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Abstract. In this paper, we propose a 2D feature tracking method that
is stable to long video sequences. To improve the stability of long track-
ing, we use trajectory information about 2D features. We predict the
expected feature states and compute a rough estimate of the feature lo-
cation on the current image frame using the history of previous feature
states up to the current frame. A search window is positioned at the esti-
mated location and similarity measures are computed within the search
window. Once the feature position is determined from the similarity mea-
sures, the current feature states are appended to the history buffer. The
outlier rejection stage is also introduced to reduce false matches. Ex-
perimental results from real video sequences showed that the proposed
method stably tracks point features for long frame sequences.

1 Introduction

Feature tracking is one of the most important issues in the fields of image analysis
and computer vision. During the last several decades, video tracking technology
has been advanced for the practical uses on the surveillance, analysis and repre-
sentation of video footage[1]. When an image sequence is given as an input, two
sets of feature points are extracted from each pair of two adjacent frames. Then
a matching algorithm evaluates feature correspondences between the two sets
of feature points. Feature tracking is an important field in various computer vi-
sion parts since it provides the fundamental data for the further analysis. They
can also be used to estimate the object shape toward the object reconstruc-
tion. However, the development of related applications has suffered from the
instability of tracking methods. Feature tracking is unstable in nature and false
correspondences can be occurred at any unexpected time.

In this paper, we propose a robust feature tracking method for long video
sequences. Extraction of good features is also important for the robust feature
tracking. Feature points are extracted in stable locations that are invariant with
respect to image translation, rotation and scaling[2]. After generating a Gaussian
image pyramid, we compute difference of Gaussians and the extrema of the dif-
ference of Gaussians are selected as feature locations. If two sets of feature points
are extracted, we compute the predicted states of features using the history of
the feature points from the first frame up to the immediate previous frame. Then
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we predict each feature position in the current frame. The predicted position is
used as an initial value for searching a more accurate feature position. When we
refine the feature location from the predicted location, we estimate the accurate
feature position by minimizing the matching error.

In our method, we allow the camera to move freely in the physical space.
However, if the target object moves together with the camera, it is difficult to
solve the problem due to the occurrence of tracking occlusion and the motion
ambiguity even in the case of a slight camera movement[3]. The moving objects
must be detected in advance and should be handled separately. To avoid such
an ill-posed problem, we assume that all objects in the physical space are static
relative to the camera.

2 Improving the Accuracy of Feature Tracking

For the stable and robust feature tracking, each step of the tracking should be
processed accurately. The three main steps are the extraction of stable feature
points, the prediction of feature states, and the computation of feature corre-
spondences. In this section, we describe each step in detail explaining how to
improve the accuracy of feature tracking.

2.1 Feature extraction

The reliable feature extraction is the first fundamental step for the robust feature
tracking. Feature points should be unique and distinguishable from other feature
points for stable feature matching. Typically, feature points are chosen from the
intensity corners on the image. Extraction of good features directly drives the
improvement toward the robust feature tracking. Good features could be tracked
well regardless of translation, rotation and scale changes in input images.

Our feature extraction is similar to the method of scale-space extrema[4][5].
In the first stage, we determine the locations of feature points that are computed
by the difference of Gaussian function[5]. The scale space is computed using the
input image I(x, y) and the scale Gaussian G(x, y, σ). The scale space is defined
by Eq. (1), which is the convolution of G with I:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) . (1)

In the scale space, the difference of Gaussian (DOG) is used for the com-
putation of keypoint locations[5]. The DOG filter corresponds to G(x, y, kσ) −
G(x, y, σ). The difference of two Gaussian images separated by a factor k are
represented by:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) .

The DOG function estimates an approximate value using the scale-normalized
Laplacian of Gaussian. If the computed difference is the maximum or the mini-
mum, the location is determined as a feature point location. Such feature points
are more stable than feature points from other corner-based feature extraction
methods.
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2.2 State modeling for feature tracking

We assume that the target objects are static and the camera is allowed to move
freely. Let xn = (xn, yn) be a feature point in the n’th image. Then the movement
from xn to xn+1 is described by:

xn+1 = f(xn,pn) . (2)

In Eq. (2), pn = (pn,1, . . . , pn,m) is the vector of state variables that describes
the state transition from the previous frame to the current frame. Hence the
problem is to estimate values of the state vector pn. A simple form of the state
vector is pn = (pn,1, pn,2) where (pn,1, pn,2) is the translation vector from xn to
xn+1:

xn+1 = xn + pn,1, yn+1 = yn + pn,2.

Let pn be the state vector at the n’th frame. Each state vector is saved
to the state history buffer. We use the state vectors saved in the state history
buffer to predict the feature point locations. The history buffer contains (n-1)
state vectors p1,p2, . . . ,pn−1 when processing the n’th frame. To estimate the
feature location at the current frame, we utilize the history of state changes from
the first frame to the (n-1)’th frame. Using the state history up to the (n-1)’th
frame, we initialize the location of the search window to find the correspondence
in the n’th frame.

Since the frame rate should be high enough to accommodate to a real-time
video stream, we restrict the search area within a small nearby region. We ini-
tialize the search window location using the moving velocity of the feature up
to the current frame and predict the new feature location using the previous
feature position and the current state vector. We approximate the velocity of
the state vector by:

vn−1 = pn−1 − pn−2 .

Using the velocity, the state vector at the n’th frame is predicted by:

pn = pn−1 + vn−1 . (3)

Then the location of the feature point is predicted by pn.
Once the predicted location is determined, we put a search window on the

location and compute the similarity measures by moving the window around
the predicted location. The location of the lowest dissimilarity measure is cho-
sen as the corresponding location. The size of the search window is adaptively
determined according to the current residual error.

