
Learning to Detect Spam: Naive-Euclidean

Approach

Tony Y.T. Chan, Jie Ji, and Qiangfu Zhao

The University of Akureyri, Akureyri, 600 Iceland
The University of Aizu, Aizuwakamatsu, 965-8580, Japan

tonychanyt@gmail.com

{d8102102,qf-zhao}@u-aizu.ac.jp

Abstract. A method is proposed for learning to classify spam and non-
spam emails. It combines the strategy of the Best Stepwise Feature Se-
lection with a classifier of Euclidean nearest-neighbor. Each text email is
first transformed into a vector of D-dimensional Euclidean space. Emails
were divided into training and test sets in the manner of 10-fold cross-
validation. Three experiments were performed, and their elapsed CPU
times and accuracies reported. The proposed spam detection learner was
found to be extremely fast in recognition and with good error rates. It
could be used as a baseline learning agent, in terms of CPU time and
accuracy, against which other learning agents can be measured.

Key words: Spam email detection, machine learning, feature selection,
Euclidean vector space, 10-fold cross-validation, nearest-neighbor classi-
fiers

1 Problem Introduction

The spam email problem is well-known, and personally experienced by anyone
who uses email. National laws have been enacted to fight the problem. One
difficulty is how to legally define spam. One personfs spam is another person’s
gem. Another difficulty is enforcement. Spammers simply move to other countries
where the government and the laws are weak in this area.

Instead of depending on laws to get rid of spam emails, there are economical
approaches to fight the problem. An email service provider can require the sender
to do something, such as manually recognizing some fuzzy letters and digits, or
pay something, such as e-pennies, before his emails will be delivered. Kuipers et.
al. [8] proposed an anti-spam email protocol, called Zmail, based on the idea of
the zero-sum game. Here, the players are the email service providers who keep
account of the transactions. “Zmail requires the sender of an email to pay a
small amount of money directly to the receiver of the email. The money earned
by a user can be used to send email or can be exchanged for real money.” The
protocol attempts to force Zmail senders to pay and sendees to receive. Normal
Zmail users receive as much as they send, so the internet Zmail load is balance.
This hopefully will reduce spam.

International Journal of Signal Processing, Image Processing and Pattern Recognition 31

2 Learning to Detect Spam: Naive-Euclidean Approach

Instead of depending on laws or email protocol to stop spam, we can also
fight spam at the users’ level. Email clients at the users’ end commonly provide
a filter subsystem to sort spam emails into a spam mailbox while the normal
emails are placed into the user’s inbox. “Filters of this type have so far been
based mostly on manually constructed keyword patterns.” [1] The user must be
careful when he sets the keywords and the logic to filter the spam for his inbox.
One mistake in the keyword or the logic, and his legitimate emails may end up in
his spam box. In some instances, this keyword filtering approach might be asking
too much analytical thinking from some users. Kuipers et. al. [8] mentioned that
“the most important resource consumed by email is not the transmission process
but the end user’s attention.” We want to minimize the user’s involvement in
analyzing and detecting spam emails to make the system user-friendly.

In this paper, the spam problem is treated as a classification problem, i.e., a
pattern recognition problem. The user needs only to decide whether an email is
spam or not. An intelligent agent will learn from his decisions to sort out whether
a future email is spam or not. In [6], a simple metric model was proposed to learn
to distinguish between triangles and rectangles from their pixel representation.
An improved model was applied to the problem of classifying chromosomes [3],
then generalized for the triple parity problem [5], and specialized for classifying
irises, mushrooms, abalones, soybeans, etc. [4]. In this paper, the specialized
Naive Euclidean model is tailored for the email spam problem.

For a supervised classification problem, the input is a set of examples ac-
companied by their correct class labels. The problem setting involves a pattern
language describing a set P of (structural) objects. The object set is divided into
exactly c mutually-exclusive subsets, Q1, Q2, . . . , Qc ⊂ P . Each of these subsets
is assumed to be a class of objects. The teacher supplies the learning agent with
c finite groups of objects to represent these classes. The union of these groups
is called the example set. It can be used for training and validation testing to
estimate the true error rate of a classifier. Given these groups, the intelligent
agent then autonomously devises a specific classifier to distinguish the groups in
the hope that when an unknown object p ∈ P is presented to the classifier, it
will be able to classify it as belonging to Q1, Q2, . . . , or Qc. See Section 3 for an
example of a supervised classification problem.

