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Abstract 

This paper presents a novel approach to reducing ringing artifact in digitally restored 
images by using multi-resolution edge map. The performance of reducing ringing artifacts 
depends on the accurate classification of the local features in the image. The discrete wavelet 
transform (DWT) provides effective insight into both spatial and frequency characteristics of 
an image. Through the DWT analysis, we show that ringing artifacts can be suppressed to a 
great extent by using multiple-level edge maps, which provide enhanced matching to local 
edges. Base on the experimental results, the proposed method can reduce ringing artifacts 
with minimized edge degradation by using DWT analysis. 
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1. Introduction 

In recent times, digital image restoration techniques have attracted increasing interests in 
various applications such as super-resolution and digital auto-focusing, to name a few. 
Therefore, the quality of the image is an important factor. As the image restoration technique 
has wider application areas, the ringing artifacts removal technique, which is the side effects 
of the image restoration process, becomes more necessary. 

Conventional image restoration algorithms, such as the constrained least squares (CLS) 
and the Wiener filter, try to reduce the processing time by using fast fourier transform (FFT). 
These approaches are often inappropriate for real applications because of linear space 
invariance assumption, which regularizes the restoration operation uniformly across the entire 
image. Such frequency-domain image restoration techniques result in ringing artifacts in the 
neighborhood of abrupt intensity transitions due to the uniform amplification of the high-
frequency component [1]. Ringing artifacts generally results from the poor match between the 
stationary image model and the actual image data [2]. There have been various researches for 
reducing ringing artifacts. The adaptive post-filtering approach extracts local statistics and 
constructs an edge map of the image [3]. Accurate localization of edge alleviates ringing 
artifacts by using quantized discrete cosine transform (DCT) coefficients of a block 
containing a straight edge [4]. In this paper, we present a multi-resolution, computationally 
simple post-filtering approach to reduce ringing artifacts in the restored images.  
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This paper is organized as follows. In section 2, we summarize a theoretical background. 
In section 3, we propose a novel ringing artifacts removal method, in which the DWT based 
adaptive edge map is introduced to suppress ringing and region classification. Experimental 
results and conclusions are respectively given in section 4 and 5.  

 
2. Background on Discrete Wavelets Transform 

The DWT represents a one-dimensional (1D) continuous-time signal ( )x t , [0,1]t  
in terms of shifted versions of a lowpass scaling function  and shifted and dilated 
versions of a prototype band-pass wavelet function   [5]. For special choices of  and 
 , the functions /2

, ( ) : 2 (2 )j j
j k t t k    and /2

, ( ) : 2 (2 )j j
j k t t k    with ,j k  

form an orthonormal basis. The parameter j  corresponds to the scale of the analysis, 
whereas k  corresponds to the location. A finite-resolution approximation Jx to x is 
given 
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where the scaling coefficients 
0

: ,
oj k j kS x    and wavelet coefficients 

0
: ,jk j kw x  . J  controls the resolution of the wavelet reconstruction Jx  of x . In 

fact, the 2L  norm 
2

Jx x as J  . 

For a discrete-time signal with N  samples, the N  wavelet coefficients can be 
efficiently computed in ( )O N  operations using a filterbank consisting of lowpass 
filters, highpass filters, upsamplers, and decimators [5]. For periodic signals, which are 
natural when analyzing circular convolution, filterbanks implementing circular 
convolution are employed. Multidimensional DWTs are computed by wavelet-
transforming alternately along each dimension [5][6]. 

 
3. Ringing Artifacts Removal Using the DWT-Based Adaptive Edge Map 

In this section we describe the proposed ringing reduction algorithm. The basic idea of the 
proposed algorithm is the application of DWT for making an edge map. Based on the human 
visual system, each pixel in an image plays a different role in describing the image. Since the 
human visual system is very sensitive to high frequency changes and especially to edges in 
the image, the edges are very important to the perception of the image [3]. Therefore, the 
proposed algorithm is to classify local features in the restored image, and adaptively apply the 
smoothness constraints. As mentioned in the previous section, the restored image has ringing 
artifacts. In order to reduce ringing artifacts in the restored Image, we present detailed 
descriptions for edge extraction and the post filtering in the following subsections, 
respectively. 

