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Abstract 
 

 In this paper we present an adaptive multilevel total variational (TV) method for image 
denoising which utilizes TV partial differential equation (PDE) models and exploits the 
multiresolution properties of wavelets. The adaptive multilevel TV method provides fast 
adaptive wavelet-based solvers for the TV model. Our approach employs a wavelet 
collocation method applied to the TV model using two-dimensional anisotropic tensor 
product of Daubechies wavelets. The algorithm inherently combines the denoising property of 
wavelet compression algorithms with that of the TV model, and produces results superior to 
each method when implemented alone. It exploits the edge preservation property of the TV 
model to reduce the oscillations that may be generated around the edges in wavelet 
compression. In contrast with previous work combining TV denoising with wavelet 
compression, the method presented in this paper treats the numerical solution in a novel way 
which decreases the computational cost associated with the solution of the TV model. We 
present a detailed description of our method and results which indicate that a combination of 
wavelet based denoising techniques with the TV model produces superior results, for a 
fraction of the computational cost.  
 
 Keywords: Wavelets, Collocation, Adaptive Grid Refinement, Image Denoising 
 

1. Introduction 

 In this paper, we present an adaptive multilevel total variation (TV) method for image 
denoising which utilizes TV partial differential equation (PDE) model and exploits the 
multiresolution properties of wavelets. The purpose of this paper is to develop a fast method 
which combines TV denoising with denoising from wavelet compression, which is known to 
produce results which are superior to either method alone. In contrast with previous work 
combining TV denoising with wavelet compression [1], the method presented in this paper 
treats the numerical solution in a novel way which decreases the computational cost 
associated with the solution of the TV model. 

 Adaptive multilevel TV methods can prove useful in applications in which noisy images 
are utilized to produce immediate feedback. Such applications include but are not limited to 
real-time sensor image data, biometric imaging (e.g. iris recognition, fingerprint recognition), 
and images of fast moving military objects. In this paper we combine wavelets and TV PDE 
image denoising techniques in a natural way to produce denoising results which have 
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improved image quality and compression ratio compared to regular wavelet image denoising, 
and for a fraction of the computational cost compared to other state-of-the-art techniques. 

 The theory of wavelets and variational partial differential equations (PDEs) have been 
used for a number of years in image processing. Both techniques are promising in the area of 
images denoising. We exploit multiscale phenomena in order to provide efficient and accurate 
image denoising techniques [2]. Image denoising and compression using the thresholding of 
wavelet coefficients has been a widely used technique. Among the pioneering work on 
wavelet shrinkage denoising are those by Weaver et. al. [3] and Donoho-Johnstone [4]. The 
computational challenge lies in how to determine a methodology for removing insignificant 
wavelet coefficients, while keeping the significant ones. Various techniques have been 
adopted such as hard and soft thresholding [5]. Higher dimensional wavelets such as shearlets 
and curvelets, and those obtained from more sophisticated tensor products of univariate 
wavelets are been used to improve on wavelet image denoising to reduce effects such as the 
Gibbs phenomena - the oscillations near discontinuities, c.f. [6]. 

 PDE models have been used in recent decades in image processing by solving the PDEs 
in the image domain. Since the image is considered as a continuous function, sharp edges and 
other 2-dimensional phenomena can be modeled into this equation through the application of 
concepts such as curvature and gradients. As a result these methods are able to produce sharp 
edges and improved images. Some PDE models that have been used include the Perona-Malik 
anisotropic diffusion method [7], Rudin-Osher-Fatemi total variational method [8], Mumford-
Shah model [9], and Alvarez-Guichard-Lions model [10]. 

 The localization property of wavelets in space and scale makes them suitable for adaptive 
methods for solving PDEs. Images with sharp edges can be approximated with few number of 
wavelet bases also known as the degrees of freedom. While at the same time preserving the 
edges and preventing the effects of Gibbs phenomena. The approximation error of wavelets 
can be obtained by using the fact that polynomials of up to a certain degree are in the span of 
the wavelets basis. A review of this can be found in [11]. 

