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Abstract 

Monitoring of respiration is crucial for determining a patient ś health status, specially 

previously and after an operation. However, many conventional methods are difficult to 

use in a spontaneously ventilating patient. This paper presents a method for estimating 

respiratory rate from the signal of a photoplethysmograph. This is a non-invasive sensor 

that can be used to obtain an estimation of beats per minute of a given patient by 

measuring light reflection on the patient’s blood vessel and counting changes in blood 

flow. The PPG signal also offers information about respiration, so respiratory rate can be 

obtained through signal processing. The proposed method based on digital filtering was 

implemented in a wearable device and tested on 30 volunteers, and the results were 

compared with the ones measured by traditional ways. The results show that there is no 

statistically significant difference between the data measured by the device and the 

traditional method. 
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1. Introduction 

Vital signs reflect essential body functions, such as heartbeat, breathing rate, 

temperature, and blood pressure. A normal respiratory rate for an adult at rest is 12 to 18 

breaths per minute. For an infant, a normal rate is up to 40 breaths per minute [1]. 

Continuous monitoring of respiration must be taken in order to explore a patient ś health 

status, avoiding the risk of respiratory disorders as central or obstructive apnea, caused by 

opioid analgesics, neuromuscular blocking agents, and consequences after surgery [2]. 

Changes in the respiratory rate can also be a sensitive marker of impending respiratory 

dysfunction [3]. 

The measurement of respiratory rate can be done at a patient’s home [4] or at a 

hospital. Some techniques include capnography and monitoring of transthoracic 

impedance that are difficult to use in a spontaneously ventilating patient. In order to 

overcome some of these problems a wearable non-invasive device with a 

photoplethysmograph has been developed that can be used to measure respiratory rate [5]. 

Photoplethysmography (PPG) is a technique used to obtain an estimation of beats per 

minute (BPM) of a given patient by measuring light reflection on the patient’s blood 

vessel, and counting changes on blood flow [6]. This technique is widely used in pulse 

oximetry. However, the PPG signal can provide cardiac and respiratory rhythm 

information [7]. Through signal processing PPG can be used to estimate respiratory rate. 
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In this paper a method for measuring breath rate from the PPG signal is proposed. This 

method is applied by a device presented on [5] and tested on 30 patients. To validate the 

accuracy of the algorithm the results are compared with the ones obtained by physical 

observation. 

 

2. Previous Work 

There have been several authors that proposed methods and algorithms to extract 

respiratory rate from the PPG signal. Nilsson et al., [3] separate the signal in two minute 

blocks and apply Bessel bandpass filter between 0.13 and 0.48 Hz, and then count the 

peaks of the signal to detect inspirations. Addison and Watson [8] apply wavelet 

decomposition to the PPG signal. Their method applies a secondary transform to the 

signal obtained from the original wavelet decomposition of the pulse band ridge. Other 

authors that apply wavelets are Lin et al., [9]. In this case the authors apply the Morlet 

Wavelet with the purpose of creating an efficient method that can be embedded in a 

microcontroller. 

Another method based on filtering is the one proposed by Nakajima et al., [10]. In this 

method both heart and respiratory rate are measured simultaneously. First the heart and 

breathing signal are separated by filtering. The respiratory signal is filtered using low-pass 

filters with frequencies of 0.3, 0.4 and 0.55 Hz. The cut-off frequency of the respiratory 

signal is selected automatically depending of the heart rate, and respiratory rate is 

estimated from the peak interval of the filtered signal. Other authors like Fleming and 

Tarassenko [11] propose a method that uses autoregressive modeling. In this method the 

signal is downsampled first in order to increase the angular resolution of the low 

frequency information. The authors claim that this method outperforms digital filtering 

and wavelet decomposition methods. 

Independent Component Analysis (ICA) has also been used to extract respiratory 

activity from the PPG signal and estimate respiratory rate [12]. In the method proposed by 

Zhou et al., the latent variables of ICA take the form of the respiratory activity and the 

pulse wave. The mixture of these two variables was also measured, so the two channels of 

PPG signals (red and infrared) are considered. Finally, the ICA method is complemented 

by a JADE algorithm.  

A different approach is one proposed by Garde et al., [13]. This method applies 

Correntropy Spectral Density (CSD), which is a generalization of the conventional power 

spectral density. CSD is based on the Fourier transform of the centered correntropy 

function. In the proposed approach first a window of 60s or 120s with 50% overlap is 

used to segment the signal, then CSD is applied and finally a low pass filter is used. 

Respiratory rate is estimated by detecting the maximum frequency peak within the 

respiratory frequency band. 

Another method is the one proposed by Karlen et al., [14], called the Smart Fusion 

method. In this approach three variations, frequency, intensity and amplitude are obtained 

from the PPG signal applying an Incremental-Merge Segmentation algorithm and 

analyzed with Fast Fourier Transforms. The Smart Fusion method combines these three 

results and estimates respiratory rate. Shah et al., [15] propose a different approach. It is 

based in Autoregressive Modeling (AR), which estimates the power spectrum of a time 

series, constructs a median spectrum from multiple sets of AR model coefficients and 

then selects the dominant frequency in order to estimate respiratory rate. These authors 

also propose an algorithm to assess the PPG signal quality.  

