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Abstract 

In this paper, we present a new blind digital image watermarking method. We introduce 

interval wavelet decomposition, which is a combination of a discrete wavelet transform and 

interval arithmetic, and we examine its properties. According to our experimental results, this 

combination is a good way to produce a kind of redundancy from the original image and to 

develop new watermarking methods. Thanks to this property, we can obtain specific 

frequency components where the watermark is embedded. We describe the procedure of our 

method in detail and its relations with the human visual system (HVS). We  also give some 

experimental results demonstrating that our method gives watermarked images of better 

quality and is robust against attacks such as clipping, marking, and JPEG and JPEG2000 

compressions.  
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1. Introduction 

Digital watermarking refers to specific information hiding techniques whose purpose is to 

embed secret information inside multimedia content, like images, video, or audio data. The 

watermark is typically added to a specific field in the original content to protect its copyright. 

In this paper we treat only still digital images, so we focus our discussions on images in the 

following.  

Many digital watermarking methods have been proposed over the last decade [2]. 

According to whether or not the original signal is during the watermark detection process, 

digital watermarking methods can also be roughly categorized into two types: non-blind and 

blind. Non-blind methods require the original image at the detection end, whereas blind 

methods do not. Blind methods are more useful than non-blind ones because the original 

image may not be available in actual scenarios.  

If we understand correctly, almost all existing watermarking methods utilize redundancy in 

the original image to embed the digital watermark. Therefore, it is important to find or 

produce the parts of the original image that are redundant for human beings based on the 

characteristics of the human visual system (HVS). In short, we need only obtain the redundant 

parts of the original image to embed the watermark.  

Interval arithmetic is mainly used in fields where rigorous mathematics is associated with 

scientific computing, including computer graphics and computer-aided design [5,7]. Interval 

arithmetic has the property that the width of an initial interval that includes the original data 

expands in proportion to the number of arithmetic computations. This property is sometimes 

called interval expansion, and an example of it is described in the next section. Interval 

expansion is, so to speak, the redundancy produced by the original data and interval 
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arithmetic. This implies that there is a possibility of applying interval arithmetic to digital 

watermarking.  

Based on this idea, we previously proposed a new non-blind digital image watermarking 

method [6], where we used discrete wavelet transforms and interval arithmetic. According to 

our experiences, it seems that the discrete wavelet transform is suited for interval arithmetic 

to obtain the redundant parts of the original image. In this paper we call such a combination 

of a discrete wavelet transform and interval arithmetic interval wavelet decomposition.  

Up to now, we have not investigated the properties of the interval wavelet decomposition, 

nor have we considered the blind type in Ref. [6]. Therefore, our goal in this paper is to 

examine the properties of the interval wavelet decomposition and its relations with the HVS, 

and to propose a new blind digital watermarking method using interval wavelet 

decomposition.  

This paper is organized as follows: in Section 2, we briefly describe the basics of interval 

arithmetic. In Section 3, we introduce the interval wavelet decomposition, and in Section 4, 

we propose a blind digital watermarking method. Then, in Section 5, we describe how to 

choose the parameters appearing in our experiments, and the relationship between our method 

and the HVS. We show experimental results in Section 6, and conclude this paper in Section 

7.  

2. Interval arithmetic 

Since many readers are probably not familiar with interval arithmetic, here we summarize 

its basic properties, described in Ref.[7].  

An interval is a set of the form  

  1 2 1 2 1 2[ ]A a a {t a t a a a R}= , = | ≤ ≤ , , ∈ ,
 

where R  denotes the set of real numbers. We denote the lower and upper bounds of an 

interval A  by 1i n f ( )A a=  and 2s u p ( )A a= , and the width of any non-empty interval A  

is defined by 2 1( )w A a a= − .  

The four basic operations, namely, addition (+), subtraction (− ), multiplication (∗ ), and 
division (/) on two intervals 1 2[ ]A a a= ,  and 1 2[ ]B b b= ,  are a set of the form  

 
A B {c a b a A b B} { }= = | ∈ , ∈ , ∈ +,−,∗, / ,o o o

 
and we can explicitly calculate them as  

 

1 1 2 2

1 2 2 1

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 2 2 1

[ ]

[ ]

[min max ]

[ ] [1 1 ] 0

A B a b a b

A B a b a b

A B {a b a b a b a b } {a b a b a b a b }

A B a a b b B

+ = + , +

− = − , −

∗ = , , , , , , ,

/ = , ∗ / , / , ∉ .

