
International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

57

Offline Signature Verification Using Critical Region Matching

Abhay Bansal, Bharat Gupta, Gaurav Khandelwal, and Shampa Chakraverty

Dept. of computer Science
Netaji Subhas Institute of Technology, Delhi University

abhaybansal.1988@gmail.com

Abstract

Signature can be seen as an individual characteristic of a person which, if modeled
with precision can be used for his/her validation. An automated signature verification
technique saves valuable time and money. The paper is primarily focused on skilled
forgery detection. It emphasizes on the extraction of the critical regions which are more
prone to mistakes and matches them following a modular graph matching approach.
The technique is robust and takes care of the inevitable intra- personal variations. The
results show significant improvement over other approaches for detecting skilled
forgery.

1. Introduction

 Signature Verification is the process of recognizing an individual’s handwritten
signatures. Signatures have been by far the most popular means for establishing the
authenticity of individuals. Signature authentication offers a quick, simple and cost
effective means for validating the authenticity of a document by determining the
difference between an original signature and a counterfeit one.
 The two most widely used approaches for the verification of the signatures are static
and dynamic. Dynamic or Online Verification analyzes the behavioral biometric of the
handwritten signature while it is being written with the aim of verifying its authenticity,
thus establishing the identity of the user. The user’s presence is vital for the real time
verification of his/her signatures. In contrast, Static or Offline verification obviates the
necessity of user’s presence as it compares the various characteristics of a pre-recorded
signature image on order to reach a desired conclusion
 Unconventional writing styles and other factors such as mental state, illness, age etc.
make the process of offline signature verification more complicated. On the other hand,
Online Signature Verification can conveniently utilize a number of parameters
associated with the stylus and electronic writing pad for determining the authenticity of
the signature. These parameters include speed, direction, pressure of the stylus, number
and order of the strokes, etc. These properties make the signature unique and nearly
impossible to forge. However, it is not practical to implement, as a stylus and pad
cannot be used everywhere for signature verification. For example, paper instruments
such as checks and documents cannot use this method. Also, infrastructure costs are too
high to implement a purely Online Signature Verification method.
 The type of authentication method applied i.e offline or online can also vary
depending on the type of application. For banks and other financial institutions, online
signature verification is not feasible. When checks and other documents arrive for
clearance at the banks’ end, offline verification becomes mandatory, as the user is not
present at the time. This requires a database of signatures to be present with the banks.

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

58

Check fraud detection is one of the largest challenges facing businesses and financial
institutions today. IT contributes to the majority of the losses suffered by the bank.
Fraudulent checks are too difficult to detect for skilled forgeries. However, with the
presence of an offline method of authentication, this can be considerably reduced. Thus,
of the two methods, Offline Signature Verification is more popular and widely accepted
owning to its low costs and applicability.
 Various other approaches [7][8][9][10][11][12] have been proposed for offline
signature verification as However, most of these approaches provide good accuracy
only for random forgeries, and to some extent, semi-skilled forgeries. A number of
graph-based approaches have been proposed for automatic signature verification [2],[3].
These works have applied graph-matching approaches which compare the outer contour
of the signatures based on the Hungarian method [7]. These approaches have two
limitations: (1) they work on relatively small window sizes (32*64) and (2) they fail
when the test signature is a superset of the original signature.
In this paper, we propose a graph-matching based automatic signature verification
technique which is based on geometrical shape of the critical regions of the signature.
Graph Theory finds extensive use in Image Processing areas such as Computer Vision,
Pattern Recognition, and Segmentation as the comparison of two objects is reduced to
the comparison of their respective graph representations [1]. This way, two abstract
objects take mathematical forms that can be accurately compared by comparing the two
graphs. The more similar the graphs are, the more similar are the corresponding objects.
Once the problem is formulated into a relational structure, techniques in Linear
Algebra, Statistics and Probability theory can be conveniently used to analyze the
problem. Our method reduces the offline signature verification problem to a modular
graph-matching problem, employing the Hungarian method to find the geometrical
similarity. It scales down the complexity of Hungarian matching and precisely models
different shapes in the signature to obtain a perfect match.
 The rest of the paper is organized as follows. Section 2 describes signature
preprocessing. Section 3 discusses in detail the major points of our proposed method
that includes critical points extraction, critical region extraction, formulation of
signature verification problem as a graph matching problem, training of the sample
signatures and testing of the signature to be verified. Results are discussed in Section 4.

