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Abstract 
Landslide is a type of mass movement that causes damage in many areas. The evolving 

remote sensing technology in producing high resolution images may help in landslide studies. 
However, the problem in detecting small size landslides is still challenging when suitable 
image resolution of the area being analyzed is not available. In this paper, a novel method 
based on elastic image registration, appropriate for the detection of small landslides will be 
presented. This method can be used to detect and quantify landslide movement with sub-pixel 
accuracy. It is based on the invocation of deformation operators which imitate the 
deformations expected to be observed when a landslide occurs. The similarity between two 
images is measured by a similarity function which takes into consideration grey level value 
correlation and geometric deformation. The geometric deformation term ensures that the 
minimum necessary deformation compatible with the two images is employed. An extra term, 
ensuring maximum overlap between the two images is also incorporated. There are two 
versions of this method. One using the correlation coefficient as a measure of similarity for 
the grey level value, and another one using mutual information. These methods are tested 
using known small scale landslides images of southern Italy taken from the Landsat 5 TM. 
The mutual information-based method gives more reliable results. 
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1. Introduction 

Image registration methodology such as template matching, temporal, multimodal 
and viewpoint registration [1] has been used in landslide studies for analyzing landslide 
images [2, 3] obtained at different dates, by different sensors and from different 
viewpoints [4, 2, 5, 6, 7]. There are two types of approach for registering landslide 
images: those with and those without sub-pixel accuracy. In registering landslide 
images without sub-pixel accuracy, two images are overlapped and a set of Ground 
Control Points (GCPs) in both images is extracted. This set of GCPs must be features 
that have sharp contrast with their surrounding area and must be well distributed 
throughout the images. In order to correlate two homogenous GCPs, Honda and Nagai 
[8] and Casson et al. [9] used the correlation coefficient to calculate image similarity. 
In such studies, the set of points matched is used to generate a transformation function 
between the two images such as affine transformation and polynomial transformation. 
Transformation estimation algorithms for non-rigid transformation vary in their 
handling of local deformations. Zagorchev and Goshtasby [10] conducted a comparative 
study of four of the commonly used transformation functions for non-rigid 
transformation, namely, thin plate spline (TPS), multiquadric (MQ), piecewise linear 
(PL), and weighted mean (WM) transformations. Their study showed that PL performs 
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better than TPS and MQ when tie points are sparsely distributed and WM performs 
better than the others when it contains a large number of tie points and the tie points 
have positional errors. As the geometric position of pixels changes, the grey values at 
the vacated grid positions need to be calculated. Metternicht and Zinck [2], Temesgen 
et al. [3], Hervás et al. [4] and Chen et al. [11] used nearest neighbour interpolation and 
Vassilopoulou et al. [7] used bilinear interpolation for the resampling process.  

Yu et al. [12] proposed satellite image registration technique which performs a pre-
registration process that coarsely aligns the input image to the reference image by 
automatically detecting their matching points by using the scale invariant feature transform 
(SIFT) method and an affine transformation model. Once the coarse registration is completed, 
it performs a fine-scale registration process based on a piecewise linear transformation 
technique using feature points that are detected by the Harris corner detector. Yamaguchi et 
al. [13] developed two different algorithms to register landslide images with sub-pixel 
accuracy: the “imageodetic” method and the parabolic function method. In the imageodetic 
method, bilinear interpolation is used to generate a sub-pixel image by interpolating the 
values of the original pixels while maximising the correlation coefficient until the sub-pixel 
accuracy becomes 1/128 of the image resolution. In the parabolic function method, they used 
a parabolic function to model the correlation coefficient around its peak and from it they 
locate the position of the peak with sub-pixel accuracy.  They used these algorithms to detect 
a landslide movement as geometric misregistration between two image data of different 
acquisition dates. 

In this paper, an image registration method which is inhomogeneous to account for the 
local deformations of the terrain, and allows the registration of images with sub-pixels 
accuracy will be presented. The algorithm is fully automated and it does not rely on the 
identification of features. Section 2 presents methodology of the elastic image registration 
algorithm. Section 3 presents the study area and image pre-processing. Section 4 presents 
choice of parameter values. Section 5 presents results and discussion, and finally, the 
conclusions will be presented in section 6. 
 