. (1) 

For interval vectors and matrices whose elements consist of intervals, these operations are 

executed at each element.  

From the basic operations (1), the width of the interval expands in proportion to the 

number of computations in general. For example, let [ 1 2 ]A = − , , [ 1 4 ]B = , , and 
[ 2 1 ]C = − , ; then, [ 0 6 ]A B+ = , , [ 1 8 ]A B C+ − = − , . The widths of A , B , and 

C  are 3 , whereas the widths of A B+  and A B C+ −  are 6 and 9, respectively. This 

phenomenon is sometimes called interval expansion. Many researchers who study 

mathematically rigorous computer-assisted proofs [5] are often annoyed by interval 

expansion. This is a typical demerit of interval arithmetic. On the contrary, however, we 



International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition    

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010    

    

    

61 

regard interval expansion as a useful tool to produce the redundant part from the original 

image.  

3. Interval wavelet decomposition 

Let us denote the original image by S . It is well known from Refs. [3,4] that the usual 

Daubechies wavelet decomposition formulae for images with support width 2 1N −  are given 

by:  

 

2 1 2 1

0 0

2 1 2 1

0 0

2 1 2 1

0 0

2 1 2 1

0 0

( ) ( 2 2 )

( ) ( 2 2 )

( ) ( 2 2 )

( ) ( 2 2 )

N N

m n

m n

N N

m n

m n

N N

m n

m n

N N

m n

m n

C i j p p S m i n j

D i j p q S m i n j

E i j q p S m i n j

F i j q q S m i n j

− −

= =

− −

= =

− −

= =

− −

= =

, = + , +

, = + , +

, = + , +

, = + , + .

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 (2) 

Here n
p  and n

q  are real parameters which have the relation 2 1( 1) nn N nq p − −= − , and the 

indices i  and j  are the locations in the horizontal and vertical directions, respectively. 
( )C i j, , ( )D i j, , ( )E i j,  and ( )F i j,  indicate low-frequency components and high-

frequency components in the vertical, horizontal, and diagonal directions, respectively.  

To accelerate the interval expansion, we define the interval wavelet decomposition based 

on (2) by  

 

2 1 2 1

0 0

2 1 2 1

0 0

2 1 2 1

0 0

2 1 2 1

0 0

( ) [1 1 ] ( 2 2 )

( ) [1 1 ] ( 2 2 )

( ) [1 1 ] ( 2 2 )

( ) [1 1

N N

m n m n m n

m n

N N

m n m n m n

m n

N N

m n m n m n

m n

N N

m n

m n

IC i j p p S m i n j

ID i j p q S m i n j

IE i j q p S m i n j

IF i j

− −

, ,
= =

− −

, ,
= =

− −

, ,
= =

− −

,
= =

, = − ∆ , + ∆ + , +

, = −∆ , + ∆ + , +

, = −∆ , + ∆ + , +

, = −∆ , + ∆

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ] ( 2 2 )m n m nq q S m i n j, + , + ,

 (3) 

where m n,∆  are positive real numbers. 

4. Watermarking Algorithm 

We assume that the binary-valued watermark W  consists of 1−  and 1 . To develop a new 

blind method, we modify one of the best-known block-based blind watermark schemes 

described in Chapter 3 in Ref. [2] and apply it to the non-blind method in Ref. [6]. In our 

method, we use a sliding window instead of a block, because the sliding-window-based 

scheme is superior to the block-based one in many cases according to our experience. Then, 

the embedding procedure is as follows:  
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Choose one of the four interval components ( IC , ID , IE , IF ) and decide the position 

at which the watermark is to be embedded. For simplicity, in this section we choose I F  and 

decide sup( )F IF′ = .   

Replace other components with floating point ones. In this case, replace IC , ID , and IE  

with C , D , and E , respectively.  

Compute the following sequence using a sliding window of 2 1k + :  

 
1

( ) sgn( ( )) ( )
(2 1)

k

l k

F i j F i j F i l j
k =−

′ ′, = , ⋅ | + , |,
+ ∑ , (4) 

where k  is a fixed natural number and  

 

1 ( 0)

sgn( ) 0 ( 0)

1 ( 0)

x

x x

x

>


= =
− < .  

 

Embed the watermark W  by computing  

 ( ) ( ) 1 ( )wF i j F i j { W i j }α, = , + , .  (5) 

Here 0 1α< <  is a given hiding factor which adjusts the robustness.  

