure 1 shows the 

experimental set-up. The heater voltage modulation patterns (frequency and duty cycle) of the 

sensors were controlled by a PC through a Data Acquisition card (PCI6024E, National 

Instruments) and LabVIEW. Analog output of the card was applied to the gate of a MOSFET 

which supplies the modulating voltage to the sensors. Therefore, the heater voltage +VH 

accordingly followed the pulse signal to excite the sensor. The sensor output was interfaced to 

the PC through the DAQ card. The sample gas and the clean air flow were directed into the 

sensor head block by two diaphragm pumps through teflon pipes. The pumps were controlled 

by the PC through a driver circuit consisting of relays and transistor switches. The sequence 

of ‘purging’ and ‘refreshing’ with proper time duration was controlled through the DAQ card 

by the PC using LabVIEW programming. The sensors were kept inside a chamber away from 

interfering gas so that the baseline is established with clean air. Before each run of data 

acquisition, the baseline was verified and when found deviated, it was corrected by applying 

clean air. It was found in each run of experiment that on application of clean air the sensor 

baseline settles to a fixed level ensuring absence of any interfering gas. 

 

 

Figure 1. The Photograph of the Sensor Set-up 
 

The experiment was conducted on the MOS sensors (TGS-2611 and TGS-842) with the 

application of ten different gas samples namely acetone, acetonitrile, chloroform, ethanol, 

ethyl acetate, isopropylalcohol, kerosene, methanol, n-hexane and petroleumether. During the 

application of gas, 100 complete pulse cycles were completed for each sample gas. At first, 
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the sensor temperature was pulsed at a frequency of 10mHz and duty cycle of 50% to 

generate the sensor responses in the presence of the gas.  This frequency was selected based 

in a trial and error procedure. The sensor signals were acquired at a sampling frequency of 1 

kHz. The time constants were determined for each cycle and these time responses were used 

as the sample vectors for the gas classification. The sensor temperature was then pulsed at the 

selected frequency and duty cycle determined from system identification and the 

classification of gas was performed. 

 

6. Results and Discussions 

The input signal is the square pulse and the output is the sensor response as shown in Fig. 2 

for sensor TGS-822. The input-output signal data obtained from the sensor response are then 

quantified by the system identification process. The model is estimated by the system 

identification technique and the stable transfer function is determined based on the best fit, 

pole zero plot and the overshoot percentage. Applying the respective best frequencies and 

duty cycles to the sensors the classification of different samples were done and the 

classification percentage before and after the optimal frequency modulation was found. 
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Figure 2. The Input-output Response of the Sensor TGS-842 
 

The system identification is employed to determine the transfer function from the input 

pulse voltage. To ensure, how accurate the estimated transfer function is, a comparison is 

made between the simulated and the measured sensor output response. The model is selected 

for the smallest difference in between the actual response and the simulated response. This 

approach is termed as prediction error method. Figure 3 shows the comparison between the 

simulated and the measured results of the MOS sensors. The system identification gives us 

a transfer function of the sensor model in z-domain with a higher order approximation, 

however the model can be reduced to a lower order approximation say to order 2 or 1. 

Based on the best fit, the pole-zero plot and the overshoot percentage, the best transfer 

function is selected. Figure 4 shows the pole-zero diagrams of the transfer function and 

Fig.5 with zoomed visualization. As can be seen all the poles lie strictly inside the unit 

circle. The distance of the poles from the unit circle is calculated from the  transfer 
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function and is tabulated in Table 1. Another criterion for choosing the stable transfer 

function is the overshoot percentage calculated from the step response of the sensors as 

shown in Figure 6.  

 

 
Figure 3. Sensor Responses Measured and Simulated for (a) TGS-2611 at 

40mHz and 75% Duty Cycle and  (b) TGS-842 at 120mHz and 75% Duty Cycle 

                                

 

Figure 4. Pole-zero Plot of Transfer Function of Sensor (a) TGS-2611 in z-
Domain 40mHz and 75% Duty Cycle and (b) TGS-842 in z-domain at 

120mHz and 75% Duty Cycle 
 

As shown in the table, the optimal frequency and duty cycle obtained for the sensors 

were 40mHz and 75% duty cycle and 120mHz and 75% duty cycle respectively. The 

data obtained from the sensors for the 10 sample gases before optimization were 

analyzed by Principal Component Analysis (PCA) and Artificial Neural Network 

(ANN) using MATLAB. The results of the PCA before the optimization of modulation 

are shown in Figure 7. 
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Table 1. Transfer Function Model Parameters of Three Sensors for 
Different Frequencies and Duty Cycles (The stable model parameters are 

shown in bold) 

 

 

 

 

Figure 5. Zoomed part of the pole-zero plot of transfer function of sensor 
(a) TGS-2611 in z-domain at 40mHz and 75% duty cycle and (b) TGS-842 in 

z-domain at 120mHz and 75% duty cycle 
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Figure 6. Step response of sensor (a) TGS-822 at 40mHz and 75% duty 
cycle and (b) TGS-822 at 40mHz and 75% duty cycle 

 

The classification of data was performed using neural networks. MLP and RBF were 

used for the classification purpose. It was observed that training with MLP resulted in 

74.6% classification accuracy whereas the RBF was able to classify the test sample with 

87% accuracy. The system identification determined the most stable transfer function 

based on the best fit, the overshoot percentage and the pole-zero plot of the transfer 

function. Hence, by applying the three sensors at the respective best frequencies and 

duty cycle, the data was acquired for the 10 sample gases and the classification was 

done using ANN. The results of the PCA after the optimization of modulation are 

shown in Fig. 8. It was observed that training with MLP resulted in 86.7% classification 

accuracy whereas the RBF was able to classify the test sample with 93.4% accuracy. 

Table 2. shows the comparison of the classification percentage before and after the 

optimal modulation frequency determination. 

 

 
Figure 7(a). PCA before the optimization of modulation frequencies and (b) 

PCA after the optimization of modulation frequencies 
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Table 2. Comparison of the Classification Percentage 

 
 

7. Conclusions 

Recent studies showed that selectivity could be enhanced by modulating the sensors’ 

operating temperature. However, the selection of the frequencies used to modulate the 

sensors’ temperature for a given gas-analysis application remained a non-systematic process 

based on the trial and error procedure. 

In this paper, we have introduced a method to systematically determine the optimal set of 

modulation frequencies to solve a given gas-analysis application. The method is applied to 

MOS based gas sensors and the transfer function based on the best fit, pole-zero plot and the 

overshoot percentage was determined. The frequencies and duty cycles at which the transfer 

function was most stable for TGS-2611 and TGS-842 was determined as 40mHz and 75% 

and 120mHz and 75% respectively. These optimal set of modulation frequencies and duty 

cycles were then used for the gas-analysis. It is seen that the system identification technique 

could effectively find the modulation frequencies to obtain good results in the identification 

of the gases studied. The optimization ensured the classification of the gases upto 93.7%. 
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