2. Methodology 

The purpose of elastic image registration is to detect small local changes, so the 
proposed method is used to refine global registration already performed. Two images, 
one before (B) and one after (A) the landslides captured by the same sensor both 
geocoded and coregistered are assumed to be available. Starting from image B, a 
sequence of deformed images denoted by B1, B2, B3, ..., Bl is created. Each image in the 
sequence is more similar to image A than the previous one. Each image is created from 
the previous by applying to it one of the four deformation operators chosen at random 
and applied at a random position. As the image is deformed, the grey values at integer 
locations are calculated using the nearest neighbour interpolation rule. If the imposed 
deformation improves the similarity with the second image, the change it creates is 
accepted. If it does not, it is rejected and another operator is invoked. The process stops 
when the deformed image is sufficiently similar with image A. In order to distort image 
B, four mathematical models of landslides deformation has been developed and used as 
the transformation operators. These operators imitate deformations expected to be 
observed when a landslide occurs.  
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2.1. Exponential growth operator 

 This operator will deform the grid outwards from a central point, as if material is pouring 
out of a centre. If the exponential growth operator is chosen, one pixel i is randomly chosen 
as an origin. All other pixels, k, will be moved directly away from that pixel by a distance 
defined by: 

ikgd
kd re−= ,       (1)   

where r and g are some parameters and ikd  is the distance of pixels k from i. Changes in pixel 
location are shown in figure 1(a). In this figure, 0 0, )( yP x is the original   pixel location at a 
distance ikd  from i, xd  is the distance between i and 0 0, )( yP x along the x-axis, yd  is the 
distance between i and 0 0, )( yP x  along the y-axis. 0 0', ')'( yP x is the new pixel location of 

0 0, )( yP x after deformation i.e. shifted by a distance kd  from 0 0, )( yP x  away from i, 'xd  is 
the distance between 0 0, )( yP x  and 0 0', ')'( yP x along the x-axis and 'yd  is the distance 

between 0 0, )( yP x  and 0 0', ')'( yP x along the y-axis. Therefore, the new coordinate of 

0 0', ')'( yP x are: 

0 0' ( )ikgdx

ik

d re
d

x x −= + ,   (2) 

0 0' ( )iky gd

ik

d
y y re

d
−= + . (3) 

The effects of this operator in a regular 45 x 45 grid when i = (23,23), r = 2 and g = 0.01 are 
shown in figure 1(b). 
 

 
                     (a)                                                                       (b) 

 
Figure 1.  Exponential growth operator. (a) Changes in the pixel locations. (b) Effects 
of the exponential growth operator in a regular 45 x 45 grid when i = (23, 23), r = 2 
and g = 0.01.  
 
 
 
 
 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 3, No. 3, September, 2010 
 
 

74 

 
 
2.2. Exponential shrinkage operator 

This operator will deform the grid inwards, towards a central point, as if material is lost 
into a sink. If the exponential shrinkage operator is chosen, one pixel i is randomly chosen as 
an origin. Instead of moving away from the pixel origin, now all other pixels, k, will be 
moved directly towards that pixel by a distance defined by equation (1). Therefore, by 
referring figure 2(a), the new coordinates of the pixels are defined as:     

0 0' ( )ikgdx

ik

d re
d

x x −= −  ,   (4) 

0 0' ( )iky gd

ik

d
y y re

d
−= −  . (5) 

Effects of this operator in a regular 45 x 45 grid when i = (23, 23), r = 2 and g = 0.01  shown 
in figure 2(b). 
 

 
                           (a)                                                             (b) 
 
Figure 2.  Exponential shrinkage operator. (a) Changes in the pixel locations. (b) 
Effects of the exponential shrinkage operator in a regular 45 x 45 grid when i = (23, 
23), r = 2 and g = 0.01. 
 
