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Abstract 
 
Adaptive Filtering is a widely researched topic in the present era of communications. When the 
received signal is continuously corrupted by noise where both the received signal and noise change 
continuously, then arises the need for adaptive filtering. The heart of the adaptive filter is the 
adaptive algorithm. This paper deals with cancellation of noise on speech signals using two 
algorithms-Least Mean Square (LMS) algorithm and Recursive Least Squares (RLS) algorithm with 
implementation in MATLAB. Comparisons of algorithms are based on SNR and tap weights of FIR 
filter. The algorithms chosen for implementation which provide efficient performances with less 
computational complexity. 
  

 Keywords: LMS, RLS, Adaptive FIR filter, SNR, Gaussian noise. 
 
1. Introduction 
 
In this modern world we are surrounded by all kinds of signals in various forms. Some of the signals 
are natural, but most of the signals are man-made. Some signals are necessary (speech); some are 
pleasant (music), while many are unwanted or unnecessary in a given situation. 
 In an engineering context, signals are carriers of information, both useful and unwanted. Therefore 
extracting or enhancing the useful information from a mix of conflicting information is a simplest 
form of signal processing [1]. More generally, signal processing is an operation designed for 
extracting, enhancing, storing, and transmitting useful information. The distinction between useful 
and unwanted information is often subjective as well as objective. Hence signal processing tends to 
be application dependent. In contrast to the conventional filter design techniques, adaptive filters do 
not have constant filter coefficients and no priori information is known. Such a filter with adjustable 
parameters is called an adaptive filter. 
The basic idea of an adaptive noise cancellation algorithm is to pass the corrupted signal through a 
filter that tends to suppress the noise while leaving the signal unchanged. This is an adaptive process, 
which means it does not require a priori knowledge of signal or noise characteristics. 
Although both FIR and IIR filters can be used for adaptive filtering, the FIR filter is by far the most 
practical and widely used. The reason being that FIR has adjustable zeros, and hence it is free of 
stability problems associated with adaptive IIR filters that have adjustable poles as well as zeros. 
However the adaptive FIR filters are not always stable and their stability depends critically on the 
algorithm [6]. 
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2. Least mean square adaptation algorithm 
 

Because the exact measurements of the gradient vector are not possible and since that would require 
prior knowledge of both the correlation matrix R of the tap inputs and the cross correlation vector p 
between the tap inputs and the desired response, the optimum wiener solution could not be reached. 
Consequently, the gradient vector must be estimated from the available data when we operate in an 
unknown environment. 
After estimating the gradient vector we get a relation by which we can update the tap weight vector 
recursively as: 
W (n+1) = w (n) +mu u(n) [d*(n) - u`(n) w(n)] 
Where mu = step size parameter 
 u`(n) = hermit an of the matrix u 
 d*(n) = complex conjugate of d(n) 
Eventually we may write the result in the form of three basic relations as follows: 

1. Filter output:  
y (n) = w (n) u (n) ( 2.1 ) 

2. Estimation error or error signal: 
e (n) = d (n) – y (n) ( 2.2 )  

3. Tap weight adaptation: 
w (n+1) = w (n) + mu u (n) e* ( n)  ( 2.3 ) 

 

Equations 2.1&2.2 define the estimation error e(n), the computation of which is based on the current 
estimate of the tap weight vector, w(n).Note that the second term, mu u(n) e*(n),on the right hand 
side of equation 2.3 represents  the adjustments  that is applied to the current estimate of the tap 
weight vector, w (n).The iterative procedure is started with an initial guess w (0).The algorithm 
described by equations 2.1and 2.3 is the complex form of the adaptive least mean square algorithm. 
At each iteration or time update, this algorithm requires knowledge of the family of stochastic 
gradient algorithms. In particular, when the LMS algorithm operates on stochastic inputs, the allowed 
set of directions along which we “step” from one iteration to the next is quite random and therefore 
cannot be thought of as consisting of true gradient directions.[3] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2.2: A detailed description of the LMS adaptive filter 
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3. Recursive Least Squares (RLS) Algorithm: 
 

