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Abstract 

Signature can be seen as an individual characteristic of a person which, if modeled 
with precision can be used for his/her validation. An automated signature verification 
technique saves valuable time and money. The paper is primarily focused on skilled 
forgery detection. It emphasizes on the extraction of the critical regions which are more 
prone to mistakes and matches them following a modular graph matching approach. 
The technique is robust and takes care of the inevitable intra- personal variations. The 
results show significant improvement over other approaches for detecting skilled 
forgery. 
 
1. Introduction 

 
    Signature Verification is the process of recognizing an individual’s handwritten 
signatures. Signatures have been by far the most popular means for establishing the 
authenticity of individuals. Signature authentication offers a quick, simple and cost 
effective means for validating the authenticity of a document by determining the 
difference between an original signature and a counterfeit one. 
 The two most widely used approaches for the verification of the signatures are static 
and dynamic. Dynamic or Online Verification analyzes the behavioral biometric of the 
handwritten signature while it is being written with the aim of verifying its authenticity, 
thus establishing the identity of the user.  The user’s presence is vital for the real time 
verification of his/her signatures. In contrast, Static or Offline verification obviates the 
necessity of user’s presence as it compares the various characteristics of  a pre-recorded 
signature image on order to reach  a desired conclusion 
 Unconventional writing styles and other factors such as mental state, illness, age etc. 
make the process of offline signature verification more complicated. On the other hand, 
Online Signature Verification can conveniently utilize a number of parameters 
associated with the stylus and electronic writing pad for determining the authenticity of 
the signature. These parameters include speed, direction, pressure of the stylus, number 
and order of the strokes, etc. These properties make the signature unique and nearly 
impossible to forge. However, it is not practical to implement, as a stylus and pad 
cannot be used everywhere for signature verification. For example, paper instruments 
such as checks and documents cannot use this method. Also, infrastructure costs are too 
high to implement a purely Online Signature Verification method. 
     The type of authentication method applied i.e offline or online can also vary 
depending on the type of application. For banks and other financial institutions, online 
signature verification is not feasible. When checks and other documents arrive for 
clearance at the banks’ end, offline verification becomes mandatory, as the user is not 
present at the time. This requires a database of signatures to be present with the banks.  
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Check fraud detection is one of the largest challenges facing businesses and financial 
institutions today. IT contributes to the majority of the losses suffered by the bank. 
Fraudulent checks are too difficult to detect for skilled forgeries. However, with the 
presence of an offline method of authentication, this can be considerably reduced. Thus, 
of the two methods, Offline Signature Verification is more popular and widely accepted 
owning to its low costs and applicability.  
    Various other approaches [7][8][9][10][11][12] have been proposed for offline 
signature verification as However, most of these approaches provide good accuracy 
only for random forgeries, and to some extent, semi-skilled forgeries. A number of 
graph-based approaches have been proposed for automatic signature verification [2],[3]. 
These works have applied graph-matching approaches which compare the outer contour 
of the signatures based on the Hungarian method [7]. These approaches have two 
limitations: (1) they work on relatively small window sizes (32*64) and (2) they fail 
when the test signature is a superset of the original signature. 
In this paper, we propose a graph-matching based automatic signature verification 
technique which is based on geometrical shape of the critical regions of the signature. 
Graph Theory finds extensive use in Image Processing areas such as Computer Vision, 
Pattern Recognition, and Segmentation as the comparison of two objects is reduced to 
the comparison of their respective graph representations [1]. This way, two abstract 
objects take mathematical forms that can be accurately compared by comparing the two 
graphs. The more similar the graphs are, the more similar are the corresponding objects.     
Once the problem is formulated into a relational structure, techniques in Linear 
Algebra, Statistics and Probability theory can be conveniently used to analyze the 
problem. Our method reduces the offline signature verification problem to a modular 
graph-matching problem, employing the Hungarian method to find the geometrical 
similarity. It scales down the complexity of Hungarian matching and precisely models 
different shapes in the signature to obtain a perfect match.  
     The rest of the paper is organized as follows. Section 2 describes signature 
preprocessing. Section 3 discusses in detail the major points of our proposed method 
that includes critical points extraction, critical region extraction, formulation of 
signature verification problem as a graph matching problem, training of the sample 
signatures and testing of the signature to be verified. Results are discussed in Section 4.  
 