2.3. Exponential translation operator 

 This operator is relevant for modeling the movement of material during a landslide as 
chasms and gaps may be opened in the surface of the earth. If the exponential translation 
operator is chosen, one pixel i is randomly selected as an origin. Then, a distance ijd , an 
orientation θ and the springiness parameter that controls the severity of this distortion, s will 
be chosen at random. All the remaining pixels, k, will be moved directly away from that pixel 
by a distance defined by: 

iksd
ijkd d e−= ,        (6)   

where ikd  is the distance between i and k. Changes in pixel location are shown in figure 3(a). 
From this figure, 0 0, )( yR x is the original   pixel location at a distance ikd  from i, xd  is the 
distance between i and other pixel, j along the x-axis, yd  is the distance between i and j  
along the y-axis. 0 0', ')'( yR x is the new pixel location of 0 0, )( yR x after deformation, 'xd  is the 
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distance between 0 0, )( yR x  and 0 0', ')'( yR x  along the x-axis, and 'yd  is the distance between 

0 0, )( yR x  and 0 0', ')'( yR x along the y-axis. Therefore, the new coordinate of 0 0', ')'( yR x are: 

0 0' iksd
xex x d −= + ,     (7) 

0 0' iksd
yy y ed −= + .  (8) 

Effects of this operator in a regular 45 x 45 grid when s = 0.1, i = (20,20) and j = (30,30) is 
shown in figure 3(b). 
 

 
                            (a)                                                           (b)
 
Figure 3.  Exponential translation operator. (a) Changes in the pixel locations. (b) 
Effects of the exponential translation operator in a regular 45 x 45 grid when s = 0.1, i 
= (20,20) and j = (30,30). 
 
2.4. Exponential parabolic flow front operator 

 This operator will deform the grid as if a slowly moving parabolically shaped flow front 
propagates along some direction. Therefore, it is defined for a landslide front originating on 
an axis u moving the material along an orthogonal direction v, on some (u,v) coordinate 
system (see figure 4(a)). The following parameters will be chosen: the origin of the 
deformation, (x0, y0), the extent of the deformation, a, the severity of the deformation, b, the 
orientation of the deformation, θ, the direction of the deformation, w, and the decaying 
parameter, t. When this operator is chosen, one pixel, i, at location (x0, y0) is selected 
randomly as the landslide origin. The position of every pixel k in the image is then defined in 
terms of the new origin (x0, y0): 

0 0( ', ') ( , )k k k kx y x x y y= − − .  (9) 
The position of pixel k in the rotated (u, v) coordinate system is defined as follows: 

' 'cos 'sink k ku x yθ θ= + ,  (10) 
' 'cos 'sink k kv y xθ θ= + ,  (11) 

where θ  is the orientation of the deformation selected at random. A random number w either 
+1 or -1 is chosen to decide whether the material moves in the anticlockwise or the clockwise 
direction, respectively. If the pixel satisfies the conditions of ' )( k aa u ≤ +− ≤  and 
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' 0kv w ≥ , it will be shifted to the new position, ( , ) ( ', ' ')k k k ku v u v wv≡ +  where 'v  is given 
by equation (12). 

| '|2 '2
2' ( ) kt v

k
bv a u e
a

−= −  . (12) 

Here, t is defined as the decaying parameter. Otherwise, ( , ) ( ', ')k k k ku v u v≡ . The maximum 
displacement occur when the value of ' 0kv = . Finally, the position of the pixel in the (x, y) 
coordinate system is calculated as follows: 

cos sin
newk k kx u vθ θ= − , (13) 

sin cos
newk k ky u vθ θ= + . (14) 

Effects of this operator in a regular 45 x 45 grid when x0= 23, y0 = 23, a = 5, b = 3, t = 0.1, w 
= 1 and θ = 45o is shown in figure 4(b). 
 

 
                      (a)                                                               (b) 
 
Figure 4:  Exponential parabolic flow front operator. (a) Pixel origin with the shifting 
parameters a and b. (b) Effects of the exponential parabolic flow front operator in a 
regular 45 x 45 grid when x0= 23, y0 = 23, a = 5, b = 3, t = 0.1, w = 1 and θ = 45o. 
 

The cost function that expresses the quality of registration between images A and Bl is 
defined as follows: 

1 2 3U U U Uβ λ= + + .  (15) 
In this expression, β and λ  are parameters controlling the relative importance of each term. 
The three terms combined are the following: 

1 1 ( , )lU S A B≡ − ,  (16) 

where ( , )lS A B is the measure of similarity between the two images expressed by the 
correlation coefficient or the mutual information between the two images. The correlation 
coefficient is defined as in equation (17). 