2. Preprocessing:
In the following, we adopt the following notations. Sets are denoted in bold and Cap
face. Scalar quantities are denoted in regular (non-bold) font. Members of a set are
denoted in small and bold letters of their respective sets, and are indexed. In addition,
the set of x-coordinates and y-coordinates corresponding to a set of points are
represented by subscripting the name of the set, e.g. XA represents the set of X-
coordinates of the point set A.

2.1. Binarization

All gray scale images are binarized with the help of modified Niblack algorithm [4].
This algorithm works very well for handwritten text images with complex backgrounds,
as illustrated in figures 1a and 1b.

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

59

Fig.1a: Original image Fig.1b: Binarized image

2.2. Noise Removal

Once we have binarized an image, the noise components must be removed. Small
components (pixel_size<5-10 pixels) are removed by using a simple morphological
filter. Assumption that the signature content would be more prevalent in the image, the
image is passed though a low pass filter to eliminate the low frequency noise
components. The filtering is done by using 2-D convolution with a 5X5 Unity matrix.
The results are illustrated in figure 2a and 2b. This process converts the binary image
into a gray scale image. The image thus obtained is further binarized using a strict
estimated threshold.

2.3. Rotation of Signatures

The accuracy of the results is largely dependent on the rotation algorithm used for
orientation correction. The rotation algorithm should be robust and must produce the
same results for images taken from the same user. The rotation algorithm rotate-image
is given in Figure 3. The binarized and noise cleaned signature image is input to the
algorithm. We use the bottom pixels of a signature image as a template to fit an
orientation line through them using the polyfit function of Matlab® (Mathworks Inc
Ltd) (lines 1-2). The polyfit function is further explained in Section 3.1. Finally, the
cp2tranform () function produces a projective transformation of the input image, using
the slope of the orientation line as a guiding parameter (line 3).

Experimentally, we found that the above algorithm showed excellent parity between
the rotated-corrected transformations of the sample signature and new input signature
from the same user, when the rotation angle varied between -30 to +30 degrees.

2.4. Thinning of Signatures

The signatures are thinned in order to reduce the computations required by the graph
matching algorithm. We employed the technique of Thinning by LOCAL coupling
Points [5]. This algorithm works very well on signature images, as it is able to preserve
their intricate details and other geometrical properties. Figure 6 shows the images
before and after for a sample signature.

Fig. 2a: Noisy Image Fig. 2b: Image after removing noise

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

60

Algorithm rotate_image

Input: signature image // Binarized and a noise cleaned signature image.
Output: rotation corrected image

Rotation(input_image)
begin

1. Set A(X,Y) = Set of x and y coordinates for lowermost pixels for each column in
the image matrix.

2. p = polyfit(XA , YA , 1);
//p is the equation of the best fit line passing through A[x,y]

3. final_image=cp2transform(input_image, 'projective', slope(p))
//final image: a result of projective transform

end

Figure 3: The Rotation algorithm

Fig. 4: Signature image before and after thinning

3. Critical Region based graph matching approach:
The proposed approach consists of extracting critical points on the input signature,

locating the corresponding critical points among the sample signatures, extracting the
critical regions centered around the critical points on the respective signatures,
matching the corresponding critical regions using graph matching algorithm, training
the sample signatures and finally, verifying the authenticity of the test signature. The
entire approach is illustrated in the block diagram of figure 5.

3.1 The Polyfit Function

The digitally scanned 2-D image of a signature gives a pixilated image. To overcome
this limitation, Matlab’s Image Processing Toolbox is used to estimate the continuous
curve that best fits the image. The equation of any image can be estimated using the
polyfit function:

[p,S] = polyfit(x,y,n) (1a)
[p,S, mu] = polyfit(x,y,n) (1b)

Where,
p: coefficients of a polynomial p(x) of degree n that fits the image data p(x(i)) to y(i) in
a least squares sense.

S: A structure that is used for getting error estimates i.e. deviation of predicted curve from the
actual pixilated curve. Bounding the error value S.normr in a certain range i.e. (0,Thresh)
gives the exact positions of the critical points, as depicted in the figure 6. The value of the
threshold is experimentally tuned.

