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Abstract 

This paper presents a novel algorithm of speech enhancement using data adaptive soft-

thresolding technique. The noisy speech signal is decomposed into a finite set of band limited 

signals called intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). 

Each IMF is divided into fixed length subframes. On the basis of noise contamination, the 

subframes are classified into two groups – noise dominant and speech dominant. Only the 

noise dominant subframes are thresholded for noise suppression. A data adaptive threshold 

function is computed for individual IMF on the basis of its variance. We propose a function 

for optimum adaptation factor for adaptive thresholding which was previously prepared by 

the least squares method using the estimated input signal to noise ratio (SNR) and calculated 

adaptation factor to obtain maximum output SNR. Moreover, good efficiency of the algorithm 

is achieved by an appropriate subframe processing. After noise suppression, all the IMFs 

(including the residue) are summed up to reconstruct the enhanced speech signal. The 

experimental results illustrate that the proposed algorithm show a noticeable efficiency 

compared to the recently developed speech denoising methods. 
 

Keywords: Adaptive thresolding, adaptation factor, empirical mode decomposition, 

speech enhancement 
 

1. Introduction 

The background noise degrades the quality and intelligibility of the speech signals 

resulting in a severe drop in performance of speech related applications. There are 

different types of noise signals which affect the quality of the original speech. It may be 

a wide-band noise in the form of a white or colored noise, a periodic signal such as in 

hum noise, room reverberations etc. It is also possible that the speech signal may be 

simultaneously attacked by more than one noise source. The most common type of 

noise in time series analysis and signal processing is the white noise. Although this 

work is mainly concerned with white noise, the pink and the high frequency channel 

noise are also used in order to illustrate the performance of the proposed algorithm. 

Many of the existing speech enhancement algorithms suffer from the residual noise 

problem which is often referred to as the musical noise [1]-[5]. In a single channel 

speech enhancement method, the residual noise is a usual issue. The reported 

algorithms are mainly concerned with minimizing such effects. Fourier Transform (FT) 

and Wavelet Transform (WT) are dominating methods widely used in speech processing 

algorithms. However, both suffer to analyze non-stationary signals like speech. The FT 

is a powerful tool for stationary signals. Whereas, wavelet is relat ively more suitable 

for non-stationary signal analysis; however, it depends on the basis wavelet. Therefore, 

a tool for analyzing non-stationary signal is highly desirable [6, 7]. 
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In spectral domain, it is easier to remove the noise components from a frequency band 

where only noise is present. But in a frequency band where both speech and noise 

components are present, in such a case; it is difficult remove to the noise without 

degrading the speech signal. So the algorithm on noise suppression implemented in  time 

domain is more appropriate for speech enhancement. Moreover, Thresholding is a 

widely used method in signal denoising [8]-[11]. The idea of thresholding is to 

determine an effective threshold value and to apply different subtraction on the basis of 

that threshold in the segmented regions. Hard thresholding sets any coefficient less than 

or equal to the threshold value to zero. The soft thresholding takes the risk of degrading 

the quality of the speech signal in order to remove the noise components [8 , 9]. One of 

the major drawbacks of these kinds of processes is the degradation of the speech signal, 

especially with the signals of high signal-to-noise ratios (SNR). In order to minimize 

the degradation of the original speech components, a modified soft-thresholding 

strategy is proposed by Salahuddin in [8]. It is a powerful technique for removing noise 

components from the noisy signal while paying attention on the original speech. A 

speech enhancement method in discrete cosine transform (DCT) domain using  hard and 

soft thresholding criteria is proposed by Hasan [9]. The author estimates the high 

frequency region of the DCT coefficients to obtain the critical threshold parameter. The 

results show that the method is more effective for a wide range of SNRs. But the 

unpleasant musical noise is introduced in most of the existing soft -thresholding 

algorithms which hampers the performance of speech enhancement.  