,

, ,

2 2

( )( )
( , )

( ) ( )

A l

A l A l

A A l l
i i

i T
l

A A l l
i j

i T j T

p p p p
R A B

p p p p

∈

∈ ∈

− −

≡

− −

∑

∑ ∑
 , (17) 
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where ,A lT  represents the overlapping set of pixels of the two images,  A
ip  is the pixel value 

in the first image, l
ip  is the pixel value in the second image, Ap  is the mean value of the first 

image and lp  is the mean value of the second image, both computed over the overlapping 

part. For the case of mutual information, ( , )lS A B is equal to ,

,

lA B

A A

M
M

, where , lA BM  is the value 

of the mutual information between images A and lB , and ,A AM is the entropy of the reference 
image. The mutual information is defined as follows:  

,
( , )( , ) log

( ) ( )A B

A B
A B AB i i

A B AB i i A B
p p A B

P p pM P p p
P p P p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ , (18) 

where ( )A
AP p is the normalised histogram of grey values of the reference image, ( )B

BP p  

is the normalised histogram of grey values of the sensed image and ( , )A B
AB i iP p p  is the 

normalised joint histogram of the grey values A
ip  and B

ip  which correspond to the same 
pixel i. 

The second term in equation (15) expresses the desire for image Bl to be distorted as little 
as possible to fit image A. It is a purely geometric term that does not involve any pixel values: 

,

2 1 1
,

1 (| | | | | | | |)
x x

A l

k k xx k k xy k N k yx k N k yy
k TA l

U x x d y y d x x d y y d
N + + + +

∈

≡ − − + − − + − − + − −∑ . (19) 

Here Nx and Ny is the size of the image along the x and y axes respectively, ,A lN  is the 

number of pixels in ,A lT  and ,dα β is the difference in the coordinate along the β  axis in two 
neighbouring pixels “aligned” along the α  axis. In a regular grid, dxx = dyy = 1 and dxy = dyx = 
0. Note that k scans the image in a raster fashion, along the x axis on each successive line 
corresponding to fixed y. More explicitly, the meaning of this term in this function may be 
understood by the following example: xk+1 and xk are the coordinate positions along the x axis 
of the two neighbouring pixels with indices k + 1 and k respectively. At the beginning of the 
iterative process, the difference between these two coordinates is dxx since these pixels are 
next to each other along the x axis. After an iteration take place, the two pixels may shift with 
respect to each other, so their distance along the x axis may have changed. The difference 
between this distance and the original value dxx expresses the distortion of the rigid grid. In a 
similar way, term | |

xk N k yxx x d+ − −  expresses the distortion of the grid away from the rigid 
one, due to the shifting in relative position of two neighbouring pixels along the y axis 
(indices k+Nk and k identify neighbouring pixels along the y axis in the raster indexing 
format).  

Finally, the third term of the cost function expresses the desire for maximum overlap 
between images A and Bl defined in equation (20). 

,
3 1 lA BN

U
N

≡ −  . (20) 

Here N is the maximum number of pixels in an image, and , lA BN is the number of pixels 
in the overlapping part of images Bl and A. 
 
3. Imagery used 
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The proposed elastic image registration technique has been used to detect landslide 
events in Caramanico, Italy. A pair of sub-images taken from the 1998-1999 landslide 
events in Caramanico as shown in Figures 5(g)-(h) were used as the training dataset. 
Three other pairs of sub-images of the landslide events in Caramanico were used as the 
testing datasets. They were taken from the 1995-1996 landslide events as shown in 
Figures 5(a)-(b), from the 1996-1997 landslide events as shown in Figures 5(c)-(d), and 
from the 1997-1998 landslide events as shown in Figures 5(e)-(f). Before performing an 
elastic image registration, the images were preprocessed to remove clouds and snowed 
mountain peaks by using the cloud-snow detection algorithm proposed by Hou et al. 
[14]. The Principal Component Analysis (PCA) was then used to produce a grey band 
with maximum contrast. 
 