2. Preprocessing: 
In the following, we adopt the following notations. Sets are denoted in bold and Cap 
face. Scalar quantities are denoted in regular (non-bold) font. Members of a set are 
denoted in small and bold letters of their respective sets, and are indexed. In addition, 
the set of x-coordinates and y-coordinates corresponding to a set of points are 
represented by subscripting the name of the set, e.g. XA represents the set of X-
coordinates of the point set A.    
 
2.1. Binarization 

All gray scale images are binarized with the help of modified Niblack algorithm [4]. 
This algorithm works very well for handwritten text images with complex backgrounds, 
as illustrated in figures 1a and 1b. 
 



International Journal of Signal Processing, Image Processing and Pattern 

Vol. 2, No.1, March, 2009 

 

 

59 

                                  
 
Fig.1a: Original image                      Fig.1b: Binarized image 
 

2.2. Noise Removal 

Once we have binarized an image, the noise components must be removed. Small 
components (pixel_size<5-10 pixels) are removed by using a simple morphological 
filter. Assumption that the signature content would be more prevalent in the image, the 
image is passed though a low pass filter to eliminate the low frequency noise 
components. The filtering is done by using 2-D convolution with a 5X5 Unity matrix. 
The results are illustrated in figure 2a and 2b. This process converts the binary image 
into a gray scale image. The image thus obtained is further binarized using a strict 
estimated threshold. 

 
2.3. Rotation of Signatures  

The accuracy of the results is largely dependent on the rotation algorithm used for 
orientation correction. The rotation algorithm should be robust and must produce the 
same results for images taken from the same user. The rotation algorithm rotate-image 
is given in Figure 3. The binarized and noise cleaned signature image is input to the 
algorithm. We use the bottom pixels of a signature image as a template to fit an 
orientation line through them using the polyfit function of Matlab® (Mathworks Inc 
Ltd) (lines 1-2). The polyfit function is further explained in Section 3.1. Finally, the 
cp2tranform () function produces a projective transformation of the input image, using 
the slope of the orientation line as a guiding parameter (line 3).    

Experimentally, we found that the above algorithm showed excellent parity between 
the rotated-corrected transformations of the sample signature and new input signature 
from the same user, when the rotation angle varied between -30 to +30 degrees. 

 
2.4. Thinning of Signatures 

The signatures are thinned in order to reduce the computations required by the graph 
matching algorithm.  We employed the technique of Thinning by LOCAL coupling 
Points [5]. This algorithm works very well on signature images, as it is able to preserve 
their intricate details and other geometrical properties. Figure 6 shows the images 
before and after for a sample signature. 

 

 

 
 
 
 
 
Fig. 2a:  Noisy Image                 Fig. 2b:  Image after removing noise 
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Algorithm rotate_image 
 

Input: signature image                          // Binarized and a noise cleaned signature image. 
Output: rotation corrected image 

Rotation(input_image) 
begin 

1. Set A(X,Y) = Set of x and y coordinates for  lowermost pixels for each column in 
the image matrix. 

2.  p = polyfit(XA , YA , 1); 
//p is the equation of the best fit line passing through A[x,y] 

3.   final_image=cp2transform(input_image, 'projective', slope(p)) 
//final image:  a result of projective transform 

end 
 

Figure 3: The Rotation algorithm 

 

 

 

   

Fig. 4:  Signature image before and after thinning 

3. Critical Region based graph matching  approach:    
The proposed approach consists of extracting critical points on the input signature, 

locating the corresponding critical points among the sample signatures, extracting  the 
critical regions centered around the critical points on the respective signatures, 
matching the corresponding critical regions using graph matching algorithm, training 
the sample signatures and finally, verifying the authenticity of the test signature. The 
entire approach is illustrated in the block diagram of figure 5. 
 