2.3 Rejection of outliers

We use the RANSAC algorithm[6] to reject outliers among tracked feature
points. The RANSAC is a robust algorithm for recognizing wrong tracked fea-
tures[7]. The basic idea is as following. We make a data model consisting of the
minimum number of data from the collected data set. The randomly selected
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data set is used to estimate the model coefficients which are computed using a
least squares optimization method. After making the model, we apply the model
to the unselected data and the evaluated value is compared with the observation.
Then we compute the minimum number of data where the difference from the
observation is smaller than a predefined threshold. The threshold value is used
to determine whether a data is an inlier or an outlier[8]. An inlier is the data
whose difference between the computed value and the observed value is smaller
than the threshold. This computation is iterated until reaching the predefined
maximum number of repeat. We select the final model to have the maximum
number of inliers. The feature data is the set of the inlier points in the final
model.

2.4 Tracking feature points

In the following, the overall steps of our feature tracking method are described.
In the first step, we extract the feature points in the first image frame. The ex-
tracted feature points are tracked across the image sequence. If a tracked feature
point is revealed as an outlier, it is excluded from the feature set. Feature points
failed in matching are also excluded from the set. If the number of feature points
in the current set becomes smaller than a predefined threshold on the way of
the tracking, new feature points are extracted on the current frame and they are
added into the feature set. In the second step, we predict the feature locations
in the current frame considering the state vectors in the history buffer. Since
the real-time video stream has a sufficiently high frame rate, it is reasonable to
assume that the current feature position can be predicted around the previous
feature location using the state vector. We predict the feature positions by find-
ing the locations of the smallest error. The predicted feature position is used
to initialize the location of the search window. Each predicted feature position
is further refined using the measurement data. For the refinement, we compute
the similarity of the image patches centered at the feature locations. The final
refined location of the feature point corresponds to the location of the maximum
similarity. Once all the feature correspondences are computed, we choose and
exclude the outliers. Outliers are appeared mainly due to the occlusion. Rejec-
tion of outliers is also a necessary step for the improvement of feature tracking
accuracy. When the final feature location is determined, we update the state
vector and push them into the history buffer.

Step 1 (Initialization):
1.1 Capture and load the first frame. Set n ← 1.
1.2 Extract N feature points from the first frame.

Step 2 (Prediction):
2.1 Capture and load the next frame. Set n ← n + 1.
2.2 Predict the feature state vector pi

n for the i’th feature point using the
state history buffer.

2.3 Predict the feature location using Eq. (3).
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Fig. 1. Input sample frames acquired during camera translation (top), rotation (mid-
dle), and scaling (bottom).

2.4 Set the search window wi based on the predicted feature location for the
i’th feature point.

Step 3 (Tracking features):
3.1 Compute the similarity measure for the i’th feature point at wi.
3.2 Determine the final feature location.

Step 4 (Rejecting outliers):
4.1 Choose outliers using the RANSAC algorithm and exclude them from

the feature set.
4.2 Correct the feature state vector pi

n using the feature set.
4.3 Update the state vectors and push them into the state history buffer.

Step 5 (Adding new features):
5.1 Check the number of the feature points in the feature set. If the number

is less than the given threshold then extract and add new feature points
into the feature set.

5.2 Go to Step 2.

3 Experimental Results

We apply our tracking method to several long video sequences. Each sequence
contains at least 100 frames. The input video frames are photographed in gen-
eral indoor and outdoor environments. The camera was moved arbitrary in the
physical environment. However, all the captured objects are assumed to be static.
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Fig. 2. Trajectories of tracked feature points for the input frames in Fig. 1.

Fig. 1 shows three sets of sample images taken from three different static
scenes with a moving camera. The three sequences contain camera motions of
translation, rotation, and scaling, respectively. We initially extract 300 feature
points and track them over 100 frames. Fig. 2 shows the tracking results. The
feature extraction method used in our method is robust for the rotation and
scaling as shown in the tracking results in Fig. 2. We compared the accuracy of
our method and the KLT tracking method. The left figure shows the result of
the KLT tracking method and the right figure shows the result of our method.
Comparing the two results, our method shows a better result mainly due to the
outlier rejection. Fig. 3 shows the tracking error measured along the 100 frames
for the translation sequence shown in Fig. 2. Because the camera was moved in a
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Fig. 3. Errors of the tracked feature points for the translation sequence.

parallel direction with respect to the target object, the vertical image coordinates
of all feature points are nearly the same. The errors were computed by summing
all differences of each y-coordinate value and the average y-coordinate value. As
shown in the error graph, our method gives better results than the KLT tracker.

4 Conclusion

This paper presented a novel feature tracking method that could track point
features robustly even on long image sequences. Our approach is different from
previous works in the sense that the proposed method effectively utilizes the
history of the feature movements. We extract feature points that are invariant to
2D transformations. Using the feature state history, we predict the next feature
positions and refine the locations by computing similarity measures. For each
frame, outliers are detected and they are excluded from the feature set. Newly
appeared features are instantly added to the feature set to persist tracking on a
long sequence.

Our tracking method might be useful for the implementation of various aug-
mented reality applications and 3D reconstruction applications. As long as reli-
able feature trajectories are provided, the accurate estimation of the 3D struc-
ture is also possible. Hence the proposed method is also useful to improve the
accuracy of the model-based 3D object tracking.

However, good tracking results are not always guaranteed due to irregularity
and diversity of the real environment. The feature point set could possibly con-
tain unexpected outliers and, hence, more accurate outlier rejection scheme is
required to reduce the possibility of false matching. Our future research includes
improving the robustness of feature tracking to ensure there is no outlier in the
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feature set. Our future work also includes inferring the camera poses and the
structures of 3D objects from the tracked feature points.
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