The RLS algorithm seeks to obtain the minimum mean squared error by obtaining the 
maximum estimate of the filter taps. It is based on the fact that if the error has  

Zero mean  
Statistically independent   
Gaussian distribution 
 

3.1 Algorithm Implementation: 
                                     
  The RLS algorithm is implemented as follows assuming c is a small constant, I is an identity 
matrix, the inverse of a correlation matrix P(n) can be initialized as  
 P(0)= R – 1(0) =c-1 .I initially  
Start with the initial conditions  
                  P(0)= c-1 .I  
               λ = 0.95 (this can be modified but kept < 1) 
                 h(0) = 0 ( All initial tap weights set as 0) 
Compute the gain vector  
 

P (n-1) u*(n) 
K(n) =   
           λ+ uT (n) P (n-1) u*(n) 
 

Compute the error  
e(n) = r(n) – h(n-1) uT (n) 
Update the estimate of coefficient vector  
          h (n) = h(n-1) + k(n) e(n) 
Update the inverse of the weighted auto correlation   matrix 
 P (n) = 1/λ [P (n-1) – k (n) uT (n) P (n-1)] 
Increment n by 1; go back to step 2, and repeat the procedure. 
 

 

4. Noise cancellation 
The basic noise-canceling situation is illustrated in figure 4.1.  A signal is transmitted over a channel 
to a sensor that receives the signal plus an uncorrelated noise n0. The combined signal and noise, 
s+n0, form the "primary input" to the canceller. A second sensor receives a noise n1, which is 
uncorrelated with the signal but correlated in some unknown way with the noise n0. This sensor 
provides the "reference input” to the canceller. The noise n1 is filtered to produce an out put y that is 
a close replica of n0. This output is subtracted from the primary input s+n0 to produce the system out 
put, s+n0-y.[9] 
 If one knew the characteristics of the channels over which the noise was transmitted to the primary 
and reference sensors, one could, in general, design a fixed filter capable of changing n1 into y=n0. 
The filter out put could then be subtracted from the primary input, and the system output would be the 
signal alone. Since, however, the characteristics of the transmission paths are assumed to be unknown 
or known only approximately and not of a fixed nature, the use of a fixed filter is not feasible. 
Moreover, even if a fixed filter were feasible, its characteristics would have to be adjusted with a 
precision difficult to attain, and the slightest error could result in increased out put noise power. In the 
system shown in figure 4.1, the reference input is processed by an adaptive filter that automatically 
adjusts its own impulse response through a least-squares algorithm such as LMS that responds to an 
error signal dependent, among another things, on the filter's output. Thus with the proper algorithm, 
the filter can operate under changing conditions and can readjust itself continuously to minimize the 
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error signal. We have seen that the error signal used in an adaptive process depends on the nature of 
the application. In noise -canceling systems the practical objective is to produce a system output, 
s+n0-y, that are a best fit in the least -squares sense to the signal s. This objective is accomplished by 
feeding the system output back to the adaptive filter and adjusting the filter through an adaptive 
algorithm to minimize the total system output power. In an adaptive noise-canceling system, in other 
words, the system out put serves as the error signal for the adaptive process.  
 

 
 
 
 
 
 
 
 
 

                             Fig 4.1: Adaptive Noise Canceller 

Assume that s, n0, n1, and y are statistically stationary and have zero means. Assume that s is 
uncorrelated with n0 and n1, and suppose that n1 is correlated with n0. The output is                                                     

         ε =s+n0−y           (4.1) 
Squaring, one obtains                                            
  ε²=s²+ (n0–y) ²+2s (n0–y)      (4.2) 
Taking expectations of both sides of (4.2), and realizing that s is uncorrelated with n0 and with y, 
yields 
 E[ε²] = E[s²] + E[(n0 – y)²] + 2E[s(n0 — y)] 
                   =E [s²] +E [(n0—y) ²]       (4.3) 
 