In this paper, an adaptive thresholding algorithm is introduced on the basis of empirical 

mode decomposition (EMD) which is developed by Huang [12] to analyze non-linear and 

non-stationary signals. The EMD represents any signal into a finite set of AM-FM basis 

functions called intrinsic mode functions (IMFs). In our previous study, Hamid [6, 13] 

proposed speech enhancement algorithm with estimating the degree of noise (DON) related to 

the input SNR. Its main drawback is that DON is estimated on the basis of pitch period over 

the voiced frame only and the enhanced speech degraded in high SNRs. In this research, we 

estimate input SNR as well as DON by estimating SNRs of clean and noisy speech (both 

voiced and unvoiced) signals. The observed speech variance is calculated in subframe basis 

and sorted in ascending order, and then the noise variance is considered from the beginning 

parts of the sorted array. Moreover, it is found that each IMF has different noise and speech 

energy and hence the variances of speech and noise are changed for various IMFs. Then the 

proposed subframes in each IMF are classified either as noise dominant or speech dominant 

on the basis of noise contamination which also minimizes the misclassification problem of 

frames. Therefore, an adaptive threshold function is estimated for the individual IMF and 

only noise dominant subframes are thresholded to obtain higher degree of speech 

enhancement. It is experimentally observed that the better speech enhancement is achieved 

for an optimum adaptation factor. For that we derive a function which was previously 

prepared, using the least squares method, from the estimated input SNRs and values of 

adaptation factor to obtain maximum output SNRs, is used to compute the adaptive threshold 

[10]. The derived optimum value of adaptation factor improves the performance of proposed 

EMD-ADT method. The speech enhancement performances are illustrated using the proposed 

adaptive thresholding approach and other recent algorithms. 
 

2. Adaptive Thresholding with EMD  

Empirical mode decomposition (EMD) is a fully data-driven method decomposing any 

signal into sub-bands in time domain. Its basis functions named IMFs are estimated via 

an iterative procedure called sifting without any predefined basis in contrast to Fourier 
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and wavelet transform. The principle of this basis construction is based on the physical 

time scales that characterize the oscillations of the phenomena. These IMFs basically are 

acting like a filtering process from higher frequencies to lower frequencies but with self-

adaptive time varying filters. They are of the same length as the original signal and 

preserve the frequency variations with time. Each IMF must satisfy two properties: (i) the 

number of extrema and the number of zero crossings are either equal or differ by one; (ii) 

the mean value of the envelope defined by the local maxima and the envelope defined by 

the local minima is zero. After completing EMD, any signal x(t) can be represented as: 

 
B

b Bb ttctx )()()(  , a decomposition of the data into B-empirical modes (IMFs) are 

achieved, where cb(t) is the bth IMF and B(t) is the final residue. 

The completeness of EMD implies that the original signal can be reconstructed 

without any loss of data by simply adding up the IMFs up to the residue. Thus, the 

IMFs can be viewed as linear components of the original or source signal.  The IMFs of 

a speech signal is shown in Figure 1. 

 

 

Figure 1. The IMFs of the Speech Signal obtained by EMD 

 

2.1. Denoising by Soft-thresholding  

Soft-thresholding strategy proposed by Salahuddin in [8] is a powerful technique of 

speech enhancement for a wide range of input SNRs. It thresholded only the noise-

dominant frames and kept remain the same in case of the signal-dominant frames. The 

misclassification of frames is a major drawback that causes musical noise [7]. All the 

frames are processed with a unique noise variance estimated globally from the input 

speech. Many noise-dominant frames can be identified as signal-dominant due to the 

fluctuations in the noise variance of the frames when noise energy distribution is not 

uniform over the speech. This method is mainly appropriate for white noise which has a 

flat spectrum but not applicable to the color or real world noise with fluctuating spectra. 

As a result of misclassification of frames, the remaining noise components from both the 

noise and signal-dominant frames will generate the musical noise. 
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The drawbacks of traditional soft-thresholding algorithms are significantly reduced by 

the proposed EMD based adaptive thresholding technique. The frame classification 

criteria described in [8] is modified here. The soft thresholding is applied on each IMF. It 

is known that the thresholding function is dependent on the signal (speech) and noise 

variances of each IMF. The signal and noise variances are computed for individual IMF. 