 

3.1. Wavelet Analysis for Extracting Edge Region 

We suppose to have a restored image with ringing artifacts, which is the output of the well-
known constraint least square (CLS) filter [7]. We use the incorporation of wavelet 
decomposition for finding the edge. The 1D transforms given in the previous section are 
easily extended to two-dimensional (2D) functions like images. A 2D scaling function, 
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( , )x y , and three 2D wavelets, ),( yxH , ),( yxV , and ),( yxD , are required for 2D 
DWT.  Each is the product of a 1D scaling function   and corresponding wavelet  . 
The 2D separable scaling function 

( , ) ( ) ( ),x y x y    (2)

and three 2D separable, “directionally sensitive” wavelets are defined as 

( , ) ( ) ( ),H x y x y    (3)

( , ) ( ) ( ),V x y x y    (4)

and 

( , ) ( ) ( ).D x y x y    (5)

These wavelet measure functional variations along different directions: H measures 
variations along columns (for example, horizontal edges), V  responds to variations 
along rows (like vertical edges), and D corresponds to variations along diagonals. The 
directional sensitivity is a natural consequence of the reparability imposed by equations 
(3) to (5); Decomposition using these for subimages provides the 2D of ( , )f x y  of size 
M N  as 
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for { , , },i H V D
 

(7)

where index i  identifies the directional wavelets in equations (3) to (5). Superscript i  
has one of VH , and D . 

 

 
(a)                                                                  (b)  

Figure. 1. Two-dimensional wavelet transform (a) First-level decomposition (b) 
Second-level decomposition, L denotes a low band, H denote a high band, and 

the subscript denotes the number of the level. 
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(a) (b) 

Figure. 2. First and second level decomposition (a) Degraded image of size 
512X512 first-level decomposition (b) Degraded image of size 512X512 second-

level decomposition. 
 

 
(a) (b) 

Figure. 3. Wavelets in edge detection (a) The edge resulting from computing 
the absolute value of the inverse transform  in first-level, (b) The edge 
resulting from computing the absolute value of the inverse transform in 

second- level. 

Fig. 1. shows a 2D wavelet transform. The horizontal, vertical, and diagonal component of 
the wavelet transform using Daubechies D4 wavelet is shown in Fig. 2(a). Note, for example, 
that the horizontal edges of the original image are present in the horizontal detail coefficients 
of the upper-right quadrant of Fig. 2(a). The vertical edges of the image can be similarly 
identified in the vertical detail coefficients of the lower-left quadrant. To combine this 
information into a single edge image, we simply set the approximation coefficients to zero, 
compute the inverse transform, and take the edge image resulting from the absolute value. In 
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the same way, we take the edge image resulting in second-level decomposition Fig. 2(b). Fig. 
3(a) shows edge detection results by computing the absolute value of the inverse transform 
coefficients in the first level and Fig. 3(b) in the second level. 

The main idea of the proposed method comes from the observation that the edge image 
resulting from the second level is clearer than the first level. A compromise between the two 
images obtains the more accurate edge map. 
 

3.2. Ringing Artifacts Removal 

 

  

(a) (b) 

Figure. 4. Mask used to control filtering for alleviation of ringing artifacts. (a) 
Original image, (b) Mask generated by selecting the proposed edge map 

(black), the pixel surrounding the edges (white). 

According to the previous analysis, we find the major edge map. Ringing artifacts 
generally occur in the neighborhood of sharp edges in the image [8]. Such regions are marked 
both by the occurrence of high frequency entailed in the description of the sharp edge 
together with smooth regions on both sides of the edge. Ringing–artifact-prone regions are 
detected by a series of morphological operations. The edge map is dilated to indicate the 
region around the major edges. Then the actual edges are excluded. Fig. 4 (b) shows the 
ringing-artifact-prone region rendered by white color. Variation of grayscale values inside the 
detected region are due to the oscillations introduced by the ringing artifacts. Therefore the 
average variance of the pixel values in the DWT domain can be used to quantify the 
degradation. The classification is obtained by applying a pre-specified threshold to the 
variance values. Candidate edge regions ( ie ) are obtained as 

              
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where  HLy ,  LHy , and HHy  respectively represent vertical, horizontal, and diagonal wavelet 
transform coefficients. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 2, No. 4, December, 2009 

 

 

100 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure. 5. (a) Original image, (b) Degraded image, (c) Image restored by CLS 
filter with ringing artifacts, (d) Result image using proposed algorithm, (e) Crop 

by 115X105 image from c, (f) Crop by 115X105 image from d. 
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A smoothing operator, such as Gaussian filtering, alleviates ringing artifacts at the cost of 
blurring the sharp edges and other detail in the image. This trade-off has motivated adaptive 
methods. One approach is to locate edges in the image and to perform filtering operation on 
condition to the proximity to edges [4]. The regions are marked as smooth, edge, and texture 
regions. An adaptive 3x3 low pass filter is applied to the pixel surrounding the edges as 
shown with white color. Since ringing noise and texture pixels have similar variance values, 
the filter with the large central weight is applied to the texture pixels far away from the edges 
to preserve the details, and the smoothing filter is applied to the pixels close to edges to 
selectively filter out the ringing noise. 