The signal power E [s²] will be unaffected as the filter is adjusted to minimize E [e²] 
Accordingly, the minimum out put power is: 
 Emin [ε²] =E [s²] +Emin [(n0—y) ²]   (4.4) 
When the filter is adjusted so that E [ε2] is minimized,   E [(N0-Y) 2] is therefore also minimized. 
The filter out put y is then a best least -squares estimate of the primary noise n0. Moreover, when E 
(n0-y)²] is minimized , E[(ε-s)²] is also reference input . 
    (ε-s)= (n0-y)                         (4.5)   

Adjusting or adapting the filter to minimize the total out put power is thus tantamount to causing the 
out put e to be a best least -squares estimate of the signal s for the given structure and adjustability of 
the adaptive filter and for the given reference input. [3] The out put e will generally contain the signal 
s plus some noise. From (4.1), the out put noise is given by (n0-y). Since minimizing the out put noise 
power and, since the signal in the out put remains constant, minimizing the total output power 
maximizes the out put signal-to-noise ratio. 
We see from (4.3) that the smallest possible out put power is Emin [ε²] = E[s²].When this is 
achievable ,E[(n0-y)²] = 0. Therefore, y = n0 and ε = s. In this case, minimizing output power causes 
the out put signal to be perfectly free of noise.  
 
 

5. Comparison of Adaptive algorithms 
 

The performance of these adaptive algorithms is highly dependent on their filter order and signal 
condition. Furthermore, the performance of the LMS algorithm also depends on the selected 
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convergence parameter. As for the RLS algorithm, it is also dependent on as” forgetting factor” or” 
exponential weighting factor.[7] Compared to the LMS algorithm, the RLS algorithm has the 
advantage of fast convergence but this comes at the cost of increasing the complexity. Hence, the 
RLS algorithm requires longer computation time as well as a higher sensitivity to numerical 
instability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.1: Mean Squared Error performance of the LMS algorithm with different filter orders 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.2: Mean Squared Error performance of the RLS algorithm with different filter orders 
 

Fig 5.1 and Fig 5.2 show the MSE performance of the LMS algorithm and the RLS algorithm with 
different filter orders. Again, LMS algorithm provides similar performance results.  

 The LMS algorithm performs much better than the RLS algorithm in the high filter order region. 
As the RLS is highly sensitive to numerical instability, the filter order will severely affect the 
performance of the algorithm.  

 Fig 5.2 shows that the RLS performance does not improve when the filter order increases. Hence, 
a careful selection of the filter order is needed for optimal performance. 

 

 LMS usually provides better tracking behavior than exponentially weighted RLS for linearly 
chirped sinusoids in additive white Gaussian noise (AWGN). This behavior is because LMS is 
model independent, whereas RLS must employ a model of the data correlation matrix (such as an 
exponential weighting), which may not match the characteristics of the input signals.[10] 

 Correction term in LMS is based on the instantaneous sample values in the filter and the error 
signal, but in the RLS algorithm all PAST information is used.  

 The LMS requires approximately 20M iterations (where M is the number of taps of the filter) to 
converge in mean square and the RLS converges in less than 2M iterations. This figure of merit is 
subjective to the step size of the LMS algorithm.[5]  
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 The RLS does not contain any approximations in its derivation, unlike the LMS.  
The RLS is more complicate to implement (especially for a large number of taps) 
 

6. Results 
 
Table 6(a) and 6(d) shows the performance of LMS and RLS algorithm in terms of SNR for different 
tap weights. Fig 6(b) 6(c)  6(e)& 6(f)  shows the plots for SNR vs Mu for different taps (LMS) and 
SNR Verses Lamda for different tap weights (RLS Algorithm).Fig 6(g) &6(h) shows reconstructed 
speech signal using LMS algorithm and RLS algorithm for tap 3.Fig 6(i) &6(j) shows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 6(a):  SNR Verses Mu for different tap weights (LMS Algorithm) 

 
Fig 6(b): Plot for SNR vs Mu for different taps (LMS)    Fig 6(c): Plot for LMS algorithm for tap 8 &10   