Then soft thresholding technique is applied on each subframe of each IMF on the basis of 

computed variances. The threshold function is computed for individual IMF and hence 

such thresholding technique is termed as adaptive thresholding. We calculate the noise 

variance of speech from its silent part of the observed speech signals. For that, each IMFs 

is divided into frames of duration of 20 ms. The global noise variance 2

,in  is calculated 

from the silent part of the ith IMF. In order to remove noise from the ith IMF, each frame 

is further subdivided into subframes of duration of 4ms. Then the subframes are 

classified as either a speech dominant or a noise dominant based on the noise variance
2

,in [10]. The proposed adaptive thresholding technique provides an effective boundary 

for the subframe classification. The soft thresholding is carried out on each subframe of 

each IMF adaptively. After properly suppression of noise using soft-thresholding, all the 

IMFs are summed up to get the enhanced speech signal. 

 

2.2. Subframe Classification 

The classification of the subframes plays an important role in the adaptive thresholding 

algorithm. The performance of this algorithm depends on the correct classification of the 

subframes. It makes the algorithm to be applicable for a wide range of SNRs. Due to the 

decomposition of noisy speech, the variance of the frames as well as subframes of each 

IMF will be more fluctuating than that of the noisy speech frames. Therefore, the 

separate noise variance of each IMF is effective for better denoising. It is required to 

define a sufficiently higher boundary value for the subframe classification to guarantee 

that all the noisy subframes are thresholded. A novel boundary relies on the idea that a 

subframe can be defined as a noise-dominant, if the noise power is higher than the power 

of the observed signal within that subframe. The boundary is set to the case where the 

noise and speech variances are equal. Hence, generally for any frame, we can write 
22

ns
          

           (1) 

 nsCovns ,2222  
          (2) 

where, 
2

s  and 
2

n  denote to the speech and noise variance of a frame. Since, speech and 

noise are independent, the covariance between the two will be zero and thus we have, 
222

ns  
.          (3) 

To properly classify the subframes as speech dominant and noise dominant, the 

threshold point is selected at which the speech and noise variances are equal. Then the 

signal variance (at threshold point) can be written as: 
22 2 n 

           (4) 

Therefore, in case of equal noise and speech power and with the assumption of 

independency, the variance of a frame is equal to twice the noise variance of that frame. 

The classification condition of rth subframe of ith IMF defined as: 
2

,

)( 2 in

r

i  
.               (5) 
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The average power of subframe, r of ith IMF is calculated as: 





Q

q

r

iq

r

i Y
Q 1

2
)(

,

)( 1


                      (6) 

where, Q is the sample length of the subframe (here Q=64 for 16kHz sampling 

frequency), 
)(

,

r

iqY
 denotes the samples of rth subframe of the ith IMF,  and 

2

,in   denotes the 

globally estimated noise variance of that IMF. Then the proposed classification condition 

for rth subframe )()( ts r

i  of ith IMF is expressed as: 




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       (7) 

where 
)()(

)( ts r

si  and 
)()(

)( ts r

ni  are the classified speech and noise dominant subframes, 

respectively. The speech dominant subframes are not thresholded. We express the 

adaptive thresholding for rth subframe of ith IMF as: 





 


otherwise

ifY
Y

r

iq

in

r

i

r

iqr

iq
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where, )}]|(|,0)[max{( )(

,

)(

,

)(

, i

r

iq

r

iq

r

iq jYYsign   , )(

,
ˆ r

iqY    and )(

,

r

iqY  denote the thresholded 

sample and  qth coefficient of rth subframe of ith IMF and the multiplication (ji) is the 

adaptive threshold function while j being the sorted index-number of || )(

,

r

iqY . The 

threshold factor i is varied adaptively for individual IMF according to its variance. An 

estimated value of i can be obtained as:  





Q

q

in

i

q
Q 1

2

,

1


          (9) 

where, 2

,in is the noise variance of the ith IMF and  is the adaptation factor defined as: 

n

n




 

          (10) 

where 
2

n  is the globally estimated average noise power and 
2

n  is the average noise 

power added to a frame. 