Suppose now we restrict the pattern language to Euclidean vectors. All ob-
jects are characterized by a sequence of D numbers or attributes. Some attributes
are useful in classification; some are corrupt, noisy or redundant. During the
training stage, the mean vectors for the training groups are calculated, and
training objects are classified according to their nearest mean. The proposed
method selects the features or subspace that maximizes the correct classification
rate on the training objects. At the end of the training stage, the group mean
vectors in the selected subspace are stored.

In the testing stage, the test objects are simply assigned to the class of the
nearest mean vector. Other methods of assignment can be considered, partic-
ularly in cases where there are many clusters in the same class of objects. For
efficiency reasons, in this paper, we shall use the simple 1-nearest-neighbor rule

32 International Journal of Signal Processing, Image Processing and Pattern Recognition

Learning to Detect Spam: Naive-Euclidean Approach 3

to the mean vectors. The proposed learner here is extremely quick to recognize
and at the same time naive, partly because it does not consider multiple clusters
within the same class distribution.

In this paper, the email spam problem is treated as a supervised pattern
classification problem. The user labels each email as spam or non-spam. Then
the Naive Euclidean model proceeds to set up a routine to detect future spam
mails in the post-testing performance stage.

2 The Learner Model

In this section, we concentrate on the concepts and describe the mathematical
model upon which the Fast Naive-Euclidean Learner is based.

Table 1. Criterion Function Z

Z(Q̆1, Q̆2, . . . , Q̆c)

1. For each Q̆i, calculate the means vector mi

2. Let Q̆ =
⋃

i
Q̆i.

3. For each v ∈ Q̆,classify v according to its nearest mean vector.
4. r ←total number of example vectors that are correctly classified.

5. n ← |Q̆|.
6. Z ← r

n
.

The criterion function is called upon every time the learning agent wants to
know how good a choice of attributes is. It is also called the attribute evaluator.
Consider c sets of vectors in the D-dimensional Euclidean vector space. The label
of each of the D axes is called an attribute. Each set represents a class of objects.
Given Q̆i, i = 1, 2,c, the set of example vectors for class i in a d-dimensional
subspace, we can calculate the classification quality of the subspace according
to the criterion function Z. Step 1 calculates the training mean vectors for all
the example groups. Step 2 collects all the training vectors from all the groups.
Step 3 classifies the examples using the nearest-neighbor method to the mean
vectors. The last step returns the apparent accuracy of this particular classifier
in the d-subspace. The whole algorithm Z takes O(ncd) time where n is the size
of the example set, c is the number of classes, and d ≤ D is the dimension of the
subspace [4].

Function Z evaluates how effective the given subspace is in classifying the
training vectors using the group means. The objective then is to maximize Z
subject to the subspace variations. The search procedure plus the criterion pro-
cedure together requires O(ncD3) time.

Finding the best subset of attributes to optimize classification accuracy is
an exponential problem in the number of attributes. Heuristic search is usually
used for this process. One of the simplest is the greedy hill-climbing search. The
algorithm is presented as follows:

International Journal of Signal Processing, Image Processing and Pattern Recognition 33

4 Learning to Detect Spam: Naive-Euclidean Approach

Step 1. Begin with an empty set of selected attributes (S).

Step 2. Calculate the accuracy for each of the attributes in the space. Add
to S the attribute that has the best accuracy.

Step 3. Calculate the accuracy for each of the remaining attributes in combi-
nation with S. If all the accuracies are worse than the best at Step 1, stop. Else
add to S the attribute that improves the best accuracy at Step 1.

Step i. Calculate the accuracy for each of the remaining attributes not already
in S in combination with the ones in S. Add to S the attribute that improves
the accuracy. If none exists, stop.