 Two widely used wavelet-based multilevel methods for solving PDEs are those involving 
Galerkin [12], and collocation procedures [13, 14]. In Galerkin methods, the vanishing 
moments of orthogonal wavelet bases are used to approximate the derivatives. Unlike the 
collocation methods, the Galerkin-based methods are known to have difficulties with 
nonlinear terms, boundary conditions, and the geometries of the computational domain [15]. 
The collocation-based methods [14, 16] are often used to avoid these difficulties. In the 
collocation methods the derivatives can be computed in the wavelet space using methods such 
as matrix derivatives [14], finite difference operators [17], and the computation of the 
derivative in the image space and projecting the results in the wavelet space[18]. 

 In this paper we focus on improving the speed and the efficiency of existing algorithms 
for image denoising. In [1] the authors used wavelet-collocation methods to solve the 
underlying PDEs by projection back and forth from wavelet space to image space to 
approximate the derivatives and nonlinearities in the TV operator. In this article, we 
approximate a differential operator in a particular coordinate direction by performing wavelet 
projections in that coordinate direction alone. This increases the speed of the method since we 
can exploit sparsity structures in order to perform the finite differencing. We draw an 
important distinction between our method and that in [1], which is that the nonlinearity is 
evaluated in the wavelet domain as opposed to the image domain, which along with our 
method of finite differencing, allows for efficient computations. Although there are marked 
differences between treating the nonlinearity in in the image domain versus the wavelet 
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domain, our computations do indicate an improvement of the peak signal-to-noise ratio 
(PSNR) over the TV denoising method and the wavelet denoising method. 

 In addition, we want to contrast our method with the Wavelet-Optimized Finite 
Difference Methods (WOFD), (WOFD2), in e.g. [13]. In this method, wavelet thresholding is 
utilized to generate a sparse grid, and then the PDE is approximated on the sparse grid in the 
physical space using usual sparse PDE differencing techniques. This method is useful from 
the standpoint of typical PDEs in mathematical physics as problems from nonlinearities and 
boundary conditions can be avoided. However, from our computational experiments, such 
methods are not necessarily appropriate for approximating the TV model, as one would lose 
the superior ability of wavelets to compress and interpolate image data. 

 Among the existing state-of-the-art methods are Dabov-Foi-Katkovnik-Egiazarian 
collaborative filtering [19], Portilla-Strela-Wainwright-Simoncelli [20], Kervrann-Boulanger 
[21], and Buades-Coll-Morel nonlocal means [22]. In the experiments we compared our 
method with that of nonlocal means [22]. We used the Matlab nonlocal means toolbox for our 
computations. It is significant to note that the proposed method can be applied to other PDE 
models in image processing such as Perona-Malik filtering [7]. 

 Our results indicate that using wavelets to compress TV denoised images results in a 
higher compression ratio than the regular wavelet thresholding methods. Superior denoised 
images are obtained from the adaptive multilevel TV method when compared to those 
obtained from wavelet or TV denoising alone. In addition, we note that solving the PDE in 
the wavelet domain is less expensive than solving the PDE in the image domain on the full 
grid. We note that the denoised images obtained from using the method of nonlocal means are 
superior, but this algorithm is vastly more computationally intensive. 

 The paper is organized as follows: Section two introduces the total variation model and 
discusses the numerical technique used to solve the associated PDE. Section three reviews the 
background behind Daubechies-type wavelets and indicates how wavelet coefficients may be 
used to generate sparse grids for use in numerical PDE computations. Section four presents 
results from several numerical experiments involving the TV model, wavelet-based image 
denoising, and the wavelet multilevel solution of the TV model. Finally, Section five provides 
concluding remarks and gives direction for future research. 
 

2. The TV Model 

 In this section, we discuss the numerical implementation of the TV model. Let   be a 
closed bounded domain in 2R . The solution u  is obtained by finding a stationary solution to 
the following initial value problem 
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where f  is the original (noisy) image, 222|:=|   yx uuu  is used to regularize the 

gradient, and u  is subject to boundary conditions. In the case of image processing, several 
different types of boundary conditions are implemented. In the articles [23, 8], zero Neumann 
boundary conditions are utilized. However, it is also possible to implement other boundary 
conditions. In the case of evaluating finite difference quotients associated with the spatial 
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discretization of (1), one can implement the ``boundary conditions" by constant extension, 
periodic extension, or reflection. 
 In this paper, we utilize the fairly naive solution approach which is to discretize in time 
using the forward Euler finite difference method and apply second order finite difference 
estimates to approximate the differential operators found in (1), although more sophisticated 
models and solution techniques have been utilized in the literature. We derive the 
approximation scheme by first applying the divergence operator through the second term in 
(1) and discretizing each of the resulting differential operators. 