 
 

 
(a) (b) 

 
(c) (d) 

Figure. 6. (a) Image restored by CLS filter with ringing artifacts for the vase 
image with ringing,  (b) Result image using proposed algorithm, (c) Crop by 

115X105 image from a, (d) Crop by 115X105 image from b. 
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(a) (b) (c) 

 

(d) (e) (f) 

  
(g) (h) (i) 

Figure. 7. (a) Original Lena image, (b) Blurred image with 11X11 uniform blur 
and 50dB gaussian noise, (c) Restored image by iterative method [1], (d) 

Restored image by adaptive iterative method, (e) Restored image by CLS filter 
with ringing artifact, (f) Bilateral filtering image with sigma 2, (g) Bilateral 

filtering image with sigma 20, (h) The result using proposed region 
classification and adaptive gaussian filtering (i) The result using proposed 

algorithm. 
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Table 1. PSNR values of various image restoration algorithms 

Image in Fig. 7. (b) (c) (d) (e) (f) (g) (h) (i) 

PSNR(dB) 23.11 26.92 26.94 27.11 27.24 27.85 28.81 31.36 

 
4. Experimental Results 

In this section, we analyze the performance of the proposed ringing reduction algorithm 
using both objective and subjective measures. For the experiment, we used standard test 
images, 512x512, 8bit, Bike and Lena. Figs. 5(a) and (b) show the degraded image by 7X7 
uniform blur and 40dB Gaussian noise, and Fig. 5(c) shows the restored Bike image by 
using the CLS filter. Fig. 5(d) shows the filtered result by using the proposed ringing 
reduction algorithm. Figs. 5(e) and (f) show the magnified versions of Figs. 5(c) and (d), 
respectively. 

Fig. 6(a) shows the restored image by using the CLS filter with the same degraded 
model. Fig. 6(b) shows the result of the proposed algorithm. Figs. 6(c) and (d) show the 
magnified versions of Figs. 6(a) and (b), respectively. 

The proposed algorithm is compared with various ringing reduction algorithms such as an 
iterative method [9] and bilateral filtering [10] in the sense of peak-to-peak signal-to-noise 
ratio (PSNR). As shown in Fig. 7, the proposed algorithm can effectively reduce ringing 
artifacts with preserving edge details near eyes and the hat and PSNR values are summarized 
in Table 1. 
 
5. Conclusion 

In this paper, we propose an adaptive ringing reduction algorithm using wavelet-based 
multi-resolution analysis. The proposed method shows significant improvement in accuracy 
over existing methods. The location of edges can be accurately estimated due to the wavelet 
representation. The proposed algorithm can also be applied to the ringing artifact removal in 
compressed images. Experimental results show effectively removed ringing artifacts with 
significant reduction in computational load. The simplified algorithm using the first and the 
second level of wavelet decomposition has the advantage over many post-processing 
algorithm. 

 
Acknowledgement 

     This work was supported by Basic Science Research Program through National Research 
Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology 
(2009-0081059) and by the MKE (The Ministry of Knowledge Economy), Korea, under the 
HNRC(Home Network Research Center)–ITRC (Information Technology Research Center) 
support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-
2009-C1090-0902-0035). 

 
References 
 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 2, No. 4, December, 2009 

 

 

104 

[1] R. Lagendijk, J. Biemond, and D. Boekee, “Regularized Iterative Image Restoration with Ringing Reduction,” 
IEEE Trans. Acoust, Speech, Signal Processing, vol. 36, no. 12, pp. 1874-1887, December 1988. 

[2] A. Ritzgerrell, E. Dowski, and W. Cathey, “Defocusing Transfer Function for Circularly Symmetric Pupils,” 
Applied Optics, vol. 36, no. 23, pp. 5796 – 5804, August 1997. 