3 Application: Spam Detection

The data of the spam email problem in this paper is downloaded from the UCI
Machine Learning Repository. There are a total of 4601 emails in the database,
i.e., the training set is of size 4601, 1813 of which are labeled as spam, the rest as
non-spam. The zero-rule classification method would yield an accuracy of 60.6%
based on the simple prevalence rate of the prevalence training examples. That
is the minimum number for any classifier to beat.

The original emails are stored as text files of different lengths. To eliminate
the problems associated with learning to classify objects of different lengths,
each email is transformed into a vector of 57+1 dimensions. The last dimension
represents the class label: 1 for spam and 0 for non-spam.

A set of 48 words were chosen from among the contents of this particular
training set. These words were deemed to be relevant for distinguishing between
spam and non-spam emails. They are as follows: make, address, all, 3d, our,
over, remove, internet, order, mail, receive, will, people, report, addresses, free,
business, email, you, credit, your, font, 000, money, hp, hpl, george, 650, lab,
labs, 857, data, 415, 85, technology, 1999, parts, pm, direct, cs, meeting, original,
project, re, edu, table, and conference.

Given an email text and a particular WORD, we calculate its frequency, i.e.,
the percentage of words in the e-mail that match WORD: word freq WORD =
100 × r/t, where r is number of times the WORD appears in the email and t is
the total number of words in e-mail. For example, the word ’make’ never occurs
in email 1, so word freq make = 0, while 0.64% of the words in email 1 are
the word ’address’, so word freq address of email 1 = 0.64%. There are 48 such
frequency variables. Each corresponds to a dimension (an axis) in the Euclidean
training space.

Six characters are also chosen as special. They are ;, (, [, !, $, and #. Frequency
variables are also created for these. Now training space is 48+6=54 dimensional.

Given an email text, three more variables are created, one for the average
length of uninterrupted sequences of capital letters, one for the longest uninter-
rupted sequence length of capital letters, and one for the total number of capital
letters in the email. Altogether, there are 57 attributes (variables) to describe
an email, plus 1 attribute for the class label. This is how text emails are trans-

34 International Journal of Signal Processing, Image Processing and Pattern Recognition

Learning to Detect Spam: Naive-Euclidean Approach 5

formed into 58-dimensional vectors. For the spam email problem, 4601 emails
were transformed and stored in the UCI Repository of benchmark problems.

In order to obtain an averaged unbiased accuracy estimate, we conducted
100 runs. For each run, data are completely randomized, then the database is
divided into a training set and a separate test set. 90% of the example objects
are used for training, while the remaining are used for testing. Every group
of example objects is divided into 10 partitions. We apply the 10-fold cross-
validation strategy on the Naive Euclidean model to estimate its true accuracy
in each run.

The program was written in Matlab. The PC we used for experiment has a P4
2.66GHz dual core CPU, 4.00GB memory and uses windows XP x64 operation
system. Since the CPU occupancy factor is 50% when the program was running,
we can simply consider the CPU’s frequency as 2.66GHz.

At the end of the feature selection process, Table 1 shows how many times a
feature was selected. They are:

Table 2. Experiment 1: Feature Subset

Feature Ns Feature Ns Feature Ns Feature Ns Feature Ns Feature Ns

1 char freq $ 1000 char freq [153 addresses 54 direct 1 report 0 hpl 0
2 receive 997 remove 130 cs 45 make 0 free 0 george 0
3 data 751 char freq ; 107 labs 35 address 0 business 0 re 0
4 telnet 697 money 93 pm 31 all 0 email 0 char freq ! 0
5 conference 592 ”1999” 90 ”650” 18 our 0 you 0 capital run
6 original 378 table 83 lab 14 over 0 credit 0 length avg 0
7 parts 368 ”857” 83 ”85” 12 internet 0 your 0 capital run
8 technology 282 meeting 69 3d 8 order 0 font 0 longest 0
9 char freq (250 char freq # 58 ”415” 6 mail 0 ”000” 0 capital run
10 project 249 edu 57 will 6 people 0 hp 0 total 0

The average number of selected feature is 6.7. Recognition is then performed
on these subspaces using the two mean vectors as the representatives, one for the
spam mail, and one for the non-spam mail. The 10-fold cross-validation accuracy
averages 82.31%, which is significantly better than the 60.6% prevalence rate.
The average elapsed CPU time for a 10-folds run training is 90 seconds. As we
know, Matlab is an interpreted language, if we use C language, the elapsed CPU
time will be reduced to 14.6 seconds. At recognition phase, it basically took
no time, since given an unknown email, the agent only needs to calculate 6 to
8-dimensional Euclidean distances to classify it. If it is closer to mean vector 1,
classify the unknown to the mean vector 1’s class. If it is closer to mean vector
2, then classify the unknown to mean vector 2’s class.