The Equation (10) is used to calculate the value of λ. In the experiment we use 5 

different speech signals (from TIMIT database) of 10dB SNR degraded by white noise 

which is shown in Figure 2. It can be observed from Figure 2 that the value of λ varies 

in between 0.35 to 0.8 for all speech signals. Therefore, the value of λ is selected in this 

range experimentally and discussed later in detail 
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Figure 2. The Estimated Value of λ in Noise Dominant Subframes 

 

2.3. Variance Estimation of IMFs 

The variance of each IMF plays a vital role in the performance of the proposed EMD 

domain adaptive thresholding algorithm. In order to estimate the variance, the IMFs are 

divided into frames of each of 20 ms duration and the variance of each frame is stored in a 

variance array. The variance array is sorted in ascending order [7]. Since the silent parts will 

mostly have the lowest variance, the noise variance of the IMFs is selected from the 

beginning part of the sorted variance array. Figure 3 illustrates the variance of the frames for 

the first 8 IMFs of a noisy speech signal (10dB SNR). The differences in between the noise 

variance and the length of the silent parts of the IMFs are observed. It is clear that the noise 

signals are concentrated in the first 3 IMFs. The later IMFs contain mainly the speech signals, 

but also have significant amount of noise. An effective estimation of the noise variance of 

each IMF is obtained using this method. The noise components of all the IMFs are effectively 

removed using the proposed algorithm with the estimated variance of individual IMF. 

 

 
Figure 3.  Sorted variance of 20 ms frames for the first 8 IMFs out of 14 (from 
left to right) of a noisy speech signal degraded by white noise at 10dB SNR. 
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2.4. Estimation of Optimum Adaptation Factor 

 The results of average output SNR using EMD based thresholding algorithm is used to 

estimate the optimum adaptation factor. In this experiment, the speech signals of English 

sentences uttered by 7 male and 7 female are randomly selected from TIMIT database. The 

output SNRs (corresponding to different input SNRs) for two different values of the 

adaptation factor λ are given in Table 1. It is observed that the higher value of λ is more 

effective at low input SNR and lower value for high input SNR. For this reason, we introduce 

an expression for the optimum value λopt of adaptation factor based on the input SNR of the 

given noisy speech.  The derived optimum value of λ improves the performance of proposed 

EMD based method. 

 

Table 1. Comparison of the overall output SNR of EMD based adaptive 
thresholding method for different values of adaptation factor.  

The speech is corrupted by white noise. 

Input 

SNR (dB) 

Output SNR in (dB) 

 λ=0.5 λ=0.8 

0 5.98 7.51 

5 10.58 11.05 

10 14.56 14.46 

15 18.46 18.15 

20 22.51 22.14 

25 26.79 26.47 

30 31.29 30.97 

 

Figure 4 illustrates the effect of λ on the output SNR corresponding to different input 

SNRs. Hence, optimum adaptation factor λopt is related to the estimated value of the input 

SNR. The estimation of input SNR of the noisy speech signal is explained below. It is 

observed from Fig. 4 that the maximum output SNR is achieved with a specific value of λ at 

different input SNRs and the results are listed in Table 2. In the experiment we have used 

male and female speech sentences degraded by while noise at different SNRs. 

The SNR of noisy speech signal is calculated in the similar way of estimating the noise 

variance of the IMFs.  The observed speech signal is segmented into frames of length 

20ms and the variance of each frame is stored in a variance array in ascending order. The 

noise variance of the noisy speech is estimated from lower (silent) parts of the array. The 

input SNR can be estimated as:  






















 
 

2

2

102

22

10 log10log10
n

s

n

nns
inputSNR








     (11) 

where 2

ns , 2

s and 
2

n are represent the observed, clean and noise variance, respectively. 

It is found that a specific value of adaptation factor corresponding to an input SNR 

produces the maximum output SNR. We introduce a formulation to compute the optimum 

value of λ for any given input SNR to achieve maximum speech enhancement as 

indicated in Fig. 4. The expression to calculate the optimum adaptation factor (λopt) is 

defined as 
3

3
2

210)( xaxaxaaxfopt 
            (12) 

to be fitted to the data points (xi, yi), i=1, 2, ….., d; where xi and yi are the input SNR and 

optimum value of λ (to obtain the maximum output SNR) respectively for the training 
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speech data and d (=9) represent the index of different SNRs as listed in Table 2. We 

experimentally found that there is a non-linear relation between the input SNR and 

adaptation factor, for that we choose a third degree polynomial to fit the non-linear data 

points with minimum stable coefficients. To obtain the coefficients, Eq. (12) can written 

as Y=XA where Y=[y1, y2, …, yd]
T, A=[a0, a1, a2, a3]