3.1 The Polyfit Function 

The digitally scanned 2-D image of a signature gives a pixilated image. To overcome 
this limitation, Matlab’s Image Processing Toolbox is used to estimate the continuous 
curve that best fits the image. The equation of any image can be estimated using the 
polyfit function: 
 
[p,S] = polyfit(x,y,n)                           (1a) 
[p,S, mu] = polyfit(x,y,n)       (1b) 
 
 
 
Where,  
p: coefficients of a polynomial p(x) of degree n that fits the image data p(x(i)) to y(i) in 
a least squares sense. 

 
S: A structure that is used for getting error estimates i.e. deviation of predicted curve from the 
actual pixilated curve. Bounding the error value S.normr in a certain range i.e. (0,Thresh) 
gives the exact positions of the critical points, as depicted in the figure 6. The value of the 
threshold is experimentally tuned.  
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    The function [p,S, mu] = Polyfit(x,y,n) finds the coefficients of a polynomial in  
x =((x-μ1)/ μ2)  where μ1=mean(X) and μ1=std(X). This centering and scaling transformation 
improves the numerical properties of both the polynomial and the fitting algorithm. The 
parameter S.normr keeps a track of the error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Block diagram of the proposed approach. 
 
3.2 Extraction of critical points: 

A contour based approach is followed to extract the critical points. In this approach 
the contour is traversed and any sharp change in the curve is marked as a critical point. 
Critical points can be best described as the set of points which model the basic structure 
of the signature. They are a minimum set of points to represent the shape of a signature. 

A contour can be described as the outer boundary of a signature. To extract the same, 
the disconnected components in the signature are joined and the ‘holes’ inside the 
signature are filled. The set of all four-connected boundary pixels define a contour of 
the signature. The process undergoes the following steps. Figure 12 gives a pictorial 
illustration of the sequence of steps in the process.  

As depicted in figure 12a, the contour image obtained is first thickened using a 5X5 
morphological filter followed by thinning [5]. This is done to eliminate any sharp 
changes and to bring about uniformity in the curve. A unique point on the contour 
image (must occur in the same region for the same user set) is then selected as a starting 
point and the contour is traversed in the clockwise direction. Critical points are 
encountered during this traversal by an algorithm Critical_Points_Extract, described in 
the pseudocode in figure 8. A brief explanation follows.   

The algorithm repeatedly segments the signature image into small curves using the 
polyfit function, taking care that at least 5 points are used. As the curve is extended to 
include newer points, the deviation of the curve as given by the error value 
abs(S.normr) indicates whether a peak is encountered. A critical point is identified 
when either the current peak exceeds an experimentally tuned threshold, or when the 
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number of peak points obtained past the last critical point exceeds a pre-determined 
number, as evaluated by the track_error_peak function. Figure 12b illustrates the 
critical points extracted for sample signatures.  

 

 
Figure 6. Bounding error estimate with an error threshold 

3.3 Finding the corresponding critical points among the sample signatures: 

   After extracting the critical points from the sample signatures, the next step requires 
finding out the correspondence among the critical points in these signatures. The aim is 
to find out which critical point in a signature A corresponds to which critical point in 
the signature B. 

The algorithm for matching the critical points Match_Criical_Points is given in 
figure 9. The procedure is explained below. 

First, each critical point on signature SigA and signature SigB is masked with a 21 × 
21 black block centered on the critical point. Every pixel within a block is set to the 
value ‘1’ (black). The remaining pixels in both images are marked ‘0’ (white). Thus we 
obtain two new images SigA’ and SigB’ respectively containing only the black boxes at 
their respective positions. Let NSigA and NSigB be the total number of critical points on 
SigA and SigB respectively.  