 
  (a)                                                                      (b) 

 

 
                                     (c)                                                                      (d) 
 
Figure 5: Landslide sub-images in Caramanico. (a) 1995-1996 events. (Image dated 
17/6/1995.) (b) 1995-1996 events. (Image dated 18/5/1996.)   (c) 1996-1997 events. 
(Image dated 18/5/1996.) (d) 1996-1997 events. (Image dated 21/5/1997.) 
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  (e)                                                                      (f) 

  (g)                                                                      (h) 
 
Figure 5 (continue.): Landslide sub-images in Caramanico. (e) 1997-1998 events. 
(Image dated 21/5/1997.) (f)  1997-1998 events. (Image dated 22/4/1998.)   (g) 1998-
1999 events. (Image dated 22/4/1998.) (h) 1998-1999 events. (Image dated 
27/5/1999.) 
 
4. Choice of parameter values 
 
4.1. Parameters of the operators 

The satellite images available for the experiments have already been globally 
registered and they only suffer from small deformations. Therefore, only parameter 
settings that produce small movements and thus can be used to detect small local 
changes will be considered. In order to have only sub-pixel shifts, the maximum 
movement of one pixel will be allowed. Then, in order to avoid larger shifts, the value 
of parameter r for the growth and shrinkage operator is fixed to 2, and the value of 
parameters ijd  and b for the translation and parabolic front flow operators is fixed to 1. 
Different combinations of parameters will have different decaying rates of shifting. Any 
shift smaller than 0.05 pixels will be neglected. Therefore, any parameter values that 
shift the pixels by less than 0.05 pixels from the seed pixel will not be used. In order to 
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have only local deformations, any shift outside a 9 × 9 local window will be neglected. 
We can see from Figure 6 that for the parameter values considered in these graphs, 
neglecting any shift outside a local window is consistent with keeping shifts of size 
greater or equal to 0.05. In addition, parameter values which at distance 4 pixels away 
from the seed point that create shifts greater than 0.05 will not be considered. As a 
result, for the exponential growth and shrinkage operator, parameters r was fixed to 2, 
while parameter g was chosen from a uniform distribution in the range of [0.8 2.0]. For 
the exponential translation operator, parameter dij was fixed to 1, while parameter s was 
chosen from a uniform distribution in the range of [0.6 2.0]. For the exponential flow 
operator, parameter t was chosen from a uniform distribution in the range of [0.6 2.0], 
parameter a was chosen from a uniform distribution in the range of [1 3], while 
parameter b was fixed to 1. 

 

 
Figure 6: Shifting induced by the various operators. (a) Exponential growth and 
shrinkage operator with r = 2, g ∈  [0.8, 2.0]. (b) Exponential translation operator with 
d = 1, s ∈  [0.6, 2.0]. The value of parameter t is irrelevant here. (c) Exponential 
parabolic flow front operator with b = 1 and t ∈  [0.6,2.0] at uk = 0. The value of 
parameter a and θ are irrelevant here. 
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4.2. Stopping criterion 

The acceptance of a proposed deformation is controlled by the value of the cost function. If 
it reduces the value of he cost function, the deformation is accepted. The algorithm stops 
when the value of the cost function after each 10 000 tries changes by no more than 1%. The 
relative change of the value of the cost function is calculated as follows: 
 

1 100%a a

a

c cc
c

+−
≡ × ,  (21) 

 
where ac  and 1ac +  are the values of the cost function in two successive estimates one 
hundred thousand tries apart. 
 
4.3. Parameter β  and λ  

The quality of registration between two images is controlled by the cost function, which 
consists of three terms. Therefore, the optimal values of the coefficients which linearly 
combined to form the cost function need to be identified. In order to find the values of β  and 
λ , the exploratory run for various parameter settings has been performed. Mutual 
information is used to evaluate the quality of registration obtained for each set of parameter 
values. The set of values of parameters β  and λ  that gives the highest value of mutual 
information will be used in the full runs performed later. As a result, the parameter β   was 
fixed to 0.005 and λ  to 0.1 when the correlation coefficient was used as the similarity 
measure in the cost function. When the mutual information was used as the similarity 
measure in the cost function, the parameter β   was fixed to 0.0007 and λ  to 0.7. 
 