A second experiment is performed in the hope of obtaining a better accuracy.
To find a better feature subset, backtracking is used and set to 3 levels. This
allows the agent to throw away 3 attributes from the current best subset and

International Journal of Signal Processing, Image Processing and Pattern Recognition 35

6 Learning to Detect Spam: Naive-Euclidean Approach

Table 3. Experiment 2: Feature Subset with Backtracking

Feature Ns Feature Ns Feature Ns Feature Ns Feature Ns Feature Ns

1 char freq $ 1000 remove 241 table 123 lab 31 make 0 you 0
2 receive 874 technology 239 char freq ! 114 ”85” 31 address 0 your 0
3 conference 593 ”1999” 239 ”000” 111 ”415” 30 all 0 hp 0
4 data 584 char freq [201 hpl 107 ”650” 21 our 0 george 0
5 telnet 564 money 191 cs 98 internet 14 mail 0 capital run
6 parts 396 meeting 183 3d 94 order 10 people 0 length avg 0
7 original 335 edu 154 labs 77 will 8 report 0 capital run
8 char freq (301 pm 142 char freq # 71 over 3 free 0 longest 0
9 project 272 ”857” 139 credit 47 re 3 business 0 capital run
10 char freq ; 258 addresses 135 font 37 direct 1 email 0 total 0

replace them with some other hopefully better attributes. Experiments also con-
ducted 100 times. In this case, average elapsed CPU time rises to 140 seconds.
It find average 8.07 features during the training phase. The average recognition
accuracy rises to 83.25%.

In the 3rd experiment, the backtracking level is set to 8. This time, the aver-
age accuracy fell down to 82.52%, average 7.8 features are found and the average
elapsed CPU time is 125 seconds. This is because the backtracking procedure will
be executed only when the selected features are over 8, otherwise the algorithm
will give output directly, so the CPU time is smaller. The subsets which are over
than 8 dimensionalities will have only one or two dimensions after backtracking,
which will have a bad influence on the accuracy.

For spam detection, accuracy and time complexities are not the only criteria
to judge the spam detection agent. If the agent incorrectly places an important
email to the spam mailbox, the consequence is a lot worse than if the agent
mistakenly places a spam into the user’s inbox. Table shows some important
considerations, such as False positive rate, false negative rate, precision rate and
F-measure.

Table 4. Considerations of Three Experiments

Best stepwise Accuarcy Selected Fea FPR TNR FNR F-measure

Backtracking lever=0 0.8231 6.7 0.074 0.926 0.335 0.747
Backtracking lever=3 0.8325 8.1 0.074 0.926 0.311 0.762
Backtracking lever=8 0.8252 7.8 0.074 0.926 0.329 0.751

36 International Journal of Signal Processing, Image Processing and Pattern Recognition

Learning to Detect Spam: Naive-Euclidean Approach 7

4 Discussion

The Naive Euclidean training procedure runs extremely fast in polynomial time.
From the experiments, we have obtained reasonable accuracy rates in good run-
ning time for the training and testing phases. During the online performance
phase, to recognize a spam email takes almost no time. The agent simply calcu-
late the Euclidean distance of two distances from the unknown email to the two
mean vectors.

Future works can be pursued along the following lines.

Use a non-Euclidean distance formula, such as weighted Euclidean. Certain
attributes might be more weighty than other attributes in recognizing the spam
emails. These can receive a higher weight.

Compare Naive-Euclidean with other methods of pattern recognition such as
neural network. One thing for sure, neural network will required substantially
more training and testing time compared with our low-polynomial Euclidean
learning agent. Neural network also requires a bit more CPU time to classify
whether an email is spam or not at the live performance stage. It is likely also
that a well-trained neural network can produce better accuracy.