There have been methods based on the Fourier series. Madhav et al., [16] extract the 

respiratory activity from the PPG signal. The author applies adaptive Fourier 

coefficient estimator (AFCE) which models a quasi-periodic PPG signal as dynamic 

Fourier series. Fourier coefficients are estimated adaptively by a least mean squares 
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(LMS) algorithm. This method is effective in extracting respiratory component and 

suppressing motion artifacts present in the PPG signals. 

Other authors like Birrenkott et al., [17] have shown an interest in making more 

reliable and robust methods. These authors use Respiratory Quality Indices (RQIs) which 

assess the presence or absence of the respiratory modulations in the PPG and ECG 

signals. In this method first the respiratory modulations are extracted from the peaks and 

troughs of the signal, then these modulations are filtered with a Butterworth bandpass 

filter and downsampled. After this process the individual RQIs are calculated and then 

fused into a single RQI per modulation, which is used to estimate respiratory rate per time 

window. 

Cicone and Wu [18] also focus on obtaining a more reliable method for extracting 

respiratory rate. In this case the authors apply theoretically solid techniques of nonlinear-

type time-frequency analyses, like the de-shape short time Fourier transform and the 

synchrosqueezing transform, which allows the estimation of respiratory rate with higher 

reliability. 

Another method interested in robustness is the one proposed by Pimentel et al., [19]. In 

this method three Respiratory Induced time-series are extracted: Intensity Variation 

(RIIV), Amplitude Variation (RIAV) and Frequency Variation (RIFV). In order to 

identify artefactual and low-quality periods of the PPG waveform, a signal quality metric 

is used to assess the signal. If this metric is below a threshold, the window is discarded. 

This method estimates the respiratory rate by combining spectral estimates of the three 

pre-processed outputs (RIIV, RIAV, RIFV) using multiple Autoregressive Models (AR). 

On the other hand, Orphanidou [20] proposes an algorithm for processing PPG signal 

that contain motion artefacts, which eliminates the data corruption caused by noise. The 

author applies Ensemble Empirical Mode Decomposition (EEMD), a popular noise-

assisted data analysis method to achieve this goal. Another authors that apply EEMD are 

Motin et al., [21]. This method starts by applying Ensemble Empirical Mode 

Decomposition to decompose each segment of a PPG signal into a series of embedded 

Intrinsic Mode Functions (IMFs). In the second stage, the IMF containing artifacts is 

automatically identified and rejected. In the third stage, Principal Component Analysis 

(PCA) is applied and the first and second principal components are retained for extracting 

heart rate, respiratory rate and respiratory activity. 

Zhang and Ding [22] propose a method that applies sparse signal reconstruction 

(SSR) based on orthogonal matching pursuit (OMP). This method first has a pre -

processing stage where the signal is downsampled in order to improve efficiency. 

The Respiratory Rate Tracking stage of the method uses kurtosis of the SSR 

spectrum as a signal quality index and classifies the signal as good, moderate or 

poor. This quality index and the SSR spectrum are used to estimate respiratory rate.   

Other authors apply Machine Learning techniques. Dubey et al., [23] develop a 

method based on Extreme Learning Machine (ELM) regression for estimating 

respiration rate. The features for this model are spectral kurtosis features, and the 

previously mentioned respiratory-induced features: amplitude, intensity and 

frequency variations. Table 1 shows a summary of these previous methods. 

Most of these methods are computationally expensive and hard to apply in real-time 

measuring of breathing rate. In this paper we propose a method based on digital filtering 

that can be implemented with limited resources, like in a small wearable device, and 

presents good accuracy compared to commercial products. 

 

 

 

 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 11, No. 2 (2018) 

 

 

4  Copyright ©  2018 SERSC Australia 

Table 1. Summary of Methods for Respiratory Rate Estimation 

Author Technique 

Nilsson et al. Digital Filtering 

Nakajima et al. Digital Filtering 

Birrenkott et al. Digital Filtering 

Addison and Watson Wavelets 

Lin et al. Wavelets 

Fleming and Tarassenko Autoregressive Modeling 

Shah et al. Autoregressive Modeling 

Pimentel et al. Autoregressive Modeling 

Zhou et al. Independent Component Analysis 

Garde et al. Correntropy Spectral Density 

Karlen et al.   Fast Fourier Transforms 

Madhav et al. Adaptive Fourier Coefficient 

Estimator 

Cicone and Wu De-shape short time Fourier 

Transform 

Orphanidou Ensemble Empirical Mode 

Decomposition 

Motin et al. Ensemble Empirical Mode 

Decomposition 

Principal Component Analysis 

Zhang and Ding Sparse Signal Reconstruction 

Dubey et al. Extreme Learning Machine 

 

3. Materials and Methods 
 

3.1. Method for Estimating Respiratory Rate 

In order to obtain respiratory rate a method based on the one proposed by Nilsson et al 

[3] was applied. The PPG signal is analyzed in two minute blocks. First a fourth order 

Bessel bandpass filter is applied to the signal with cut frequencies of 0.13 and 0.48 Hz. 

