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Abstract 

 
Environmental robustness is an important area of research in speech recognition. 

Mismatch between trained speech models and actual speech to be recognized is due to factors 
like background noise. It can cause severe degradation in the accuracy of recognizers which 
are based on commonly used features like mel-frequency cepstral co-efficient (MFCC) and 
linear predictive coding (LPC). It is well understood that all previous auditory based feature 
extraction methods perform extremely well in terms of robustness due to the dominant-
frequency information present in them. But these methods suffer from high computational 
cost. Another method called sub-band spectral centroid histograms (SSCH) integrates 
dominant-frequency information with sub-band power information. This method is based on 
sub-band spectral centroids (SSC) which are closely related to spectral peaks for both clean 
and noisy speech. Since SSC can be computed efficiently from short-term speech power 
spectrum estimate, SSCH method is quite robust to background additive noise at a lower 
computational cost.   It has been noted that MFCC method outperforms SSCH method in the 
case of clean speech. However in the case of speech with additive noise, MFCC method 
degrades substantially. In this paper, both MFCC and SSCH feature extraction have been 
implemented in Carnegie Melon University (CMU) Sphinx 4.0 and trained and tested on AN4 
database for clean and noisy speech. Finally, a robust speech recognizer which automatically 
employs either MFCC or SSCH feature extraction methods based on the variance of short-
term power of the input utterance is suggested. 
 
    Keywords: Auditory models, dominant-frequencies, feature extraction, MFCC, Noise robustness, SSCH. 
 
1. Introduction 

Robustness is an essential feature for practical automatic speech recognition (ASR) 
systems in order to avoid severe degradation of performance when mismatch between training 
and deployment conditions occur. Many variations like ambient background noise, channel 
and microphone variations, as well as speaker variations viz. dialect, age and gender cause 
degradation in performance. These environmental conditions are highly variable and 
unpredictable, and therefore cannot be accounted during training. Much research has been 
done and efficient methods have been developed [1] [2] [3]. 

Speech feature vectors used in ASR should contain relevant information for discriminating 
different speech sounds. Commonly used speech features are MFCC and LPC. It has been 
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shown that both MFCC and LPC are significantly affected by environmental variations [4]. 
Hence speech features which are less sensitive to the changes in environmental factors and 
retain good discriminative properties helps to increase robustness.  

Human speech perception has inspired ASR research community to develop feature 
extraction methods which are based on detail modeling of human auditory processing system. 
These methods have shown significant improvement in robustness against noise when 
compared to other standard methods. The success of methods which model human auditory 
system is due to the use of information about the dominant frequencies or spectral peak 
positions in speech signals. These spectral peaks are generally not affected by environmental 
noise provided noise spectrum does not have strong spectral peaks. 
 
1.1. Use of dominant frequency information using time-domain analysis 

The concept of synchrony spectrum which is a speech feature based on detailed modeling 
of processes in the human auditory system is proposed in [5]. The outputs from a set of 
generalized synchrony detectors, one for each sub-band, which measures the extent of 
dominance of the periodicities at sub-band center frequencies, are included in the feature. 
Therefore, the sub-bands that have their center frequencies close to the spectral peaks obtain 
the highest scores. In this way, the information on dominant frequencies in the speech signal 
is included into the feature vectors. Ensemble Interval Histogram (EIH) is another method 
which is based on computing a set of level-crossing rates in each sub-band [6]. The sub-bands 
are obtained by filtering the speech signal by a cochlear filter. It is obvious that the level 
crossing rates are related to the dominant sub-band frequency. Moreover, the number of 
levels crossed is related to the sub-band signal power. Thus EIH combines dominant sub-band 
frequency information with sub-band power information. Zero crossings with peak 
amplitudes (ZCPA) method is simpler compared to EIH method [7]. In ZCPA feature 
extraction, the cochlear filter is replaced with a simple band-pass filter and the set of level 
crossing detectors for each sub-band are replaced with a zero crossing detector. Sub-band 
power is measured as amplitudes between subsequent zero crossings. Thus ZCPA histograms 
combine sub-band power and sub-band dominant frequency in the features. Sub-band 
autocorrelation analysis has been successfully applied to feature extraction [8]. This technique 
is based on a simple band-pass filtering followed by the computation of autocorrelation 
coefficients for the sub-band signals at a time. 

  τ = 1/Fc   

Where, Fc is the sub-band center frequency. 

This method also uses dominant frequency in a sub-band because a spectral peak at 
frequency Fc  gives rise to peaks in autocorrelation function at integer multiples of 1/Fc . 
Therefore the value of sub-band autocorrelation coefficient at time 1/Fc indicates the extent of 
dominance of the sub-band center frequency in the sub-band signal. 