Reconstruct the image using C E� , wF  and the inverse wavelet transform; then the 

watermarked image wS  is obtained.  

In the extraction procedure, we do not need the original image, and we just compute (6) 

below.  

Decompose w
S  into four components wS

C , wS
D , wS

E , and wS
F  by the wavelet transform.  

Compute  

 ( ) sgn( ( ) ( ) )
w we S SW i j F i j F i j, = | , | − | , |  (6) 

to extract the watermark. Here we note that we must consider the absolute values of wS
F  and 

wS
F  to avoid changing the sign of ( )

w w wS S SW F F Fα ≈ − /  corresponding to ( )wF F F− /  in (5). For 

example, assuming that 1W = , ( ) 0wF F F− / <  when 0F < , whereas ( ) 0
w
F F F− / >  when 

0F > .  

5. Considerations in the proposed algorithm 

In this section, we consider how to choose the parameters described in the previous section 

and the relationship between the redundancy and the HVS.  

5.1. Parameter selection 

Digital watermarking methods involve a trade-off between robustness and quality of the 

watermarked image. m n,∆  in (3) represents this relation. In fact, the higher the values of m n,∆ , 

the higher the redundancy of the original image. That is, the robustness is proportional to 

m n,∆ , but the quality of the watermarked image is inversely proportional to m n,∆ , and vice 

versa. Since the hiding parameter α  in (5) also determines the robustness of our 

watermarking method, it is important to find suitable values of m n,∆  and α . Furthermore, the 

natural number k  in (4) will also affect the robustness.  

We decide the parameters so as not to considerably decrease the value of the peak signal to 

noise ratio (PSNR), expressed in decibels, which is computed by  
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 10
21

1 1

255
20log

( ( ) ( ))
x y

x y

N N

wN N i j

PSNR

S i j S i j
= =

 
 = , 
 , − ,
 ∑ ∑

, (7) 

where xN  and y
N  are the sizes of the image in the horizontal and vertical directions, 

respectively.  

In our experiment, we require that the PSNR exceeds 30. According to our preliminary 

experiments, we must set 0 0 0 8m n,∆ ≤ .  to fulfill this requirement. On the other hand, k  in 

(4) does not affect the PSNR too much, but it affects the quality of the extracted watermark 

(Fig. 1).  

 

                  
 

Figure 1. Extracted watermarks when 1k = (left) and 1 0k = (right). 

 

Moreover, α  should be chosen as large as possible in order to maintain the robustness.  

Table 1 shows some of our preliminary experimental results.  

 
Table 1. PSNRs when α =0.7 (top) and 0 9α = . (bottom). 

 

  0 006m n,∆ = .
  

0 008m n,∆ = .
  

0 01m n,∆ = .
  

1k =   32.8667  30.5639  28.7266   

2k =   32.8114  30.5450  28.7212   

3k =   32.7917  30.5459  28.7321   

4k =   32.7916  30.5535  28.7452   

5k =   32.7924  30.5637  28.7580   

6k =   32.7948  30.5731  28.7692   

7k =   32.7955  30.5772  28.7781   

8k =   32.7970  30.5819  28.7843   

9k =   32.7944  30.5852  28.7899   

10k =   32.7948  30.5867  28.7932   

 

 0 006m n,∆ = .
  

0 008m n,∆ = .
  

0 01m n,∆ = .
  

1k =   32.2870  30.0218  28.1984   

2k =   32.2563  30.0127  28.2037   

3k =   32.2488  30.0211  28.2192   

4k =   32.2537  30.0356  28.2372   

5k =   32.2601  30.0488  28.2520   
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6k =   32.2673  30.0614  28.2673   

7k =   32.2711  30.0666  28.2760   

8k =   32.2716  30.0726  28.2845   

9k =   32.2729  30.0770  28.2882   

10k =   32.2724  30.0804  28.2942   

 

As a result, we choose 0 0 0 8m n,∆ = .  in (3), 1 0k =  in (4), and 0 9α = .  in (5). Of course, 

we can also set different values of m n,∆  at each pixel, but we use the same constant m n,∆  at 

all pixels in our numerical experiments for simplicity.  

5.2. Relationship between our method and HVS 

In this subsection, we investigate the relationship between the redundancy produced by the 

interval wavelet decomposition and the HVS. To this end, we prepare the following theorem. 