Set fu :=0  and for 1,2,=n  solve:  

  ,)()(=1 nnnn ufuAtuu    (3) 
 where  

 .
)(

2)()(
:=)(

3/2222

2222







yx

xyyxxxyyyx

uu

uuuuuuu
uA   (4) 

 
 We implement each of the differential operators in (4) as follows. The first order 
derivatives are discretized by the symmetric difference quotient, the second order derivatives 
are discretized by the usual second order difference quotients, while the mixed derivative 
term is discretized by successively applying the first order symmetric difference quotients. 
That is:  
   ,/2),(),( xxxx hyhxuyhxuu    ,/2),(),( yyyy hhyxuhyxuu   
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3. Wavelet Multilevel Methods 
 
 This section describes the multiresolution properties of wavelets and how they are used in 
the implementation of wavelet-based adaptive-collocation methods for solving PDEs. 
Wavelets can be localized in space and scale and are designed to represent functions, data and 
operators in different frequency components. Here we focus our attention on Daubechies-type 
wavelets [24] and discuss the finite dimensional transform. We show how wavelets can be 
used to generate a sparse grid for the wavelet computational domain and how this is 
effectively used to compute the derivatives in the image domain. The section includes the 
generation of 2-dimensional wavelets using tensor products.  
 
3.1. Daubechies-based Wavelet Approximation 

  The Daubechies-based wavelets are defined in [24] and they involve a scaling function   
and a wavelet function  . A dilation equation for a compactly supported scaling function 
satisfies the equation  
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where the support of )(x  is 1][0,2 p  and p  is the order of the scaling function. The 
corresponding wavelet function is given by  
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with support of )(x  on the interval ]1,[ pp  . The constants kh  and kg  are the low-pass 

and high-pass filter coefficients respectively. The function   satisfies the conditions  
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known as the vanishing moments. The number of wavelets vanishing moments p  is related 
to the approximation error of wavelet basis functions. The following functions  
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are elements of the scaling and wavelets orthonormal basis respectively. The index j  is the 

dilation parameter and the index k  the translation parameter. The translated scaling functions 
and the corresponding translated wavelet functions span the spaces denoted jV  and jW  

respectively and are given by  
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 where jjj WVV  =1  and 2
1 LVV jj    . Hence it can be deduced that 
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 Without loss of generality we define jV  and jW  as the spaces corresponding to a finite 

interval and given by  
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 where 1jV  can be expressed as  
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3.2. Wavelets in Two Spatial Dimensions 

 Let the computational domain be a rectangular box. The anisotropic tensor product for the 
two-dimensional wavelets is defined by  
 ,,,,),()(= 21212,21,12,2:1,1

Zkkjjyx kjkjkjkj    (13) 

and form an orthogonal basis in )( 22 RL . To maintain multiresolution properties of the 
wavelets we define  
 ),()(=),( ,,,, yxyx njkjnkj    (14) 

such that at level j , jV  = jj VV   spans )( 22 RL . The corresponding orthogonal 

complement of jV  is  

 ).()()(= jjjjjjj WVVWWW W   (15) 

The detail space is then spanned by three wavelets  
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where 1  is the diagonal, 2  the vertical, and 3  the horizontal. This method leads to a 

linear order of successively finer approximations spaces as in the univariate case. We use this 
particular method to generate the scaling and wavelet coefficients utilized in our experiments. 
Note that more sophisticated 2-dimensional wavelet representations exist. It would be 
interesting for future study to see how effective exotic wavelets are when utilized in wavelet-
collocation PDE methods. 
 