5. Results and discussion 

The process of image registration deformed the image taken before the landslides to 
match the image after the landslides. Here, the parameter settings of section 4 have 
been used to register the landslide images 25 times with a different seed each time for 
the random number generator. This method was developed in two versions. One version 
using the correlation coefficient as a similarity measure of the grey level values 
between two images and the other version using mutual information for the same 
purpose. From Figure 7, we can see that the exponential parabolic flow front operator 
gave the highest percentage of acceptance during the exploratory run in the both 
version. This is because this operator imitates best what happens during a landslide.  

Figure 8 shows the 2% most significant shifts for average vectors, ( ( , ), ( , ))x ys i j s i j  for 
registration based on the correlation function and also based on the mutual information. From 
this figure, we can see that the 2% most significant shifts are less localized when the 
correlation function was used than the mutual information. The second way to compare the 
two approaches is to check how close to reported landslides the identified regions of 
significant shifts are located. Figures 9 and 10 show all identified peaks numbered in order of 
significance. To assess the quality of the result, the distance between the centers of the 
recorded landslide areas from the nearest identified peaks in these shift maps has been 
calculated. The results are shown in Tables 1 and 2. From these tables, we can see that the 
mutual information-based method not only indicates that the significant total shifts are nearer 
to the marked locations of the landslides (smaller distances), but also that these are the 
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strongest peaks (higher order peaks, e.g. 3 instead of 6) in the shift maps. Since the mutual 
information based method gave more reliable results, therefore, this method was then used to 
register three other pairs of landslide images. The images are taken from the 1995-1996, 
1996-1997 and 1997-1998 landslide events in Caramanico. 

 

(a) (b) 
Figure 7. Frequencies of acceptance of the changes proposed by the various 
operators. Correlation coefficient as the similarity measure in the cost function. (b) 
Mutual information as the similarity measure in the cost function. 
 

 
Figure 8. The 2% most significant shifts: vectors  ( ( , ), ( , ))x ys i j s i j   based on the 

correlation coefficient (in magenta colour) and vectors ( ( , ), ( , ))x ys i j s i j  based on 
mutual information (in blue colour).  
 

The range of values of movement within the boxes, indicating the locations of the reported 
landslides, and around the identified corresponding locations were calculated and compared 
with the reported values. In some cases, the size of the reported movement was not given 
numerically. Only linguistic terms were used. Therefore, the size of movement in these areas 
was inferred by referring to the meaning of the terms that were used in the other cases. Terms 
like “mudslide movement”, “shallow earthflow” or “slow debris flow” were used in cases A, 
C, F, G, H and K. Only in case A the movement was given as being of at least 10m. So, the 
movement in cases C, F, G, H and K was assumed to be also the same order of magnitude. 
Cases B, I and J are rotational slides. For case B the size of the movement was given to be 
about 80m to a few hundred meters. Therefore, the size of the movement in cases I and J was 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 3, No. 3, September, 2010 
 
 

83 

assumed to be also the same order of magnitude. The results are summarised in Table 3 for 
the 1998-1999 landslide events and Table 4 for the 1995-1996, 1996-1997 and 1997-1998 
landslide events. Overall, the amount of movements around the identified landslide locations 
is in general agreement with the amount of reported movement. Only in three cases where the 
movement was reported to be of a few hundred meters the results are not consistent. From 
these results, we conclude that the algorithm can be used to detect and quantify landslide 
movements with the value of few tenth of meters. 
 

 
                               (a)                                                                 (b)
 
Figure 9. All identified peaks from the significant shifts in 25 runs. (a) Results when 
the correlation coefficient is used as the similarity measure in the cost function. (b) 
Results when mutual information is used as the similarity measure in the cost 
function. 
 

 
                               (a)                                                                     (b) 
 
Figure 10. All identified peaks from the average total shifts in 25 runs. (a) Results 
when the correlation coefficient is used as the similarity measure in the cost function. 
(b) Results when mutual information is used as the similarity measure in the cost 
function. 
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Table 1. Location of the nearest peaks to the landslide area based on 
the significant shifts. (Please refer to Figure 9.) 