T and X is a matrix with d rows. The ith 

row of X can be defined as 
]1[ 32

iiii xxxX 
. The matrix representation Y=XA can 

also be written as XTY=XTXA and hence the final expression to find the coefficient vector 

A is defined as: 

YXXXA TT 1)( 
                             (13) 

The Equation (13) is solved by using least square method to obtain the values of the 

coefficients A=[a0, a1, a2, a3]
T . Then the value of optimum adaptation factor opt can easily be 

calculated using Equation (11). It is not necessary to use the only input SNRs listed in Table 2. 

The opt can be computed for any given input SNR satisfying the least square fit method.  

 

 
Figure 4. The Graphical Representation of Output SNR for Various Values 

of λ at input SNRs from –10dB to 15dB of step 5. 
 

Table 2. The values of λ to obtain maximum output SNR for different input SNRs 
 

Input 

SNR in 

(dB) 

 

-10 

 

-5 

 

0 

 

5 

 

10 

 

15 

 

20 

 

25 

 

30 

 

λ 

 

0.80 

 

0.73 

 

0.71 

 

0.7 

 

0.62 

 

0.60 

 

0.54 

 

0.51 

 

0.5 

 

 

3. Experimental Results and Discussions  

The effectiveness of the proposed algorithm is tested using computer simulation with 

different 7 male and 7 female utterances (of English sentences) randomly selected from 

TIMIT database. The sampling frequency of all the speech signals is set to 16kHz. The white 
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noise is added to the clean speech to obtain the noisy speech signals at different noise levels. 

The simulation is performed over those noisy speech signals. The performance of the 

proposed method is presented in Figure 5. The spectrograms as well as the waveforms of the 

clean and noisy of 10 dB SNR are shown in Figure 5(a) and 5(b). The outputs of the proposed 

algorithm are illustrated in Figure 5(c) and 5(d) for λ=0.5 and λ=0.8 respectively. 

 

 
Figure 5(a). Spectrogram and Waveform of Clean Speech 

 

 
Figure 5(b). Spectrogram and Waveform of Noisy Speech (White at 10dB) 

 

 
Figure 5(c). Spectrogram and Waveform of Enhanced Speech are obtained 

by EMD based Adaptive Thresholding with λ=0.5 
 

It is observed in Figure 5(c) that a significant amount of noise is still remaining in the 

enhanced speech (with λ=0.5); whereas, some low energy speech components are 

degraded with λ=0.8 as shown in Figure 5(d). It is obvious that the choice of λ should be 

somewhere between 0.5 and 0.8 in order to have better performance. Hence we propose 

the optimum value of λ i.e. λopt and its result is illustrated in Figure 5(e). The Figure 5(f) 

shows the spectrogram and waveform of the enhanced speech by using DCT based soft 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 2, June, 2012 

 

 

10 

 

thresholding (SDCT) [11]. 

 

 
Figure 5(d). Spectrogram and Waveform of Enhanced Speech are 

obtained by EMD based Adaptive Thresholding with λ=0.8 
 
 

 
Figure 5(e). Spectrogram and Waveform of Enhanced Speech are 

obtained by the Proposed EMD-ADT Methods with λopt 
 

 
Figure 5(f). Spectrogram and Waveform of Enhanced Speech are 

obtained by SDCT [11] Method 
 

The performance of the proposed EMD based adaptive thresholding technique is 

studied here with the optimal value of λ i.e. λopt. To prove the robustness of the proposed 

algorithm, pink and HF channel color noises collected from NOISEX database are also 

added to the clean speech to generate noisy speech signals of different SNRs. Then the 

experiment is carried out with these noisy signals to observe the efficiency of the 

algorithm in terms of overall output SNR, segmental SNR and the perceptual evaluation 

of speech quality (PESQ) [14]. The overall output SNR (for white noise) of the proposed 
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method is compared with the recently developed algorithms – two-stage speech 

enhancement (TSSE) method [6], hard and soft thresholding (HST) technique [9], DCT 

based soft thresholding (SDCT) [11] and combination of weighted noise subtraction and 

blind source separation (WNS+BSS) indicated as BSS [13] as illustrated in Table 3. In 

the case of HF channel and pink noise, the performance (in term of output SNR) is 

compared with WNS+BSS [13] and SDCT [11] methods as shown in Table 4. It is 

observed that for all types of noise, at higher SNRs (above 20dB), our previous method 

WNS+BSS has failed to avoid signal degradation. We can conclude from the outcomes of 

the Tables 1-3 and Fig. 5 that the proposed EMD-ADT results in a high speech 

enhancement score and clear sound without loss of speech content. 
 