The algorithm next finds the common portion of the every block of SigA’ with 
respect to each of the blocks extracted from the SigB’ by using a simple AND gate 
function between corresponding locations, operating on the binary values 0 (white) and 
1(black). 

Finally, for each block in SigA’ the maximally overlapping block in SigB’ is located. 
In effect, the algorithm traverses an Overlap_matrix with NSigA rows and NSigB columns, 
where cell(i,j) is set equal to the number of overlapping pixels between the ith  block of 
SigA’ and jth block of SigB’ (refer figure 10). The highest value cell in row k indicates 
the matching critical point of SigB for the kth critical point on SigA. Figure 12c depicts 
the result of the process of matching critical points on a pair of sample signatures.    

 

 

 

 

          

      

Fig. 7a. Original signature                              Fig. 7b. Extracted Critical points                        
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Figure 8.  Algorithm for Critical Point Extraction 

 
 
 
Algorithm: Critical_Points_Extract. 
Input: Contour Image I(X,Y). 
Output: C(X,Y) Set of extracted  critical points. 
Begin 

Initialize: I_count=0, C_count=0 , Error_vector = φ; 
for i in 1 to size-of-contour 

 increment I_count;  
.if I_count >  5 

     [P S mu]  polyfit(XI( i: i+I_count),   YI( i: i+I_count), 2); 
                          Error_vector = Error_vector ∪  S.normr. 

 else continue; 
 endif 
 if abs(S.normr) <  10   

                          Check  track_error_peak(Error_vector); 
 if Check = 1 then peak is encountered. Set:  

         xC(C_count)  xI(I_count); // x coordinate :critical 
point 
        yC(C_count)  yI(I_count); //y coordinate :critical point 
                    Increment C_count ; 
                   Clear I_ count; 
                                      Error_vector = φ; 
                                      Continue;   
                           endif  
               else 
                           xC(C_count)  xI(I_count); // x coordinate :critical point 
                           yC(C_count)  yI(I_count); //y coordinate :critical point 
        Increment C_count ; 
        Clear I_ count; 
                           Error_vector = φ; 

 endif 
  endfor 

end 
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Algorithm: Match_Critical_Points 
Input : CA(X,Y), CB(X,Y) are sets of critical points for signature images SigA and SigB 
 Output : M(X1,Y1,X2,Y2) is a set of Matched critical points for sets CA and  CB 

 
Begin 

Initialize Block_CR_signA = zeros (800,800), Block_CR_signB = zeros (800,800)  
1. for i in 1 to number-of-critical-points in CA 

Block_CR_signA(xCA(i) to xCA(i) +20, yCA(i) to yCA(i)+20)  ones(21,21); 
for j in 1 to number-of-critical-points in CB 

Block_CR_signA(xCB(j) to xCB(j) +20, yCB(j) to yCB(j)+20)  ones(21,21); 
Block_CR_overlap  Block_CR_signA AND Block_CR_signB; 
Overlap_matrix(i, j) = number-of-1’s in Block_CR_overlap; 
Clear Block_CR_overlap, Block_CR_signB; 

      endfor 
     Clear Block_CR_signA;  
endfor 
Initialize Match_count=0; 
 

2. for i in 1 to number-of-critical-points in CA 
                      max_i    max(Overlap_matrix(i,1 to number-of-critical-point in CB)) 

                       //the function ‘max(V)’, returns the maximum value in vector V 
                      if max_i  ≥  200 then                 //a match is found  
                             j find( max_i,Overlap_matrix(i,1 to number-of-critical-point in CB)) 

    // the function ‘ find(a,V)’, returns the index of ‘V’ where  the value =a 
                           M(x1M(count),y1M(count),x2M(count),y2M(count))=[xCA(i),yCA(i), xCB(j),yCB(j)]; 
                          Overlap_matrix(i,1 to number-of-critical-point in CB)=0; 
                          Increment Match_count; 
                     endif 

endf or 
End 
 
 
Figure  9: Matching critical points in a pair of signatures images SigA and SigB 

 