S.NO Mu value in 
LMS algorithm 

SNR in dB 
for TAP-3 

SNR in dB 
for TAP-5 

SNR in dB 
for TAP-7 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 

4.7591 
4.7006 
4.6892 
4.6853 
4.6390 
4.6334 
4.6188 
4.5768 
4.5147 
4.4986 
4.2499 
4.0124 
3.8230 
3.5305 
3.4865 
3.3011 
3.2931 
2.7446 
2.6445 
2.5344 
2.4248 
2.3244 
2.1232 
1.7435 
1.7311 
0.7447 
0.5348 

5.1931 
5.2017 
5.2067 
5.2024 
5.2125 
5.2186 
5.2211 
5.2252 
5.2332 
5.2380 
5.6145 
5.3250 
5.1005 
5.0470 
5.0375 
5.0285 
4.9608 
4.6003 
4.6445 
4.5344 
4.4297 
4.3289 
3.7446 
3.7311 
3.6423 
3.5356 
3.1267 

6.0011 
6.0400 
6.0413 
6.1132 
6.1266 
6.1434 
6.1744 
6.1759 
6.1851 
6.2013 
6.2400 
6.2413 
6.3134 
6.3266 
6.3434 
6.3744 
6.3759 
6.3851 
6.3512 
6.3386 
6.2728 
6.2196 
6.1751 
6.0972 
6.0595 
5.9517 
5.8500 
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                  Table 6(d):  SNR Verses Lamda for different tap weights (RLS Algorithm) 

 
  
 
 
 
 
 
 
 
 
 
 
Fig 6(e): Plot for SNR vs. Lamda for different taps (RLS)      Fig 6(f): Plot for RLS algorithm for FIR     
                                                                                                                 tap 8&10 for speech signal 
 

 
 
 
 
 
 
 
 
 

Fig 6(g): Reconstructed speech signal using                    Fig 6(h): Reconstructed speech signal using 
LMS algorithm for tap-3                                                   RLS algorithm for tap 3 

     

S.NO Lamda 
value in 

RLS 
algorithm 

SNR in 
dB for 
TAP-3 

SNR in 
dB for 
TAP-5 

SNR in 
dB for 
TAP-7 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 

41.0756 
44.7020 
45.7861 
47.9930 
48.9430 
50.8519 
53.9461 
54.1481 
56.5446 
56.4716 
62.0054 
59.1803 
58.3524 
57.5812 
52.9756 
51.1639 
46.1694 
45.1539 

52.7477 
52.8656 
54.1902 
54.3162 
55.0163 
57.7852 
57.9585 
58.1815 
58.3939 
58.4172 
63.1453 
65.2394 
67.4584 
61.5060 
57.4053 
54.0939 
51.9899 
50.8761 

49.1887 
50.7799 
51.7287 
53.0838 
53.1789 
53.3113 
53.6879 
54.1667 
55.5531 
56.5418 
59.2906 
65.4242 
75.0479 
69.6198 
57.2496 
55.3010 
54.1178 
50.7958 
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   Fig 6(i): Plot for FIR tap Vs Optimum SNR Vs Optimum mu  for speech signal using LMS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Fig 6(j): Plot for  FIR tap Vs Optimum SNR Vs lamda using RLS for  speech signal  
 
7. Conclusion 

 

Adaptive filtering is a hot topic of research in this era of information explosion. From the results it is 
observed that reconstructed speech signal SNR-LMS= 6.3851 dB (Mu =0.9) and SNR-RLS= 
75.0479 dB (Lamda = 0.94) for TAP-7.From the tables 6(a) &6(d) it is  seen that SNR increases as 
the order of the filter increases and SNR is high for RLS than LMS algorithm. For the lower order 
FIR adaptive filter, RLS algorithm produce highest SNR and it is superior to LMS in its 
performance. But LMS is converging faster that RLS for the Finite Impulse response (FIR) filter 
Taps. [8] Optimum Mu (LMS) and Lamda (RLS) values have been obtained by fixing the FIR Tap 
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weights .These optimum Mu values for LMS  are 0.9 (FIR Tap-7) to 0.01 (FIR Tap-3) and Lamda 
values for RLS are 0.92(FIR Tap-3)  to 0.94(FIR Tap-7) on speech signal.[11] These results are 
obtained with primitive adaptive algorithms like LMS and RLS. 
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