3.3. The Adaptive Multilevel TV Method 

 In this section, we describe the adaptive multilevel TV method in which a solution of the 
TV model is obtained by discretizing the corresponding PDE with respect to the wavelet 
coefficients. Borrowing the notation from [1], we rewrite the usual representation of a 
function f  in terms of scaling and wavelet functions,  
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as a single basis with appropriate indexing  
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where the ``wavelet" coefficients are found by the formula  
 .)(,= ,,  xf kjkj    (17) 

 In general, we think of an adaptive multilevel method in the following way. In order to 
approximate the solution to the partial differential equation  
 ),()(= ufuut  A   (18) 

where A  is some abstract, potentially nonlinear, operator, we instead approximate the 
solution to the system of ordinary differential equations (ODEs)  
 ,,),()(=)( ,,,, kjkjkjkjtkj   A   (19) 
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where by kj , , we denote the wavelet coefficients associated with the original ``noisy" image 

f  (17), and by kj , , denote the wavelet coefficients associated with the solution to the 

system of ODEs (18). 
 The implementation however is not as straightforward as one might think. One has to 
interpret the mathematical operators within the operator A  in terms of the wavelet 
coefficients. One would naturally expect with the compression and interpolation properties of 
wavelets, the numerical solution of such a system would require far less computational effort 
than a full scale brute force computational routine. 
 Specifically, for the TV model, the operator A  has representation  
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which contains both partial differential operators and nonlinearities. 
 In [1], the authors treated the numerical solution of (19) by solving  
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which means that for every time step, the authors transform the wavelet coefficients back into 
the full spatial domain, calculate the operator, and then transform back. The authors were able 
to obtain results superior to that than either the TV model or wavelet compression alone can 
provide. In this paper, we consider an adaptive multilevel solution technique which is fully 
implemented in wavelet space and therefore can be optimized for computational speed in 
addition to solution efficacy. 
 In this article, we provide a solution technique which utilizes the time iteration scheme 
(20) along with the spatial discretization  

 yykjxkjkj ))()[((:=))( ,
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which is the same as (4), discretized entirely in the wavelet space. The principal differences 
between our method and the method in [1] is that the nonlinearity is treated in wavelet space 
(eliminating the need to transform all the way back to the spatial domain) and that partial 
derivative calculations exploit the sparsity structure from wavelet compression. 
 What we have left to explain is the numerical approximation of the differential operators 
in (21). Essentially, we follow the approach in [25, 26]. A computational procedure for 
implementing the anistropic tensor product wavelet transform is simpler to think about than 
even the theoretical consideration. Essentially, one takes the transform in one spatial 
dimension, and then takes the transform in the other spatial dimension(s). One interesting fact 
to notice is that compact finite difference operators in one spatial dimension and wavelet 
transforms in any of the other spatial dimensions commute. Therefore, we discretize each of 
the derivatives in (21) by taking the inverse transform in one coordinate direction, evaluating 
the finite difference stencil, and then transforming back into the tensor product wavelet space. 
Note that for the mixed derivative term, we evaluate the partial with respect to x  first and 
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then the partial with respect to y  (the same effect as the discretization mentioned in Section 
2.) 
 For example, consider the discretization of one of the terms in (21), xkj )( , . In order to 

obtain this, one performs the following operations: 

    1.  Transform kj ,  by performing 1
xP  (the inverse transform in the `` x " coordinate 

direction.)  
    2.  Evaluate the finite difference quotient  

  xxxx hyhxuyhxuu /2),(),(  .  

    3.  Find xkj )( ,  by performing xP  (the forward transform in the `` x " coordinate 

direction.)   
Note that the numerical values obtained from this procedure are exactly the same as when 
transforming all the way back to the spatial domain, as in [1]. 
 Because of the fact that wavelet transforms and finite difference stencils commute in 
different spatial directions, we achieve the same (in infinite precision arithmetic) values for 
the difference quotients as when transforming all the way back to the full spatial domain. 
However, when considering wavelet compression, sparsity structures can be exploited in 
which the code can be optimized to run extremely fast. For a detailed implementation of this, 
see [25, 26], and the references therein. 
 