Theorem 1.  The interval high-frequency components ID  , I E , and I F  contain a low-

frequency component C . More precisely, the following relations hold: 

 

( )
( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

D D

E E

F F

ID i j D i j IC i j C i j R i j

IE i j E i j IC i j C i j R i j

IF i j F i j IC i j C i j R i j

θ

θ

θ

, = , + , − , + , ,

, = , + , − , + , ,

, = , + , − , + , .

. (8) 

Here Dθ , Eθ , and Fθ  are certain constants depending on np  in (2), and ( )
D

R i j, , ( )ER i j,  

and ( )FR i j,  are certain components whose values are expected to be small.  

(Proof)  

We only prove the first equality in (8), because the other equalities can be shown in the 

same manner. In this proof, we abbreviate ( )S i j,  and [ ]m n m n, ,−∆ , ∆  to i jS ,  and ( )
m n

I ,∆ , 

respectively, to save space.  

From (3), we first note that  

 

2 1 2 1

2 2

0 0

2 1 2 1 2 1 2 1

2 2 2 2

0 0 0 0

2 1 2 1

2 2

0 0

( ) [1 1 ]

( )

( ) ( )

N N

m n m n m n m i n j

m n

N N N N

m n m i n j m n m n m i n j

m n m n

N N

m n m n m i n j

m n

ID i j p q S

p q S I p q S

D i j I p q S

− −

, , + , +
= =

− − − −

+ , + , + , +
= = = =

− −

, + , +
= =

, = − ∆ , + ∆

= + ∆

= , + ∆ .

∑ ∑

∑ ∑ ∑ ∑

∑ ∑
 

Using the relation 2 1
( 1) nn N nq p − −= −  appearing in Ref. [3], the second term of the right-

hand side is denoted by  

 

2 1 2 1 2 1 2 1

2 2 2 1 2 2

0 0 0 0

2 1 2 1
2 1

2 2

0 0

( ) ( )

( )

N N N N

m n m n m i n j m n m N n m i n j

m n m n

N N
N n

m n m n m i n j

m n n

I p q S I p p S

p
I p p S

p

− − − −

, + , + , − − + , +
= = = =

− −
− −

, + , +
= =

∆ = ∆

= ∆ .

∑ ∑ ∑ ∑

∑ ∑
 

 

Next, setting 2 1n N n nc p p− −= /  and m inD n ncθ = | | , the last term above is represented by  
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2 1 2 1

2 2

0 0

2 1 2 1

2 2 2 2

0 0

2 1 2 1

2 2

0 0

( )( )

( ) ( )( )

( ) ( )

N N

m n n D D m n m i n j

m n

N N

m n D m n m i n j m n n D m n m i n j

m n

N N

D m n m n m i n j D

m n

I c p p S

I p p S I c p p S

I p p S R i j

θ θ

θ θ

θ

− −

, + , +
= =

− −
 
 , + , + , + , + 

= =

− −

, + , +
= =

∆ + −

= ∆ + ∆ −

= ∆ + , ,

∑ ∑

∑ ∑

∑ ∑
 

where  

 

2 1 2 1

2 20 0
( ) ( )( )

N N

D m n n D m n m i n jm n
R i j I c p p Sθ

− −

, + , += =
, = ∆ −∑ ∑

.  

Then, we obtain  

 

2 1 2 1

2 2

0 0

2 1 2 1

2 2

0 0

2 1 2 1

2 2

0 0

2 1 2 1 2 1 2 1

2 2

0 0 0 0

( )

( ( ) 1 1)

([1 1 ] 1)
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N N
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N N
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∆
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∑ ∑
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∑ ∑ ∑ ∑ 2 2i n j+ , + .
 

 

Therefore, we get  

 
( ) ( ) ( ( ) ( )) ( )D DID i j D i j IC i j C i j R i jθ, = , + , − , + , .

. 

 
Barni et al. proposed a weighting function using the masking characteristics of the HVS 

[1]. To compare their method with our method, we introduce the following notation:  

 

( ) if 0

( ) if 1
( )

( ) if 2

( ) if 3

l

l

l

l

l

D i j

F i j
Y i j

E i j

C i j

θ

θ

θ
θ
θ

, , =
 , , =

, = 
, , =

 , , = ,  
where the numerical subscript ( 0 1 2 3 )l l = , , ,  stands for the resolution level, and 0C , 0D , 

0
E , and 0

F  are identical to C , D , E , and F , respectively, in Section 3. That is, the 

value 1l +  represents the number of times that the discrete wavelet decomposition is carried 

out.  