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

61

 The function [p,S, mu] = Polyfit(x,y,n) finds the coefficients of a polynomial in
x =((x-μ1)/ μ2) where μ1=mean(X) and μ1=std(X). This centering and scaling transformation
improves the numerical properties of both the polynomial and the fitting algorithm. The
parameter S.normr keeps a track of the error.

Figure 5: Block diagram of the proposed approach.

3.2 Extraction of critical points:

A contour based approach is followed to extract the critical points. In this approach
the contour is traversed and any sharp change in the curve is marked as a critical point.
Critical points can be best described as the set of points which model the basic structure
of the signature. They are a minimum set of points to represent the shape of a signature.

A contour can be described as the outer boundary of a signature. To extract the same,
the disconnected components in the signature are joined and the ‘holes’ inside the
signature are filled. The set of all four-connected boundary pixels define a contour of
the signature. The process undergoes the following steps. Figure 12 gives a pictorial
illustration of the sequence of steps in the process.

As depicted in figure 12a, the contour image obtained is first thickened using a 5X5
morphological filter followed by thinning [5]. This is done to eliminate any sharp
changes and to bring about uniformity in the curve. A unique point on the contour
image (must occur in the same region for the same user set) is then selected as a starting
point and the contour is traversed in the clockwise direction. Critical points are
encountered during this traversal by an algorithm Critical_Points_Extract, described in
the pseudocode in figure 8. A brief explanation follows.

The algorithm repeatedly segments the signature image into small curves using the
polyfit function, taking care that at least 5 points are used. As the curve is extended to
include newer points, the deviation of the curve as given by the error value
abs(S.normr) indicates whether a peak is encountered. A critical point is identified
when either the current peak exceeds an experimentally tuned threshold, or when the

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

62

number of peak points obtained past the last critical point exceeds a pre-determined
number, as evaluated by the track_error_peak function. Figure 12b illustrates the
critical points extracted for sample signatures.

Figure 6. Bounding error estimate with an error threshold

3.3 Finding the corresponding critical points among the sample signatures:

 After extracting the critical points from the sample signatures, the next step requires
finding out the correspondence among the critical points in these signatures. The aim is
to find out which critical point in a signature A corresponds to which critical point in
the signature B.

The algorithm for matching the critical points Match_Criical_Points is given in
figure 9. The procedure is explained below.

First, each critical point on signature SigA and signature SigB is masked with a 21 ×
21 black block centered on the critical point. Every pixel within a block is set to the
value ‘1’ (black). The remaining pixels in both images are marked ‘0’ (white). Thus we
obtain two new images SigA’ and SigB’ respectively containing only the black boxes at
their respective positions. Let NSigA and NSigB be the total number of critical points on
SigA and SigB respectively.

The algorithm next finds the common portion of the every block of SigA’ with
respect to each of the blocks extracted from the SigB’ by using a simple AND gate
function between corresponding locations, operating on the binary values 0 (white) and
1(black).

Finally, for each block in SigA’ the maximally overlapping block in SigB’ is located.
In effect, the algorithm traverses an Overlap_matrix with NSigA rows and NSigB columns,
where cell(i,j) is set equal to the number of overlapping pixels between the ith block of
SigA’ and jth block of SigB’ (refer figure 10). The highest value cell in row k indicates
the matching critical point of SigB for the kth critical point on SigA. Figure 12c depicts
the result of the process of matching critical points on a pair of sample signatures.

Fig. 7a. Original signature Fig. 7b. Extracted Critical points

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

63

Figure 8. Algorithm for Critical Point Extraction

Algorithm: Critical_Points_Extract.
Input: Contour Image I(X,Y).
Output: C(X,Y) Set of extracted critical points.
Begin

Initialize: I_count=0, C_count=0 , Error_vector = φ;
for i in 1 to size-of-contour

 increment I_count;
.if I_count > 5

 [P S mu] polyfit(XI(i: i+I_count), YI(i: i+I_count), 2);
 Error_vector = Error_vector ∪ S.normr.