4.  Numerical Experiments 

 In this section, we present a series of numerical experiments which show that image 
denoising performed with the adaptive multilevel TV method in (20), (21) produces 
numerical results which are as good if not better than those produced with either the usual 
wavelet threshold denoising or the TV model on the full grid alone. For each numerical 
experiment, we begin with a noisy image and present numerical results associated with four 
denoising algorithms: TV denoising, denoising by wavelet hard thresholding, denoising by 
the adaptive multilevel TV method, and denoising by nonlocal means. We see that in terms of 
providing the best quality denoised image, nonlocal means (NL) performs best. However, the 
adaptive multilevel TV method provides a significant reduction in computational time. We 
consider three distinct cases to illustrate the advantages and disadvantages of each of the 
computational algorithms. For the first experiment, we consider the Lenna image corrupted 
with a relatively small amount of noise. The Lenna image possesses many details, so that 
wavelet denoising and the adaptive multilevel TV model are not significanly better than the 
TV model. For the second experiment, we consider an image of concentric circles corrupted 
with a higher amount of noise. We notice that the higher amount of noise will challenge the 
algorithm, and the lack of details means that wavelet denoising and the adaptive multilevel 
TV method will outperform the TV model. For the final experiment, we consider an image 
with large amount of background and a rocket in the lower right portion of the image. For 
such images, the adaptive multilevel TV method produces PSNR levels which are comparable 
with the superior nonlocal means algorithm. 
 In order to utilize the grid adaptation strategy implemented in [13], images must be of 
size NN  , where N  is one more than a power of two. For our experiments, we utilize 
images which are 257257  pixels, thus the highest possible level of wavelet decomposition 
is 8. In our experiments, however, our wavelet multilevel method was based on a four level 
wavelet decomposition using Daubechies wavelets of order four. In order to measure the 
effectiveness of each of our denoising strategies, we utilize the PSNR defined by  
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where g  denotes an original image, and u  denotes the image after noise is added and then 
one of our noise reduction strategies is applied. 
 We implemented the adaptive wavelet multiscale TV model in a non-optimized way in 
C++ and in an optimized way using the software package AWFD (available online at 
http://wissrech.iam.uni-bonn.de/research/ projects/AWFD/index.html) [25, 26]. In 
Experiments One, Two and Three, we illustrate the speed and efficacy of adaptive multilevel 
TV method by utilizing the AWFD source code as a black box and implementing the adaptive 
wavelet multiscale total variation denoising model using only functionality which comes 
prepackaged with the software. The numerical method implemented was an explicit Euler 
method with differential operators approximated as described in Section 2. One of the 
drawbacks of the AWFD software is that the choice of boundary conditions and refinement 
strategies are limited to those prepackaged with the code. Thus we augmented the first three 
computational experiment with a fourth experiment in which we illustrate the differences 
between boundary conditions and refinement strategies in the adaptive multilevel TV method. 
Should this method achieve prominence in an applied/engineering area, one would have to 
write a more sophisticated optimized code which is designed for image processing 
applications as opposed to the AWFD code, which was intended for use with spline based 
multilevel solutions for PDEs arising in mathematical physics. In addition, our nonlocal 
means calculations were performed using nonlocal means toolbox in Matlab by Gabriel Peyré 
(available online at http://www.mathworks.com) [22]. Note that the nonlocal means toolbox 
is implemented in C and ported to Matlab using a ``mex" library, so the computation times 
are comparable. Code was compiled using the GNU g++ compiler and executed on a desktop 
computer with 3.19 GHz processor and 1.99 GB of RAM. Computational times reflect real 
time running times on this machine. 
  
Experiment 1: Lenna. The lenna image was first corrupted with additive white noise at a 
rate of 29.6 PSNR. We then executed 200 time steps of the TV algorithm with 0.2=t , 

0.3= , and 1= . 
       