They embed the watermark ( )w i jθ ,  according to the rule  

 0 0( ) ( ) ( ) ( )i j Y i j q i j w i jY
θ θ θ θβ, = , + , ,%

 (9) 

using the weighting function  

 
0 2( ) ( ) ( ) ( )q i j i j i jθ θ ., = Θ Λ , Ξ , . (10) 

 

We note that their rule (9) corresponds to  

 
( ) ( ) ( ) ( )wF i j F i j W i j F i jα, = , + , ,

 (11) 
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in our method by the relation (5).  

The first term in (10),  

 

2 if 1
( )

1 otherwise

θ
θ

 , =
Θ = 

, , (12) 

corresponds to the fact that the eye is less sensitive to noise in high-resolution bands. Since 
1

lY  (that is, l
F ) is a high-resolution band in general, they set 

1

lY  larger than the others. This 

operation corresponds to our embedding the watermark into F .  

The second term is computed in the following way:  

 
( ) 1 ( )i j L i jΛ , = + ,

 (13) 

with  

 3 3 3

1
( ) (1 1 )

256 2 2

i j
L i j C

   , = + , + ,      
 (14) 

where L(i,j) is redefined as  

 
1 ( ) if ( ) 0 5

( )
( ) otherwise

L i j L i j
L i j

L i j

− , , , < .
′ , = .

, ,
 (15) 

Since the eye is less sensitive to noise in those areas of the image where the brightness is 

high or low, the second term takes into account the local brightness based on the graylevel 

values of the low-pass version of the image. This term corresponds to F  in our method, 

because F  depends on I F , and I F  contains the low-frequency component by Theorem 1.  

The third term  

 

3 2 1 1
2

0 0 0 0

3
3 0 1 0 13 3

1
( ) [ ( )]

16 2 2

Var (1 1 )
2 2

kk k k
k x y

x y

i j
i j Y y x

i j
{Y y x }

θ

θ= = = =

= , = ,

Ξ , = + , +

⋅ + + , + +

∑ ∑∑∑
 (16) 

gives a measure of texture activity in the neighborhood of the pixel. This term is formed by 

the product of two contributions: the first is the local mean square values of k
Y θ

 in all 

components, whereas the second is the local variance of the low-frequency component 
3

3Y . 

Thanks to these contributions, they can take into account the fact that the eye is less sensitive 

to noise in highly textured areas, but, among these, is more sensitive near the edge. The third 

term also corresponds to F  in our method, because F  is produced by the sliding window 

which takes into account the neighborhood of the pixel, and F  contains both high- and low-

frequency factors.  

From these discussions, we may conclude that our method takes the HVS into 

consideration. In particular, the high-frequency component F  has information about the low-

frequency component thanks to the interval wavelet decomposition, and the mathematical 

expressions are simpler and more sophisticated than the rule proposed by Barni et al. This is a 

newly discovered merit of interval arithmetic.  

5.3. Our algorithm with a pseudorandom binary sequence 

Since we embed the watermark into one of the high-frequency components according to 

(5), there is a possibility of seeing the watermark when the watermarked image is transformed 

by the same wavelet decomposition that we use to embed the watermark. To eliminate this 



International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition    

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010    

    

    

67 

problem, we adopt one of the easiest known solutions in our algorithm; that is, we multiply 

the watermark by a pseudorandom binary sequence according to the rule 

 
( , ) ( , ){1 ( , ) ( , )}wF i j F i j W i j x i jα= +

 (17) 

instead of (5) in the embedding procedure, where ( , )x i j  is a pseudorandom binary sequence. 

On the other hand, we just multiply ( , )x i j  by wS
F  to extract the watermark in the extraction 

procedure.  

 Nevertheless, because the pseudorandom binary sequence is embedded into the whole 

original image, the clipped image contains part of this sequence. Therefore, we need another 

technique when we extract the watermark from a clipped image. To extract the watermark 

from a clipped image, we decompose the original image and the clipped image by the wavelet 

decomposition. Let ( , )C i j  and ( , )CC i j  be the low-frequency components of the original 

image and the clipped image, respectively. At the position ( , )ox oy , we compute the mean 

square error 

 

 

1 1
2

0 0

( , ) ( ( , ) ( , ))
m m

x y

ox oy C ox x oy y CC x yδ
− −

= =

= + + −∑∑
 

 

and find the minimum point ( , )mx my . After that, we extract the pseudorandom binary sequence 

corresponding to the clipped image based on ( , )mx my  and carry out the extraction procedure 

using this pseudorandom binary sequence. In this case, we need the original image in the 

extraction procedure. Although the technique is very simple, this is one disadvantage of the 

method. 