 else continue;
 endif
 if abs(S.normr) < 10

 Check track_error_peak(Error_vector);
 if Check = 1 then peak is encountered. Set:

 xC(C_count) xI(I_count); // x coordinate :critical
point
 yC(C_count) yI(I_count); //y coordinate :critical point
 Increment C_count ;
 Clear I_ count;
 Error_vector = φ;
 Continue;
 endif
 else
 xC(C_count) xI(I_count); // x coordinate :critical point
 yC(C_count) yI(I_count); //y coordinate :critical point
 Increment C_count ;
 Clear I_ count;
 Error_vector = φ;

 endif
 endfor

end

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

64

Algorithm: Match_Critical_Points
Input : CA(X,Y), CB(X,Y) are sets of critical points for signature images SigA and SigB
 Output : M(X1,Y1,X2,Y2) is a set of Matched critical points for sets CA and CB

Begin

Initialize Block_CR_signA = zeros (800,800), Block_CR_signB = zeros (800,800)
1. for i in 1 to number-of-critical-points in CA

Block_CR_signA(xCA(i) to xCA(i) +20, yCA(i) to yCA(i)+20) ones(21,21);
for j in 1 to number-of-critical-points in CB

Block_CR_signA(xCB(j) to xCB(j) +20, yCB(j) to yCB(j)+20) ones(21,21);
Block_CR_overlap Block_CR_signA AND Block_CR_signB;
Overlap_matrix(i, j) = number-of-1’s in Block_CR_overlap;
Clear Block_CR_overlap, Block_CR_signB;

 endfor
 Clear Block_CR_signA;
endfor
Initialize Match_count=0;

2. for i in 1 to number-of-critical-points in CA
 max_i max(Overlap_matrix(i,1 to number-of-critical-point in CB))

 //the function ‘max(V)’, returns the maximum value in vector V
 if max_i ≥ 200 then //a match is found
 j find(max_i,Overlap_matrix(i,1 to number-of-critical-point in CB))

 // the function ‘ find(a,V)’, returns the index of ‘V’ where the value =a
 M(x1M(count),y1M(count),x2M(count),y2M(count))=[xCA(i),yCA(i), xCB(j),yCB(j)];
 Overlap_matrix(i,1 to number-of-critical-point in CB)=0;
 Increment Match_count;
 endif

endf or
End

Figure 9: Matching critical points in a pair of signatures images SigA and SigB

 1 2 3 … NSigA
1 118 210 56 0
2 12 32 116 0
3 5 21 23 0
…
NSigB 0 0 43 281

Figure 10: The Overlap Matrix

3.4 Extraction of critical regions and comparing them using graph matching:

After determining the one-to-one corresponding matched critical points in the
sample signatures, their respective critical regions are extracted. Critical regions serve
as a sound basis for modular graph matching. Instead of using the entire signature

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

65

image, its critical portions are extracted and corresponding regions are compared to
judge the overall similarity between the input and sample signatures. Figure 12d
illustrates graph matching. The algorithm Ext&Mat_Critical_Regions for extracting
and matching corresponding critical regions in a pair of sample signatures, is
described in the pseudo code given in figure 11. Its working is outlined below.

A critical region is a 31× 31 block extracted from a signature image and containing a
critical point at the center. For every critical point on signature A, the algorithm
extracts a 31×31 block CR1, taking the critical point cp1 as centre. The corresponding
31× 31 block CR2 from signature B is also extracted, taking the matching critical point
cp2 as centre.

Each critical region is represented by a undirected graph in which every black pixel
in the critical region signifies a vertex. The x, y coordinates of all black pixels in CR1
and CR2 represent vertex sets S1 and S2 respectively.

Matching two graphs measures the similarity of the two corresponding critical
regions based on their geometrical shapes. The distance-matrix W is a (m × n)
adjacency matrix whose rows represent vertices of S1 and whose columns represent
vertices of S2 (where |S1]>=|S2|). We calculate the Euclidean distance each pair of
vertices in S1 and S2 using the x-y co-ordinates of their corresponding pixels.

The formulated assignment problem is solved using the Hungarian method [6]. This
returns the optimal cost/distance min_dist between critical regions CR1 and CR2. The
min_dist is divided by |S1| to get a normalized minimum distance per pixel. It is further
divided by a factor α which is a measure of the percentage of vertices matching in S1
and S2.

The above procedure is repeated for every pair of matching critical regions to yield
the array of optimal distances Optimal_Distance.

3.5 Signature verification:

 Once we get the optimal distance vector we compare it against a threshold
(opt_thresh~=15). For each value less than the threshold the vote number is
incremented. For a set of N values any signature giving more than two third votes is
considered a genuine signature. In case a signature gives consideration results with the
first genuine sample but is not good enough to be tagged as genuine, in that case the
signature is tested against the second genuine signature sample.