Table 3. The results of overall output SNR using different methods [6, 9, 
11, 13] and a comparison with the proposed algorithm. Added noise is 

white at different SNRs. 

Input 

SNR 

White noise 

TSSE 

[6] 

HST 

[9] 

SDCT 

[11] 

BSS 

[13] 

Proposed 

(λopt) 

0dB 8.0 7.56 8.21 8.70 8.85 

5dB 10.5 10.21 11.51 11.10 11.94 

10dB 13.4 13.14 14.68 14.00 15.15 

15dB 15.1 15.87 18.27 16.50 18.72 

20dB 19.2 20.01 21.10 20.30 22.62 

25dB 22.1 24.85 25.99 22.50 26.85 

30dB 25.7 29.24 30.39 26.10 31.27 

 

Table 4. The results of overall output SNR for various types of color noise 
at different input SNR of the EMD-ADT method and a compare with 
previous study WNS+BSS [13] (indicated as BSS) and SDCT [11]. 

Input 

SNR 

(dB) 

 

HF channel noise 

 

Pink noise 

 SDCT 

[11] 

BSS 

[13] 

Proposed 

(λopt) 

SDCT 

[11] 

BSS 

[13] 

Proposed 

(λopt) 

0 2.9 2.5 6.29 1.3 1.0 2.82 

5 7.2 7.8 9.74 6.1 5.9 7.22 

10 11.7 11.2 13.46 10.9 10.1 11.71 

15 16.2 16.1 17.42 15.6 15.1 16.26 

20 20.7 19.6 21.64 20.4 18.5 20.91 

25 25.4 21.4 26.12 25.6 21.0 25.64 

30 30.1 25.5 30.77 29.9 24.5 30.44 

 

Although overall SNR is a good measure for quantifying performance, it has a little 

perceptual meaning. A better measure can be achieved by calculating average segmental 

SNR (ASEGSNR) over frames of short duration (20ms of frame length with 13.75ms 

overlapping is used here) of the speech signal that exhibits a high correlation to 

subjective results as compared to overall SNR [15]. Figure 6 shows the comparisons 

between the input and output ASEGSNR for different types of noises as a function of 

input SNR using the proposed algorithm with opt. Figure 7 shows the speech 

enhancement performance of the proposed method and a comparison of that with SDCT 

in term of PESQ. The values 4 and 0 of PESQ measurement represent highest and lowest 

perceptual quality of the speech respectively. 
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Figure 6.  The Comparisons between the Output ASEGSNR and Input 
ASEGSNR for Different Types and Levels of Noises using EMD-ADT 

Method 

 
Figure 7. The Graphical Representations of Input PESQ and its 

Corresponding Output PESQ for a Speech Contaminated with white (Top), 
HF Channel (Middle) and Pink (Bottom) Noises at Different Levels by using 
Proposed EMD-ADT Method and SDCT [11] 
 

The segmental SNR (SEGSNR) of individual frame (20ms of frame length with 

13.75ms overlapping is used here)also highly correlated with the subjective quality of 

speech signal than the overall SNR [15].  Figure 8 shows the graphical illustration of 

input SEGSNR and its corresponding output SEGSNR obtained by applying the 

proposed algorithm. It is observed from Fig. 8 that the segmental output SNR is higher 

than that of the input SNR over all the frames of 0dB and 5dB noisy speech. Hence, the 

noise-dominant subframes are classified properly and the noise is removed from those 

subframes. With noisy speech of 10dB input SNR, the segmental SNR does not increase 

substantially at few frames (75 to 80) compared with the others. It is happened due to the 

misclassification of subframes i.e. the noise-dominant subframes are classified as signal-
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dominant and kept without thresholding. Without considering those few frames, we can 

conclude that the classification of subframes as well as frames is performed effectively 

over the whole speech. Since the segmental SNR provides high correlation of subjective 

result, the proposed EMD based adaptive thresholding algorithm works well in this 

respect. 