6. Experimental results 

To evaluate the performance of the proposed method, we adopted the 256-grayscale Lenna 

image of size 256×256 pixels and a binary watermark of size 128×128 pixels, as shown in 
Fig. 2. We implemented our method using INTLAB [8], which is a MATLAB toolbox that 

supports interval arithmetic, and used the PSNR to evaluate the quality of the watermarked 

image. 

In this experiment, we set 0 0 08
m n,∆ = .  and 3N =  in (3), 1 0k =  in (4), and 0 9α = .  in 

(5), and chose the component F  in Step 1 of the embedding procedure described in Section 

4.  

Fig. 3 shows the watermarked image with a PSNR of 30.08 obtained by the proposed blind 

method and the watermark extracted from the watermarked image without any attack. Figs. 

4–7 illustrate the watermarks extracted from the watermarked images under attacks such as 

marking, clipping, and JPEG and JPEG2000 compressions. The extracted images are 

degraded, but we are able to identify the existence of the watermark at a single glance in Figs. 

4, 5 and 7, but barely in Fig. 6.  

 

 

 

Clipped 



International Journal of Signal PrInternational Journal of Signal PrInternational Journal of Signal PrInternational Journal of Signal Processing, Image Processing and Pattern Recognitionocessing, Image Processing and Pattern Recognitionocessing, Image Processing and Pattern Recognitionocessing, Image Processing and Pattern Recognition    

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010    

    

    

68 

                  

Figure 2. Original image and watermark.  

 

 

 

                   

Figure 3. Watermarked image and extracted watermark without any attack 

 

                   

Figure 4. Watermarked image with marked areas and extracted watermark. 

 

 

                   

Figure 5. 188 ×  210 fragment of watermarked image and extracted watermark. 
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Figure 6. Watermarked JPEG image compressed with file size ratio 32% and extracted watermark. 

 

 

                   

Figure 7. Watermarks extracted from watermarked JPEG2000 images compressed with file size ratios 

11.8% (left) and 7.8% (right). 

 

 

We demonstrate the experimental results of our method with a pseudorandom binary 

sequence described in Section 5.3, shown below. 
 

                   
 

Figure 8. Watermarked image and extracted watermark without any attack 
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Figure 9. Watermarked image with marked areas and extracted watermark. 

 

 

                   
 

Figure 10. 200 ×  200 fragment of watermarked image and extracted watermark. 
 

 

 

                   

Figure 11. Watermarks extracted from watermarked JPEG images compressed with file size ratios 55.8% 

(left) and 41.2% (right). 
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Figure 12. Watermarks extracted from watermarked JPEG2000 images compressed with file size ratios 

32.3% (left) and 24.4% (right). 

 

As shown in Figs. 11 and 12, the robustness of the watermarking with a pseudorandom 

binary sequence against image compression is inferior to the method without a pseudorandom 

binary sequence. Since there is a possibility that the pseudorandom binary sequence is 

corrupted in the image compression process, we think that these results are natural. In future, 

we will develop a new method that rigorously takes into account the features of image 

compression methods. 

7. Conclusions 

We proposed a blind digital image watermarking method. It seems that our method is 

relatively easy to implement compared with other methods based on the frequency domain 

[1,2]. To develop our method, we introduced an interval wavelet decomposition formula and 

investigated its properties. Using the interval wavelet decomposition formula, we realized that 

every high-frequency component contains the low-frequency component. Since the low-

frequency component is the main part of the original image, these high-frequency 

components also contain it. This means that every high-frequency component has a certain 

redundancy. We also examined the relationship between this redundancy and the human 

visual system (HVS), and realized that our method takes the HVS into consideration 

automatically; that is to say, it does not require additional functions, such as function (10) and 

its related functions, to consider the HVS.  

Experimental results demonstrate that our method gives better-quality watermarked images 

and has the robustness against some attacks such as clipping, marking, and JPEG and 

JPEG2000 compressions.  

At present, our digital watermarking method may not have sufficient robustness in 

practice. However, this work gives a novel digital watermarking method, and besides, it may 

open up new possibilities for interval arithmetic. In this sense, we believe that our approach is 

very important in the fields of both digital watermarking and interval arithmetic. 
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