If it still does not pass the test, then is tested against the third sample. If the
signature gives average results (2N/3>votes>N/3) with the entire genuine signature-set,
then it is tagged as a probable forgery. If at any stage the input signature gives
unacceptable results (votes<N/3) with any of the genuine signature samples, then it is
straightaway rejected.

Algorithm: Ext&Mat_Critical_Regions

Input: Set of all matched critical points M(X1,Y1,X2,Y2), contour image IA(X,Y) and IB(X,Y)
Output: Optimal distance matrix Optimal_distance of size |M|.

Begin
 Initialize CR1=zeros(31,31),CR2=zeros(31,31)

for i in 1 to no-of-matching-points in M
CR1 IA(x1M(i)-15 to x 1M (i) +15, y 1M (i)-15 to y 1M (i)+15)
 SI(X1, Y1) find(CR1)

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

66

//the function ‘find(V)’ returns the set of x,y coordinates for each member of
//V whose value is equal to ‘ 1’.
CR2 IB(x2M(i)-15 to x 2M (i) +15, y 2M (i)-15 to y 2M (i)+15)
S2(X2, Y2) find(CR2)

Initialize Distance_matrix=zeros(no-of-black-pixels in CR1, no-of-black-
pixels in CR2)
Distance_matrix dist(S1,S2)

//the function ‘dist(A,B)’ returns a matrix where rows are the
//indices(ind1) of S1 and columns are indices(ind2) of S2 and the value
at //D(ind1,ind2) is the Euclidean distance between
S1(x1(ind1),y1(ind1)) and //S2(x2(ind2),y2(ind2)).

Min_Dist Hungarian(Distance_Matrix) ;
Optimal_Distance(i) Min_Dist/ no_of_black_pixels_CR1 ;

endfor
End

Figure 11. Extraction and matching of critical regions.

Figiure 12a. Thickened and Thinned signature images

Figure 12b. Extraction of critical points

Figure 12c. Matching critical points on a signature pair

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

67

Figure 13. Description of the whole process

4. Results

Datasets: 5 genuine signatures of each of 76 persons were taken. Therefore, total 5 x 76 =
240 genuine signatures were collected.

For each of the 76 persons, 4 semi-skilled and 4 skilled forgeries were collected. After
collecting signatures, they were scanned as 8-bit gray images using a scanner with 200 dpi
resolution. The program was run on Pentium IV PC, 1.70 GHz with 512 MB RAM.
Tests were conducted on Authentic, Semi-skilled and Skilled forgery signatures for each
person.

1. Authentic test: 3 genuine signatures were taken as sample signatures. The remaining 2

genuine signatures are tested against these 3 samples. Total number of tested signatures is
76X2 = 152. This is used for the calculation of False Rejection Ratio (FRR).

2. Semi-skilled Forgery test: For every person, 4 skilled forgeries are tested. This is used to
find the FAR skilled. Therefore, total 4X76 = 304 signatures were tested.

3. Skilled Forgery test: For every person 4 skilled forgeries are tested. This is used to find the
FAR skilled. Therefore, total 4X76 =304 signatures were tested.

The test results are compiled in Table 1.

5. Discussions and Conclusions

Traditionally, graph matching is used on the whole image and each pixel is compared with
every other pixel in the other image, thus incurring a large computational overhead. For
images of resolution of P × Q and A x B, P, Q, A and B being typically in the range 300-1200,
we compute a non-negative n×m matrix, where the element in the i-th row and j-th column
represents the cost of assigning the i-th pixel to the j-th pixel in considered images 1 and 2
respectively. The complexity of the algorithm amounts to be O(n3) where (n~=m).

In our approach, we identify isolated, smaller critical portions of the signature images.

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

68

These critical regions contribute significantly to the shape of the original image and therefore
serve as accurate model of the signature. These critical regions are utilized as a basis for graph
matching, thus reducing the computational overhead by a large amount. Critical regions of
size 31×31 are constructed and compared using Hungarian method. And this computation is
done for only some identified points, say Ncrit. Thus the computational time is reduced to (Ncrit
O(p3)) where (p<<n). For a typical value of Ncrit=20, this can amount to around 106 times less
the the time overhead incurred in the previous approach. In fact, this approach is efficient and
even comparable with online signature verification methods in terms of results.