 

 
Figure 8. The Comparisons of Input SNR (solid line) and Segmental SNR 

(dotted line) at 0dB (Top), 5dB (Middle) and 10dB SNR (Bottom) of a Female 
Noisy (with white noise) Speech by using EMD-ADT Method 

 

4. Conclusions 

In this paper, a novel data adaptive algorithm is presented to effectively suppress the noise 

components in all frequency levels of noisy speech signal. The improvement of SNR of noise 

contaminated speech is achieved by removing noise using EMD based adaptive thresholding 

technique. An adaptation factor is introduced in the adaptive threshold function. The optimal 

value of adaptation factor is computed on the basis of estimated input SNR. The experimental 

result shows that the proposed speech enhancement algorithm works most efficiently for a 

wide range of input SNR. The performance of this algorithm (in terms of subjective measure, 

spectrogram and waveforms) is tested with the speech contaminated with white noise, pink 

noise and HF channel noise. However, the EMD based algorithm suffers from computational 

complexity and the empirical process takes long time and it is not suitable to apply for real 

time processing. The further research can be conducted to decrease the computational cost of 

EMD based methods. 
 

References 
 
[1] I. Cohen and B. Berdugo, “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech 

Enhancement”,  IEEE Signal Processing Letters, vol. 9, no. 1, (2002) January, pp. 12-15. 

[2] R. Martin, “Speech enhancement using MMSE short time spectral estimation with Gamma distributed speech 

priors”, Proc. Int. Conf. Acoustics, Speech and Signal Processing, vol. I, (2002), pp. 253–256. 

[3] R. Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. EUSIPCO, (1994), pp. 1182-1185. 

[4] R. Martin, “Statistical Methods for the Enhancement of Noisy Speech”, Proc. IWAENC2003, (2003), pp. 1-6. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 2, June, 2012 

 

 

14 

 

[5] G. Doblinger, “Computationally Efficient Speech Enhancement by Spectral Minima Tracking in Subbands”, 

Proc. EUROSPEECH, (1995), pp. 1513-1516. 

[6] M. E. Hamid and T. Fukabayashi, “A Two-Stage Method for Single-Channel Speech Enhancement”, IEICE 

Trans. Fundamentals, vol. E89-A. 4, (2006) April, pp. 1058-1068. 

[7] E. Deger, M. K. I. Molla, K. Hirose, N. Minematsu and M. K. Hasan, “Speech Enhancement using Soft 

Thresholding with DCT-EMD based Hybrid Algorithm”, Proc. EUSIPCO, (2007) September. 

[8] S. Salahuddin, et. al., “Soft thresholding for DCT speech enhancement”, Electronics Letters, vol. 38, (2002). 

[9] M. K. Hasan, M. S. A. Salahuddin, M. R. Khan, “DCT speech enhancement with hard and soft thresholding 

criteria”, Electronics Letters, vol. 38, no. 13, (2002). 

[10] S. Das, M. E. Hamid, K. Hirose and M. K. I. Molla, “Single-Channel Speech Enhancement by NWNS and 

EMD”, Signal Processing: An International Journal (SPIJ), vol. 3, no. 5, (2010) December, pp. 279-291. 

[11] D. L. Donoho, “De-noising by soft thresholding”, IEEE Trans. Inf. Theory, vol. 41, (1995), pp. 613-627. 

[12] N. E. Huang et. al., “The empirical mode decomposition and Hilbert spectrum for non‐linear and 

non‐stationary time series analysis”, Proc. Roy. Soc. London A, vol. 454, (1998), pp. 903‐995. 

[13] M. E. Hamid, K. Ogawa and T. Fukabayashi, “Improved signal-channel noise reduction method of speech by 

blind source separation”, Acoust. Sci. & Tech., vol. 28, no. 3, (2007). 

[14] A. Rix, J. Beerends, M. Hollier and A. Hekstra, “Perceptual evaluation of speech quality (PESQ), a new 

method for speech quality assessment of telephone networks and codecs”, Proc. IEEE Int. Conf. Acoustic, 

Speech and Signal Processing,  vol. 2, (2001), pp. 749-752. 