      First, we implemented the TV model for the full grid, then utilized the adaptive multilevel 
TV method for various values of the threshold. The grid was readjusted after each ten time 
steps. It is important to note that these thresholds are fairly high because we treated the 
computational domain as [0,256][0,256]=  ; thus the finest mesh size was 1=h . For 
this experiment we did not implement any boundary conditions, just utilizing the wavelet 
coefficients provided in the AWFD code. This is the equivalent of using constant extension 
for boundary conditions. Numerical results for this experiment are presented in the top panel 
of Table 1 and pictures corresponding to this experiment are given in Figure 1. It is important 
to note that the combination of the two techniques, wavelet denoising and total variation 
denoising provide PSNR which is higher than either method alone can achieve. We also 
compared the results of our experiment with nonlocal means for Gaussian with variance 0.03. 
The nonlocal means algorithm outperformed any of the other three methods in terms of 
PSNR, but it is more computationally intensive.  
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 (A)                                            (B)                                              (C) 

  

  
(F)                                                  

 
Figure 1. Pictures for various image denoising algorithms applied to the lenna 
image in Experiment 1. (A) Original image; (B) noisy image (29.6 PSNR); (C) 
denoised using TV model with 0.3= ; (D) denoised using nonlocal means for 
Gaussian with variance 0.03; (E) denoised using wavelet thresholding, threshold 
= 40.0; (F) denoised using adaptive multilevel TV method. 
 
 Experiment 2: Circles. The circles image was first corrupted with additive white noise at 
a rate of 19.83 PSNR. We chose to add noise at this higher rate in order to challenge the 
algorithm. We then executed 200 time steps of the TV algorithm with 0.2=t , 0.1= , 
and 1= . (We utilize a lower value of   because we expect the results of our algorithm to 
be further from the original guess.) First, we implemented the TV model for the full grid, then 
utilized the adaptive multilevel TV method for 

(D) (E) 
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(A)                               (B)                                     (C)  

   

 
(F)                                      

   
Figure 2. Pictures for various image denoising algorithms applied to the 

cameraman image in Experiment 2. (A) Original image; (B) noisy image (19.83 
PSNR); (C) denoised using TV model with 0.1= ; (D) denoised using nonlocal 

means for Gaussian with variance 0.10; (E) denoised using wavelet thresholding, 
threshold = 40.0; (F) denoised using adaptive multilevel TV method. 

 
various values of the threshold. The grid was readjusted after each ten time steps. Numerical 
results for this experiment are presented in the second panel of Table 1 and pictures 
corresponding to this experiment are given in Figure 2. As in the previous experiment, we 
compared the results of our experiment with nonlocal means for Gaussian with variance 0.10. 
 Experiment 3: Rocket. This experiment is different as we hope that the wavelet 
denoising part of the algorithm will remove grid points associated with the background 
portion of the image. Also, for this experiment, the image was corrupted with additive white 
noise at a rate of 23.91 PSNR. We then executed 200 time steps of the TV algorithm with 

(D) (E) 
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0.2=t , 0.2= , and 1= . First, we implemented the TV model for the full grid, then 
utilized the adaptive multilevel TV method for various values of the threshold. The grid was 
readjusted after each ten time steps. For this experiment we implemented two different types 
of boundary conditions. First, we did not enforce any boundary conditions, just utilizing the 
wavelet coefficients.  

   
(A)                                             (B)                                                  (C) 

   
(D)                                         (E)                                               (F) 

   
(G)                                         (H) 

    
Figure 3. Pictures for various image denoising algorithms applied to the rocket 
image in Experiment 3. (A) Original image; (B) noisy image (23.91 PSNR); (C) 
denoised using TV model with 0.2= ; (D) denoised using nonlocal means for 
Gaussian with variance 0.05;(E) denoised using wavelet thresholding with 
constant extension, threshold = 40.0; (F) denoised using adaptive multilevel TV 
method with constant extension; (G) denoised using wavelet thresholding with 
periodic extension, threshold = 40.0; (H) denoised using adaptive multilevel TV 
method with periodic extension. 
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Threshold PSNR (WD) PSNR (ATV) DOF CPU 
TV-MODEL -- 32.66 66049 78.7s 
NL-MEANS -- 33.75 -- 277.9s 

10.0 29.61 32.65 54057 90.9s 
20.0 30.45 32.80 38139 69.0s 
30.0 31.85 32.72 30414 57.9s 
40.0 32.16 32.45 25358 50.2s 