We have proposed an algorithm that not only works better than the similar graph-based
offline verification approaches but also works on a sample base of just three authentic
signatures, which is closer to the real world requirements. In this paper we demonstrate that it
is possible to achieve very low error rates even for skilled forgeries. The approach is
computationally faster as compared to other graph matching techniques. It introduces the
concept of modular graph matching.

Table 1. Test Results for the experimental data-set

Type of
Forgery

No. of
Signatures

Accuracy(%)

Error(%)

Authentic 152 98.68 1.32
semi-
skilled

304 95.69 4.31

Skilled 304 89.09 10.81

Figure 13. A depicts the training set of three signatures

being taken and the rest are the sample signatures used for
testing.

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

69

References

[1] N. Christofides, Graph theory: an algorithmic approach (New York, Academic Press
Inc., 1977).
[2] Ibrahim S.I. Abuhaiba, Offline Signature Verification Using Graph Matching, Turk J Elec
Engin, VOL.15, NO.1 2007.
[3] Siyuan Chen and Sargur Srihari, A New Offline Signature Verification method based on
Graph Matching , 18th International Conference on Pattern Recognition Volume 2, Issue ,
2006.
[4]. Lal Chandra, Puja Lal, Raju Gupta, Arun Tayal,Dinesh Ganotra: Improved adaptive
binarization technique for document image analysis. VISAPP (1) 2007: 317-321.
[5]. Lalit Kumar, Abhay Bansal, Dinesh Ganotra, Neeraj Jain: An improved approach for
Thinning by preserving local coupling points: selected for VISAPP 2008.
[6]. http://en.wikipedia.org/wiki/Hungarian_algorithm
[7]. J. J. Igarza, I.Goirizelaia, K. Espinosa, I. Hernáez, R.Méndez and J.Sánchez, “Online
Handwritten SignatureVerification Using Hidden Markov Models”, CIARP 2003, LNCS
2905, Springer-Verlag , A.Sanfeliu and J. Ruiz-Shulcloper (Eds.), 2003, pp. 391-399.
[8]. J. Edson, R. Justino, F. Bortolozzi, and R. Sabourin, “An Off-Line Signature Verification
Using HMM for Random, Simple and Skilled Forgeries,” Proc. Sixth Intl Conf. Document
Analysis and Recognition, pp. 1031-1034, Sept. 2001.
[9]. N. Papunzarkos, and H. Baltzakis, “Off-Line Signature Verification Using Multiple
Neural Network Classification Structures”, IEEE 1977.
[10]. Maan Ammar, Yuuji Yoshida, Teruo Fukumura, “Description of Signature Images and
its Applications to their classification”, IEEE 1988.
[11]. B. Fang, C.H. Leung, Y.Y. Tang, K.W. Tse, P.C.K. Kwok, Y.K. Wong, “Offline
signature verification by the tracking of feature and stroke positions”, Pattern Recognition
Society (2002).
[12]. E.J.R. Justino, A. El Yacoubi, F. Bortolozzi, R. Sabourin "“An Off-Line Signature
Verification System using HMM and Graphometric Features”, DAS 2000, Rio de Janeiro,
Dec. 2000, pp. 211-222.

International Journal of Signal Processing, Image Processing and Pattern

Vol. 2, No.1, March, 2009

70

Authors

Abhay Bansal is studying B.E in Computer Science from Netaji
Subhas Institute of Technology. His research areas are Computer
Vision and Pattern Recognition. He has publications in various
International conferences in the field of Image Processing.

Shampa Chakraverty is Professor in the Department of Computer
Engineering of Netaji Subhas Institute of Technology. She
obtained her B.E. degree in Electronics and Communication from
Delhi College of Engineering, M-Tech in Integrated Electronics
and Circuits from I.I.T. Delhi and Ph.D. from the Faculty of
Technology, Delhi University. Her research interests are in the
areas of VLSI, hardware software co-design and soft computing.

Bharat Gupta is studying B.E in Computer Science from Netaji
Subhas Institute of Technology. His research areas are Soft
Computing, parallel algorithms and Mathematics.

Gaurav Khandelwal is studying B.E in Computer Science from
Netaji Subhas Institute of Technology. His research areas are
Graph Theory, Computer Vision and Pattern Recognition.