 1 2 3 … NSigA 
1 118 210 56  0 
2 12 32 116  0 
3 5 21 23  0 
…      
NSigB 0 0 43  281 

Figure 10: The Overlap Matrix 
 
 
3.4 Extraction of critical regions and comparing them using graph matching: 
 

After determining the one-to-one corresponding matched critical points in the 
sample signatures, their respective critical regions are extracted. Critical regions serve 
as a sound basis for modular graph matching. Instead of using the entire signature 
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image, its critical portions are extracted and corresponding regions are compared to 
judge the overall similarity between the input and sample signatures.  Figure 12d 
illustrates graph matching. The algorithm Ext&Mat_Critical_Regions for extracting 
and matching corresponding critical regions in a pair of sample signatures, is 
described in the pseudo code given in figure 11. Its working is outlined below.  

A critical region is a 31× 31 block extracted from a signature image and containing a 
critical point at the center. For every critical point on signature A, the algorithm 
extracts a 31×31 block CR1, taking the critical point cp1 as centre. The corresponding 
31× 31 block CR2 from signature B is also extracted, taking the matching critical point 
cp2 as centre.  

Each critical region is represented by a undirected graph in which every black pixel 
in the critical region signifies a vertex. The x, y coordinates of all black pixels in CR1 
and CR2 represent vertex sets S1 and S2 respectively. 

Matching two graphs measures the similarity of the two corresponding critical 
regions based on their geometrical shapes. The distance-matrix W is a (m × n) 
adjacency matrix whose rows represent vertices of S1 and whose columns represent 
vertices of S2 (where |S1]>=|S2|). We calculate the Euclidean distance each pair of 
vertices in S1 and S2 using the x-y co-ordinates of their corresponding pixels.  

The formulated assignment problem is solved using the Hungarian method [6]. This 
returns the optimal cost/distance min_dist between critical regions CR1 and CR2. The   
min_dist is divided by |S1| to get a normalized minimum distance per pixel. It is further 
divided by a factor α which is a measure of the percentage of vertices matching in S1 
and S2. 

The above procedure is repeated for every pair of matching critical regions to yield 
the array of optimal distances Optimal_Distance.  
 
 

3.5 Signature verification: 

 Once we get the optimal distance vector we compare it against a threshold 
(opt_thresh~=15). For each value less than the threshold the vote number is 
incremented. For a set of N values any signature giving more than two third votes is 
considered a genuine signature. In case a signature gives consideration results with the 
first genuine sample but is not good enough to be tagged as genuine, in that case the 
signature is tested against the second genuine signature sample.  

If it still does not pass the test, then is tested against the third sample. If the 
signature gives average results (2N/3>votes>N/3) with the entire genuine signature-set, 
then it is tagged as a probable forgery. If at any stage the input signature gives 
unacceptable results (votes<N/3) with any of the genuine signature samples, then it is 
straightaway rejected. 
 
Algorithm: Ext&Mat_Critical_Regions   
 
Input: Set of all matched critical points M(X1,Y1,X2,Y2), contour image IA(X,Y) and IB(X,Y) 
Output: Optimal distance matrix Optimal_distance of size |M|.  
 
Begin 
             Initialize CR1=zeros(31,31),CR2=zeros(31,31) 

for i in 1 to no-of-matching-points in M 
CR1 IA(x1M(i)-15  to x 1M (i) +15, y 1M (i)-15  to  y 1M (i)+15) 
 SI( X1, Y1)  find(CR1) 
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//the function ‘find(V)’ returns  the set of  x,y coordinates for  each member of 
//V whose value is equal to ‘ 1’. 
CR2  IB(x2M(i)-15  to x 2M (i) +15, y 2M (i)-15  to  y 2M (i)+15) 
S2(X2, Y2)  find(CR2) 
 
Initialize Distance_matrix=zeros(no-of-black-pixels in CR1, no-of-black-
pixels in CR2)  
Distance_matrix   dist(S1,S2 ) 

//the function ‘dist(A,B)’ returns a matrix where rows are the 
//indices(ind1) of S1 and columns are indices(ind2) of S2 and the value 
at //D(ind1,ind2) is the Euclidean distance between 
S1(x1(ind1),y1(ind1)) and //S2(x2(ind2),y2(ind2)).  