[3] H. Kong, A. Vetro, and H. Sun, “Edge Map Guided Adaptive Post-Filter for Blocking and Ringing Artifacts 
Removal,” IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 3, pp. 929-932, May 2004. 

[4] I. Popovici and W. Withers, “Locating Edges and Removing Ringing Artifacts in JPEG Image by Frequency-
Domain Analyses,” IEEE Trans. Image Processing, vol. 16, no. 5, pp. 1470-1474, May 2007. 

[5] S. Mallat, A Wavelet Tour of Signal Processing, New York: Academic Press, 1998. 
[6] D. Donoho, “De-Noising by Soft-Thresholding,” IEEE Trans. Information Theory, vol. 41, pp 613-627, May 

1995. 
[7] R. Gonzalez and R. Woods, Digital Image Processing, 3nd ed., Prentice Hall, 2007. 
[8] S. Yang, Y. Hu, T. Nguyen, and D.Tull, “Maximum-Likelihood Parameter Estimation for Image Ringing-

Artifact Removal,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no.8, pp. 963-973, 
August 2001. 

[9] L. Yuan, J. Sun, L. Quan, H. Shum, “Progressive Inter–scale and Intra–scale Non–blind Image 
Deconvolution, ” ACM Trans. Graph, vol. 27, no. 3, pp. 74:1-74:10, August 2008. 

[10] M. Zhang and B. Gunturk, “Multiresolution Bilateral Filtering for Image Denoising,” IEEE Trans. Image 
Processing, vol.17, no. 12, pp. 2324 – 2333, December 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 2, No. 4, December, 2009 

 

 

105 

 

Authors 
 

Sangjin Kim was born in Seoul, Korea in 1978. He received the B.S. 
degree in electronic engineering from Kangnam University, Korea, in 
2003 and M.S degree in image processing from Chung-Ang University, 
Korea, in 2005. Currently, he is pursuing Ph.D. degree in image 
processing at Chung-Ang University. His research interests include 
image restoration, computational camera, image and video processing, 
and real-time object tracking. 

Sinyoung Jun was born in Jinhae, Korea in 1982. He received the 
B.S. degree in electronic engineering from Chung-Ang University, 
Korea, in 2008. Currently, he is pursuing M.S. degree in image 
processing at Chung-Ang University. His research interests include 
image restoration, digital auto-focusing , and computational camera. 
 

 

Eunsung Lee was born in Seoul, Korea in 1982. He received the B.S. 
degree in electronic engineering from Chung-Ang University, Korea, in 
2009. Currently, he is pursuing M.S. degree in image processing at 
Chung-Ang University. His research interests include image restoration, 
computational camera, and image enhancement. 

 

 

Jeongho Shin received the B.S. and the M.S. degrees in electronic 
engineering and the Ph.D. degree in image engineering from Chung-Ang 
University, Seoul, Korea, in 1994, 1998, and 2001, respectively. 
Currently, he is an Assistant Professor at the Department of Web 
Information Engineering, Hankyong National University, Anseong, 
Korea. From 2003 to 2006, he was a Research Professor at the 
Department of Image Engineering, Chung-Ang University. His current 
research interests include enhancement and restoration of image and 

video, object tracking, and data fusion. 

 Joonki Paik was born in Seoul, Korea in 1960.  He received the 
B.S. degree in control and instrumentation engineering from Seoul 
National University in 1984.  He received the M.S. and the Ph.D. 
degrees in electrical engineering and computer science from 
Northwestern University in 1987 and 1990, respectively. After 
getting the Ph.D. degree, he joined Samsung Electronics, where he 
designed the image stabilization chip sets for consumer’s 
camcorders.  Since 1993, he has worked for Chung-Ang University, 

Seoul, Korea, where he is currently a Professor in the Graduate school of Advanced 
Imaging Science, Multimedia and Film. From 1999 to 2002, he was a visiting Professor 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 2, No. 4, December, 2009 

 

 

106 

at the Department of Electrical and Computer Engineering at the University of 
Tennessee, Knoxville. From 2005 to 2007 he served as Dean of the Graduate School of 
Advanced Imaging Science, Multimedia, and Film. Dr. Paik is currently the head of the 
Image Processing and Intelligent Systems Laboratory, which is supported by the Brain 
Korea 21 Project, by the Korean Ministry of Information and Communication under 
ITRC-HNRC, and by Seoul Future Contents Convergence Cluster established by Seoul 
Research and Business Development (R&BD) Program. 