[15] S. Quackenbush, T. Barnwell and M. Clements, “Objective Measures for Speech Quality Testing”, Prentice-

Hall, (1988). 

 

Authors 
Md. Ekramul Hamid received his B.Sc and M.Sc degree from the 

Department of Applied Physics and Electronics, Rajshahi University, 

Bangladesh. After that he obtained the Masters of Computer Science 

from Pune University, India. He received his PhD degree from Shizuoka 

University, Japan. During 1997-2000, he was a lecturer in the 

Department of Computer Science and Engineering, Rajshahi University. 

Dr. Hamid was working as Assistant Professor at the King Khalid 

University, Abha, KSA from 2009 to 2011. He is currently working as an 

Associate Professor and Chairman in the Department of Computer 

Science and Engineering, Rajshahi University. His research interests 

include Digital Signal Processing, Analysis and synthesis of speech 

signal, Speech Enhancement and Image Processing. 

 
Somlal Das received his B.Sc and M.Sc degree from the Department 

of Applied Physics and Electronics, Rajshahi University, Bangladesh. 

During 1998-2001, he was a lecturer in the Department of Computer 

Science and Engineering, Rajshahi University. He is currently working as 

an Associate Professor in the same Department. His research interests 

include Digital Signal Processing and Speech Enhancement. 

 

  



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 2, June, 2012 

 

 

15 

 

 
Keikichi Hirose received the B.E. degree in electrical engineering in 

1972, and the Ph.D. degree in electronic engineering in 1977, 

respectively, from the University of Tokyo, Tokyo, Japan.  In 1977, he 

joined the University of Tokyo as a Lecturer in the Department of 

Electrical Engineering, and, in 1994, became a Professor in the Dept. of 

Electronic Engineering. From 1996, he was a Professor at the Graduate 

School of Engineering, Department of Information and Communication 

Engineering, University of Tokyo.  On April 1, 1999, he moved to the 

University’s Graduate School of Frontier Sciences (Department of 

Frontier Informatics), and again moved to Graduate School of 

Information Science and Technology (Department of Information and 

Communication Engineering) on October 1, 2004.  From March 1987 

until January 1988, he was a Visiting Scientist of the Research 

Laboratory of Electronics, Massachusetts Institute of Technology, 

Cambridge, U.S.A.  His research interests cover widely spoken language 

information processing.  He led a project “Realization of advanced 

spoken language information processing from prosodic features,” 

Scientific Research on Priority Areas, Grant in Aid on Scientific 

Research, Ministry of Education, Culture, Sports, Science and 

Technology, Japanese Government.  He is a member of the Institute of 

Electrical and Electronics Engineers, the Acoustical Society of America, 

the International Speech Communication Association, the Institute of 

Electronics, Information and Communication Engineers, the Acoustical 

Society of Japan, and other professional organizations. 

 
Md. Khademul Islam Molla received B.Sc. and M.Sc. degrees in 

Electronics and Computer Science from Shahjalal University of Science 

and Technology, Bangladesh in 1995 and 1997 respectively. He joined in 

the same Department as a lecturer in 1997. He obtained PhD degree from 

the Department of Frontier Informatics under the Graduate School of 

Frontier Sciences, The University of Tokyo, Tokyo, Japan in 2006. He is 

serving as an Associate Professor in the Dept. of Computer Science and 

Engineering of the University of Rajshahi, Bangladesh from August, 

2006. He was a JSPS postdoctoral fellow in the Dept. of Information and 

Communication Engineering, The University of Tokyo, Tokyo, Japan 

from Sep, 2006 to Sep, 2008. Dr. Molla was working as postdoctoral 

researcher in the field seismic signal processing at the University of 

Alberta, Edmonton, AB, Canada from Nov, 2010 to Oct, 2011. His 

research interest includes speech and audio signal processing, blind 

source separation, statistical and environmental signal processing, 

biomedical signal and image processing. He is a member of the Institute 

of Electrical and Electronics Engineers (IEEE). 

 

  



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 5, No. 2, June, 2012 

 

 

16 

 

 

 

 

 

 