Min_Dist  Hungarian( Distance_Matrix) ; 
Optimal_Distance(i)  Min_Dist/ no_of_black_pixels_CR1 ; 

endfor 
End  
 

 
Figure 11.  Extraction and matching of critical regions. 

 

 
Figiure 12a. Thickened and Thinned signature images 

 

 
Figure 12b. Extraction of critical points 

 
 

 

Figure 12c. Matching critical points on a signature pair 
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Figure 13. Description of the whole process 

4. Results 
 

Datasets: 5 genuine signatures of each of 76 persons were taken. Therefore, total 5 x 76 = 
240 genuine signatures were collected.  

For each of the 76 persons, 4 semi-skilled and 4 skilled forgeries were collected. After 
collecting signatures, they were scanned as 8-bit gray images using a scanner with 200 dpi 
resolution. The program was run on Pentium IV PC, 1.70 GHz with 512 MB RAM.  
Tests were conducted on Authentic, Semi-skilled and Skilled forgery signatures for each 
person.  
 
1. Authentic test: 3 genuine signatures were taken as sample signatures. The remaining 2 

genuine signatures are tested against these 3 samples. Total number of tested signatures is 
76X2 = 152. This is used for the calculation of False Rejection Ratio (FRR).  

2. Semi-skilled Forgery test: For every person, 4 skilled forgeries are tested. This is used to 
find the FAR skilled. Therefore, total 4X76 = 304 signatures were tested.  

3. Skilled Forgery test: For every person 4 skilled forgeries are tested. This is used to find the 
FAR skilled. Therefore, total 4X76 =304 signatures were tested. 

The test results are compiled in Table 1.  

 

5. Discussions and Conclusions 
 

Traditionally, graph matching is used on the whole image and each pixel is compared with 
every other pixel in the other image, thus incurring a large computational overhead. For 
images of resolution of P × Q and A x B, P, Q, A and B being typically in the range 300-1200, 
we compute a non-negative n×m matrix, where the element in the i-th row and j-th column 
represents the cost of assigning the i-th pixel to the j-th pixel in considered images 1 and 2 
respectively. The complexity of the algorithm amounts to be O(n3) where (n~=m).  

In our approach, we identify isolated, smaller critical portions of the signature images. 
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These critical regions contribute significantly to the shape of the original image and therefore 
serve as accurate model of the signature. These critical regions are utilized as a basis for graph 
matching, thus reducing the computational overhead by a large amount.  Critical regions of 
size 31×31 are constructed and compared using Hungarian method. And this computation is 
done for only some identified points, say Ncrit. Thus the computational time is reduced to (Ncrit 
O(p3)) where ( p<<n). For a typical value of Ncrit=20, this can amount to around 106 times less 
the the time overhead incurred in the previous approach. In fact, this approach is efficient and 
even comparable with online signature verification methods in terms of results. 

We have proposed an algorithm that not only works better than the similar graph-based 
offline verification approaches but also works on a sample base of just three authentic 
signatures, which is closer to the real world requirements. In this paper we demonstrate that it 
is possible to achieve very low error rates even for skilled forgeries. The approach is 
computationally faster as compared to other graph matching techniques. It introduces the 
concept of modular graph matching. 
 

Table 1. Test Results  for the experimental data-set 

 
Type of 
Forgery  
 

 
No. of 
Signatures  
 

 
Accuracy(%) 
 

 
Error(%)  
 

Authentic 152 98.68 1.32 
semi-
skilled 

304 95.69 4.31 

Skilled 304 89.09 10.81 
 

 

 
Figure 13. A depicts the training set of three signatures 

being taken and the rest are the sample signatures used for 
testing. 
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