All these approaches are robust to noise because they use dominant frequency in the sub-
band. However, the robustness comes at a cost. All these methods are computationally 
expensive due to time domain analysis and not preferred for practical ASR systems.   
 
1.2. Use of dominant frequency information using short-term power spectrum 

Another feature extraction technique based on sub-band spectral centroids (SSC) is 
proposed [9]. SSC are closely related to spectral peak positions in clean and noisy speech. 
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They can be computed efficiently from short-term speech power spectrum i.e. frequency 
domain. Subsequently this method was extended to a new approach called spectral sub-band 
centroid histograms (SSCH) [10] [11]. SSCH is a better method of integrating dominant 
frequency information provided by the SSC with the sub-band power. This is achieved by 
constructing histogram bins similar to ZCPA method.  However, the major limitation of this 
method is that it is effective only for background additive noise without spectral peaks.  

It is further found that SSCH and MFCC have the same order of time complexity. SSCH 
performs better than MFCC when input speech is noisy. For clean speech, MFCC performs 
even better than SSCH. Hence in this paper, we design a front-end processor of ASR system 
which automatically employs MFCC or SSCH features depending upon environment noise. 
 
2. MFCC and SSCH features 

Both MFCC and SSCH feature extraction methods involve several steps that are common 
viz. spectral estimation, sub-band filtering, and sub-band power computation. SSCH method 
incorporates two more steps, namely centroid computation and histogram construction. In this 
section we review both the techniques.  
 
2.1. MFCC Feature extraction 

The processes in MFCC feature extraction are shown in figure 1. First short-term spectral 
estimation is computed for the input speech frame followed by filtering by overlapping 
triangular band pass filters. For each sub-band, only the log-energy is computed which is later 
subjected to discrete cosine transform (DCT). 

 

Figure 1. MFCC feature Extraction 
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2.2. SSCH Feature Extraction  

The uniqueness of SSCH feature lies in the information about sub-band spectral peak 
positions with conventional sub-band power in order to increase ASR robustness against 
additive background noise. Thus it is more robust than MFCC and greater improvements 
occur for noise types characterized by relatively flat spectral density. The SSCH feature 
extraction procedure is shown in figure 2. Initially FFT-based power spectrum estimate S (f) 
for the given speech frame is computed and passed through a set of K overlapping band pass 
filters with amplitude responses H (k), for k = 1… N   

 

Figure 2. SSCH feature extraction 

SSC is then computed for each sub-band using the expression shown in equation (1) 
             

                            (1) 

Where, the summation is performed for all frequency samples n in the FFT. 
Simultaneously power estimates of each sub-band are also computed using the expression 
shown in equation (2) 
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                        (2) 

where the summation is performed for the frequency range of 1 Bark centered on sub-band 
centroids. This ensures more robust sub-band power estimates, since the effect of additive 
noise in log-spectral domain is smallest around spectral peaks. Next, histogram bins of the 
SSC are constructed by dividing the speech frequency range into bins Rj for j = 1... J. The 
number of bins is computed by the expression shown in equation (3) 

 
                                                                                                                               (3) 

Where 

                                                                                                               

 

Where Nk  is the number of frequency samples in the histogram bin k. 

3.0 Combination of MFCC and SSCH feature extraction methods 

The Figure 3 shows the recognition system that is evolved as a result of combination of 
both MFCC and SSCH feature extraction methods. In this method the spectrum estimation is 
carried out for the speech signal and it is identified whether the signal is clean or it is mixed with 
noise. 

 
Figure 3. MFCC and SSCH combined Method 
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If the speech signal is clean then the MFCC feature extraction method is used for speech 
recognition. If the speech signal is noisy then the SSCH feature extraction method is used for 
speech recognition and hence the word accuracy for both clean as well as noisy speech can be 
made maximum at the same time. The computational cost as well as the computational 
complexity remains the same for both methods. The only difference is that in the proposed 
method the variance of every 3000 samples is calculated before deciding the method to be 
used for the feature extraction. 
 
3.1 Identification of noisy speech from clean speech  

The input speech signal of different speakers is sampled and the variance of first 3000 
samples is calculated and tabulated in table 1. It was found that variance was lower than 10-7 
for speech without noise. For speech with 25 db SNR the value lies in the range 10-6 to 10-5. 
For 15 db SNR the value lies in the range 10-5 to 10-4 and for 5 db SNR the value was found 
be greater than 10-4. The variance of samples is taken as the threshold value for deciding 
whether the input signal is noisy or not. If the variance is below 10-7 then MFCC method is 
carried out for those samples and if it is above 10-007 then SSCH method is carried out for 
speech recognition. 