One way to improve Naive Euclideanfs accuracy is to find clusters within
classes. Use k-nearest-neighbor rule for classification instead of the c class mean
vectors, k > c.

Try other approximation methods for the optimization control, such as the
best stepwise feature elimination algorithm [10], relevance-based algorithm [9],
and genetic algorithm [11]. Perform experimentations on these method. Perhaps
there is one that is particularly suitable for detecting spam emails.

Extend the model to unsupervised learning. To be successful, this is a tall
order for the spam detection problem. Whether an email is spam or not often
depends on the user. Some think this is spam; others think it is a gem. Unsu-
pervised means taking away the userfs decision during the training phase and
just let the learning agent decides what is spam or not. Partial success in this,
however, is possible and welcome. Perhaps, partially supervised approach is the
way to go.

Engineer a portable user-friendly software tool on this system using e.g., the
Python language.

The benchmark dataset from UCI Repository contains 5 vectors. How does
one transform a text email into a vector representation? As described in Section
3, one of the important concepts is to design a special set of keywords, or key-
strings. These keywords are selected from the training set text emails. They are
supposed to be chosen because of their ability to distinguish spam and non-spam
emails.

The general metric model proposed in [2] can be used to find this keyword
set automatically. Given a training set of text emails, the general metric mode
can be used to find the keywords that possess discriminatory power more than
the usual words. This keyword set can be personalized to a particular user, or
group of users using the general metric model.

International Journal of Signal Processing, Image Processing and Pattern Recognition 37

8 Learning to Detect Spam: Naive-Euclidean Approach

These are some ideas that can improve the Naive Euclidean agent, so that it
would not be so naive.

5 Conclusion

The Naive Euclidean without backtracking performed better than the Zero Rule
in terms of accuracy, 82.31% vs. 60.6%.

The Naive Euclidean training procedure runs extremely fast for the spam
detection problem and yet the correct classification rate is reasonable. It could
serve as a baseline in terms of CPU time and accuracy against which other
learning methods can be compared.

References

1. Ion Androutsopoulos, John Koutsias, Konstantinos V. Cbandrinos, and Constan-
tine D. Spyropoulos. An experimental comparison of naive Bayesian and keyword-
based anti-spam filtering with personal e-mail messages. In Proceedings of SIGIR-
2000, pages 160.167, 2000.

2. Tony Y. T. Chan. Inductive pattern learning. IEEE Transactions on Systems, Man,
and Cybernetics. Part A: Systems and Humans, 29(6):667.674, Nov. 1999.

3. Tony Y. T. Chan. Unsupervised classification of noisy chromosomes. Bioinformat-
ics, 17(5):438. 444, May 2001.

4. Tony Y. T. Chan. Fast Naive-Euclidean learner. In Proceedings of the 2nd IEEE
International Conference on Systems, Man, and Cybernetics, page no.: Session
MP1F6. IEEE Computer Society, 2002.

5. Tony Y. T. Chan. Unifying metric approach to the triple parity. Artificial Intelli-
gence, 141(1.2):123. 135, Oct. 2002.

6. Tony Y. T. Chan and Lev Goldfarb. Primitive pattern learning. Pattern Recogni-
tion, 25(8):883.889, 1992.

7. Lev Goldfarb. An evolving model for pattern learning. Pattern Recognition,
23(6):595.616, 1990.

8. Benjamin J. Kuipers, Alex X. Liu, Aashin Gautam, and Mohamed G. Gouda.
Zmail: Zero-sum free market control of spam. In Distributed Computing Systems
Workshops, pages 20.26, New York, 2005. IEEE.

9. Hui Wang, David Bell, and Fionn Murtagh. Axiomatic approach feature subset
selection based on relevance. IEEE Transactions on PAMI, 21(3):271. 276, March
1999.

10. Sholom M.Weiss and Casimir A. Kulikowski. Computer Systems That Learn. Mor-
gan Kaufmann, San Francisco, 1991.

11. Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic algo-
rithm. IEEE Intelligent Systems, 13(2):44.49, March/April 1998.

38 International Journal of Signal Processing, Image Processing and Pattern Recognition