Landslide 
 

Measure of similarity 
 

Nearest peak 
 

Distance 
(pixel) 

J Correlation function 
 

1 7.5300 

 Mutual information 
 

1 2.7346 
 

K Correlation function 
 

1 10.6720 
 

 Mutual information 
 

1 8.2700 
 

L Correlation function 
 

6 10.7510 
 

 Mutual information 
 

3 10.8827 
 

 
Table 2. Location of the nearest peaks to the landslide area based on 
the average shifts. (Please refer to Figure 10.) 
Landslide 

 
Measure of similarity 

 
Nearest peak 

 
Distance 
(pixel) 

J Correlation function 
 

1 4.6310 
 

 Mutual information 
 

1 4.0760 
 

K Correlation function 
 

1 10.5185 
 

 Mutual information 
 

1 7.3795 
 

L Correlation function 
 

6 8.5834 
 

 Mutual information 
 

3 10.8827 
 

 
Table 3. Comparison between the inferred or reported movement and the detected 
range of values of the movement for 1998-1999 landslide events. 
Events 
 

Case 
 

Reported 
size, (m) 

Inside box, (m) 
 

Nearest peak, (m)  

   Correlation 
function 
 

Mutual 
information 
 

Correlation 
function 
 

Mutual 
information 
 

 

 J 80-300  
 

3.43-43.29  4.73-40.89  10.24-90.89 1.97-42.41 ×  

1998-
1999 

K more than 
10  

7.74-20.92  4.65-20.09  10.65-48.88 3.93-32.05 √ 
 

 L more than 
10  

6.33-22.62  8.93-27.18  10.23-28.86 15.74-28.60 √ 
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Table 4. Comparison between the inferred or reported movement and the detected 
range of values of the movement for 1995-1998 landslide events. 

 
 
6. Conclusions 

In this paper, a new method of landslide detection and quantification based on elastic 
image registration has been presented. The method does not rely on any parametric 
model of image transformation, e.g. affine transform, and can be used to register images 
with sub-pixel accuracy even when the distortion suffered by one of them is totally 
inhomogeneous and highly localized. There are two versions of the method. One used 
the correlation function as a measure of similarity and the other used the mutual 
information. Four mathematical models of landslide deformation have been developed 
and used as the transformation operator in the image to image registration process. It 
was concluded that the exponential polynomial operator was the most useful of all. This 
is validated by the ground information, according to which, in almost all cases the 
landslides were caused by rotational type of movement. The size of detected movement 
is depends on the selection of setting parameters in the deformation operators and 
stopping criterion. The quality of the results was assessed by checking the consistency 
and repeatability of the results, repeating each experiment 25 times with a totally 
different sequence of the deformation operators including different parameter values, 
all chosen at random. From the results, it was concluded that mutual information not 
only gave consistent results for the 2% most significant shifts, but also gave more 
localized average shift vectors. In terms of the average significant local shift, the 
mutual information gave the best agreement with the reported locations of the 
landslides. From the results, it can be concluded that the elastic image registration can 
be used to monitor the landslide movement with sub-pixel accuracy even when the 
distortion suffered by one of them is totally inhomogeneous and highly localized. 
Therefore, it can be used to improve the capability of coarse spatial resolution satellite 

Events 
 

Case 
 

Reported 
size, (m) 

 

Inside box, (m) 
 

Nearest peak, (m)  

 A 10-200 
 

3.14-24.76 1.52-22.50 √ 

1995-1996 B 80-300 
 

1.57-25.01 1.97-22.50 ×  

 C more than 10 
 

5.32-20.91 6.30-25.16 √ 

 D 25 
 

4.15-23.32 3.27-29.47 √ 

1996-1997 E 30 
 

4.15-23.32 3.27-29.47 √ 

 F more than 10 
 

9.85-23.24 3.27-29.47 √ 

 G more than 10 
 

23.61-42.22 4.94-25.36 √ 

1997-1998 H more than 10 
 

3.43-20.01 6.14-15.69 √ 

 I 80-300 0.30-42.22 4.94-32.83 ×
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images and thus can be used to monitor and quantify landslide movement with sub-
pixel accuracy. However, the main drawback of this approach is that it does not include 
a mechanism that allows the distinction between a landslide and any other change on 
the surface of the Earth that caused the change in the appearance of the image. Such a 
mechanism should probably involve higher level knowledge, multispectral information 
and it should probably operate in conjunction with an expert system. 
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