 
Table 1. Variance values of different speech files with different noise levels 

 

Speakers Clean speech
SNR 

25 db 15 db 5 db 

1 5.4772 ×10-7 1.0933 ×10-6 6.0627 ×10-5 5.4920 ×10-4 

2 6.9289 ×10-7 3.7544 ×10-6 3.2131 ×10-5 2.9981 ×10-4 

3 1.8093 ×10-7 9.0061 ×10-6 7.5938 ×10-5 7.3575 ×10-4 

4 2.0540 ×10-7 3.3079 ×10-6 3.1099 ×10-5 3.0458 ×10-4 

5 1.7653 ×10-7 3.0423 ×10-6 2.8294 ×10-5 2.9304 ×10-4 

6 4.6125 ×10-7 2.6975 ×10-6 2.2520 ×10-5 2.1930 ×10-4 

 

4. Recognition tasks 

In order to evaluate the proposed method and the existing methods, an alphanumeric 
database called AN4 is used. AN4 database consists of utterances of personal information of 
users such as their name, address, telephone numbers and date of birth, etc. More details of 
the database can be taken from [12]. Model training was performed using the CMU 
SphinxTrain [13] using both MFCC and SSCH features.  
 
4.1. Preparation of Database for recognition tasks 

Utterances from 74 speakers (21 female and 53 male) were used for model training, while 
utterances from an additional 20 speakers (10 female and 10 male) were used for evaluation. 
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Each triphone was modeled by a three state left-to-right hidden Markov model (HMM) with 
eight Gaussian components per state and no skip transitions. 

 
4.2. Evaluation and Results 
 

For the purpose of evaluating robustness against environmental noise, three different types 
of noises namely, white Gaussian noise, factory noise, and background speech were added to 
the test data at several SNR. White Gaussian noise was generated using a random noise 
generator, while factory noise and background speech were taken from the NOISEX database, 
where they are referred to as factory1 and babble noise, respectively. Noisy speech utterances 
were generated as follows. For each speech utterance in the test database, a noise segment of 
length equal to the length of the speech utterance was randomly extracted, multiplied by a 
gain factor and added to the speech utterances. The gain factor was computed in accordance 
with the required SNR which is shown in equation (4) 

 
         (4) 

 
Where Psmax is the maximal frame power of the given speech utterance and Pn is the noise 
power estimated over the noise segment. The SNR is thus measured as the ratio between 
maximal speech power and average noise power. This computation method makes SNR 
independent of both the phonetic content of speech utterance and the length of silent intervals 
surrounding the speech utterance. 

After the models were trained, the evaluation was carried out on CMU Sphinx 4.0 decoder. A 
front-end processor for MFCC feature extraction was already available in CMU Sphinx 4.0 
but front-end processor for SSCH feature extraction was implemented and added to CMU 
Sphinx 4.0. The ASR performance was measured in terms of word accuracy as given in 
equation (5). 
         
       ,  (5) 

where N is the total number of words in the test set, S is the number of substitution errors, D 
is the number of deletion errors, and I is the number of insertion errors. The results of the tests 
are shown in table 2. 

Table 2. ASR Results 
 

 
Feature Type 

Word Accuracy [%] 

Clean Speech 

Speech with Noise 
SNR [dB] 

25 15 5 

MFCC 98.32% 96.90% 91.19% 47.37% 

SSCH 96.54%     98.54%     95.57%     75.77%     

Combined 
model 

98.32% 98.54%     95.57%     75.77%     
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5. Conclusion and Future work 

     Robustness to environmental noise is a major issue in ASR. MFCC is the preferred method 
of feature extraction in all practical ASR. However, MFCC features are not robust to noisy 
speech. The accuracies of the ASR systems using MFCC features degrade considerably in the 
presence of noise. On the other hand, SSCH features are resilient to noise but are inferior to 
MFCC features when clean speech is used. It is also shown that MFCC and SSCH have many 
steps in common and the time complexity is almost same. Therefore, in this paper, a novel 
front-end processor which combines both MFCC and SSCH methods is proposed, designed 
and implemented. The resulting front-end is tested on CMU Sphinx 4.0 decoder on a publicly 
available AN4 database. The test set included both clean speech and noisy speech with three 
different types of noises. White Gaussian noise was added to the speech with SNR of 25 db, 
15 db and 5 db. Initially recognition accuracy was calculated using MFCC as the front-end for 
speech without noise and SSCH method was used for speech with different noise levels and 
the combination of both MFCC and SSCH feature extraction methods for clean and noisy 
speech. It has been found that the proposed front-end dynamically adapts to both clean and 
noisy speech. 

     However the system also has some drawbacks. It will degrade if the noise has spectral 
peaks. It is tested only on a small vocabulary task. It may be tested on a large vocabulary and 
continuous speech task for more reliable results. 
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