(A) Lenna (Experiment 1) 
Threshold PSNR (WD) PSNR (ATV) DOF CPU 

TV-MODEL -- 24.29 66049 84.3s 
NL-MEANS -- 31.54 -- 278.8s 

10.0 19.83 24.29 64280 112.0s 
20.0 19.84 24.31 56613 100.5s 
30.0 19.84 24.39 46722 89.7s 
40.0 19.96 24.74 35973 76.0s 
50.0 20.46 25.26 27113 61.9s 
100.0 25.98 26.69 10368 28.8s 

(B) Circles (Experiment 2) 
Threshold PSNR (WD) PSNR (ATV) DOF CPU 

TV-MODEL -- 26.61 66049 78.8s 
NL-MEANS -- 28.73 -- 278.1s 

10.0 23.91 26.61 55824 94.1s 
20.0 23.99 26.87 32681 66.0s 
30.0 25.08 27.56 15199 37.6s 
40.0 26.81 27.76 10066 24.6s 
50.0 27.54 27.74 8991 22.0s 
100.0 27.73 27.59 6348 17.8s 

(C) Rocket -- Constant Extension (Experiment 3) 
Threshold PSNR (WD) PSNR (ATV) DOF CPU 

TV-MODEL -- 27.09 66049 76.1 s 
NL-MEANS -- 28.73 -- 278.1s 

10.0 24.14 27.10 53787 89.3s 
20.0 24.25 27.54 26984 57.6s 
30.0 25.80 28.37 9692 28.7s 
40.0 27.72 28.62 6412 17.5s 
50.0 28.42 28.66 5722 15.4s 
100.0 28.56 28.45 3901 12.6s 

(D) Rocket -- Periodic Extension (Experiment 3) 
 

Table 1. (A) Data from Experiment 1 using the lenna image; (B) data from 
Experiment 2 using the cameraman image; (C) data from Experiment 3 using the 
rocket image using constant extension; (D) data from Experiment 3 using the 
rocket image using periodic extension. The first column gives the threshold, (first 
row for the TV model and second row for nonlocal means), the second column 
gives PSNR obtained from denoising by wavelet hard thresholding, the third 
column gives PSNR obtained from adaptive multilevel TV method, the fourth 
column gives degrees of freedom, and the final column gives CPU times. 
  



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.2, No.3, September 2009 

 

 

70 
 

  
(A)                                                        (B)  

   
Figure 4. Pictures of adaptive multilevel TV method in Experiment 4 using mirror 
conditions. (A) Remaining noise in adaptive multilevel TV method with mirror 
extension, threshold = 20; (B) adaptive multilevel TV method with mirror 
extension, threshold = 40. 

 
  Threshold  PSNR (ATV)  DOF CPU  

 Full   26.47  65536   21.2s  
 10.0   26.71  29492   17.2s  
 20.0   27.39  10006   14.0s  
 30.0   27.77  4557   12.7s  
 40.0   27.84  3441   12.6s  
 50.0   27.78  2890   12.4s  

 100.0   26.95  1495   12.1s  
 

Table 2. Data from Experiment 4, adaptive multilevel solution using the rocket 
image with mirror extension. The first column gives the threshold, (first row for 
full grid), the second column gives PSNR obtained from adaptive multilevel TV 
method, the third column gives degrees of freedom, and the final column gives 
CPU times. 
 
     This is the equivalent of using constant extension boundary conditions. Second, we 
implemented periodic boundary conditions, which produce superior results as there is a 
region of white space around the interesting portion of the image. Numerical results for this 
experiment are presented in bottom panel of Table 1 and pictures corresponding to this 
experiment are given in Figures 3 and 4. For this example, the wavelet denoising procedure 
works well, but as before when combining this with the TV model, the results are much 
improved. As in the previous experiment, we compared the results of our experiment with 
nonlocal means for Gaussian 
with variance 0.05. Notice that for this experiment, the PSNR produced by the adaptive 
multilevel TV algorithm rivals that of the nonlocal means algorithm, for less computational 
cost. 
 Experiment 4: Rocket (continued). For the fourth and final computational experiment, 
we implemented the adaptive multilevel TV method in self-written C++ code. For this 
experiment we did not optimize the code for speed, but instead focused upon distinct 
refinement strategies and boundary conditions. In the AWFD source code, the authors 
implement a refinement strategy in which collocation points are included if neighboring 
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collocation points have wavelet coefficients greater than the threshold both within a level and 
within the next finest level. In our code, we only included collocation points if the 
neighboring wavelet coefficients are greater than the threshold within a certain level. We 
observed that no computational accuracy was lost in implementing this less conservative 
marking strategy. 
 In addition, we compared three distinct types of boundary conditions. Boundary 
conditions are utilized both in the definition of the wavelet transforms and in the 
discretization of the finite difference operators. We implemented the adaptive multilevel TV 
model using the same parameters as in Experiment 3 using boundary conditions specified by 
constant extension, periodic extension, and mirrored extension. In the literature, mirror 
boundary conditions are considered preferable for image processing applications. 
 Table 2 gives PSNR, degrees of freedom, and computation times associated with this 
experiment using mirror boundary conditions. Notice that the PSNR levels achieved by our 
implementation are comparable to those achieved in Experiment 3, without as many boundary 
artifacts as produced by the AWFD code. The PSNR obtained using each of the three types of 
boundary conditions are comparable. For example, when implementing the adaptive 
multilevel TV method with wavelet 
 

  
(A)                                             (B) 

    
Figure 5. Pictures of nonlinear terms in the WRF model. (A) Nonlinear term 

(magnified by five) as treated in the wavelet space from Experiment 4 (noisy 
rocket image) ; (B) Difference (magnified by five) in evaluating nonlinear term in 

the image space versus evaluating the nonlinear term in the wavelet space. 
  
threshold value of 20.0, constant extension yields a PSNR of 27.34, periodic extension yields 
a PSNR of 27.41, and mirror extension yields a PSNR of 27.39. We also include Figure 4, in 
which we show the remaining noise after the adaptive multilevel TV method is applied with 
threshold 20, and the denoised image with threshold 40. Notice that the image in Figure 4(B) 
is qualitatively better than the images in Figure 3 (F), (H). 
 When utilizing wavelet collocation methods for solving partial differential equations, 
difficulties may arise in the evaluation of nonlinear terms in the wavelet space [15]. Again, in 
the article [1], the authors treat the nonlinearity by transforming back to the image space. This 
technique preserves in principal the stationary solution of the TV model. In this paper, we 
have treated the nonlinear term in the wavelet space. Figure 5 illustrates the difference in this 
evaluation. In panel (A), the nonlinear term as calculated in our numerical scheme for the 
noisy rocket image is displayed, and is magnified by five to further see the details. In panel 
(B), the difference (in absolute value) of the treatment of the nonlinear term in the wavelet 
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space and image space is displayed, and is magnified by five. There is a significant difference 
between the way in which the nonlinear term is evaluated for each of our methods and that of 
[1]. Certainly, the mathematical treatment of linear transformations over nonlinearities proves 
prohibitive when considering wavelet collocation techniques for the solution of partial 
differential equations. However, it is notable that our technique does improve on the PSNR 
obtained from either the TV denoising method or wavelet denoising method. 

  
 5.  Conclusion 
 
 In this article, we have seen that implementing the total variation model for image 
denoising in an adaptive multiscale setting exploits in essence what is wavelet image 
denoising (and compression), which removes those high frequency coefficients which are less 
than some predefined threshold. We have observed that not only does the adaptive multilevel 
TV method reduce computation time in solving the TV model, but that the numerical results 
produced are superior to those produced by each of the wavelet denoising and TV model 
alone. 
 Direct extensions of this work include using the wavelet multilevel idea to discretize 
other PDEs useful in image processing, such as the Perona-Malik equation and other 
equations which rely on differening diffusion-like terms. A significant challenge would be to 
increase the computational speed for other state-of-the-art denoising algorithms. One of the 
restrictions of our approach is that it relies on biorthogonal wavelet bases, and cannot be 
trivially extended to more exotic geometric transformations like shearlets and curvelets [6]. 
 Although the nonlinearity is treated in the wavelet space, our method shows improvement 
over the TV denoising method or wavelet denoising method, and improves the computational 
speed of the TV method while reducing Gibbs oscillations. 
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