Figure 1 shows a sample of the obtained PPG signal. Figure 2 presents a sample of the 

resulting signal after filtering. 

Analyzing the filtered signal, the number of ascending peaks show patient’s 

inspirations. Based on this data, a new procedure is applied to determine maximum and 

minimum peaks of the filtered signal. However, there may be small undulations in the 

filtered signal that do not represent inspirations, like the one highlighted on Figure 2, so a 

minimum peak height must be established. This value is calculated taking into account the 

mean height of maximum peaks, the peak’s standard deviation and the total number of 

peaks. Finally, all maximum peaks that surpass the minimum height are counted, and the 

respiratory rate in breaths per minute is inferred. 
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Figure 1. Sample of PPG Signal 

 

Figure 2. Sample of Filtered Signal 

A Bessel filter is recommended because it has a response with a similar shape to the 

original signal, and it presents a flat frequency domain response, which is really useful for 

medical purposes, and it provides a better frequency response than Butterworth filters, 

due to its transfer function. Butterworth filters distorted the original PPG signals and 

provided wrong numbers of peaks, due to its flat frequency response, and its time domain 

response is unlike any PPG signal obtained.  

The data set is taken at a 50 Hz sampling frequency, because, according to Nyquist 

theorem, it should be at least two times greater than its maximum, so any value from 25 

Hz onwards could have been used, but 50 Hz provided enough information to obtain a 

correct estimate of breaths per minute. It was also used because of its low computational 

cost, the amount of data available on system ś buffer and estimated battery life 

expectation. 

 

3.2. Implementation 

In order to validate the proposed method it was implemented on a wearable device 

described in [5]. This device was originally designed with the purpose of providing a 
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cheap solution for measuring the patient’s vital signs in the emergency room. Figure 3 

presents a schematic of the device and it has the following components: 

 Arduino: it is the device CPU. It receives the information from the sensors and 

transmits the data to a remote server via wireless connection. Signal processing 

can be done both by the arduino and the server. 

 Temperature sensor: It measures the relative body temperature on a point of 

interest, which is the wrist for these tests, and sends the data to the processor. 

 Photophletysmograph: this is the key sensor for obtaining pulse and respiratory 

rate. It is an optic instrument that allows detection of blood volume in micro 

vascular tissue by taking measures through the skin surface and detecting changes 

in light absorption. This sensor is placed on the person’s fingertip and it transmits 

the PPG signal that is used to calculate heart and respiratory rate.  

 Wireless transceiver: the Wifi module transmits a data vector with the processed 

information from the sensors to the server, where it can be used by an information 

system for monitoring vital signs. 

 

 

Figure 3. Schematic of the Device 

The proposed method was implemented in the device using the arduino programming 

language. It was also implemented in a remote processing version on python 3.4.  

 

3.3. Validation 

The device implementing the proposed method was tested on 30 spontaneously 

breathing healthy adult volunteers. Results were compared with the respiratory rate 

obtained by traditional methods measured by a health-trained person and every sample 

was doubled checked to minimize errors. All people were aged between 30 and 40 years 

old, and reported no health disease. The study was conducted according to Helsinki Rules 

pertaining to all patients informed consent. 

For the validation process the following procedure was applied: first the device was 

turned on and attached to the subject. Due to the adjustment time needed by the sensors, 

two minutes passed before taking any measurements. During the test, the respiratory rate 

was measured simultaneously by the device and physical observation. 
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4. Results 

The validation tests were performed as described above. Table 2 shows the respiratory 

rate measured in breaths per minute both by our device and by physical observation. The 

results were analyzed with the software IBM SPSS Statistics version 23. In order to 

determine if there is a significant difference between the results obtained by the device 

and traditional measurements, the Wilcoxon signed rank test for related samples was 

applied. This test was selected because it did not require the data to be normally 

distributed. The result of the analysis performed by SPSS is shown on Figure 4. 

Table 2. Respiratory Rate Measurements in Breaths per Minute 

    Breaths per minute 

ID Gender Device Physical Observation 

1 M 16 16 

2 M 16 16 

3 F 17 16 

4 F 16 16 

5 F 12 16 

6 M 12 12 

7 F 14 24 

8 M 13 12 

9 F 13 12 

10 M 16 16 

11 F 16 24 

12 M 15 16 

13 F 11 20 

14 M 13 12 

15 M 11 12 

16 M 16 16 

17 M 16 16 

18 M 16 16 

19 F 14 16 

20 F 11 12 

21 M 16 16 

22 M 22 20 

23 F 18 18 

24 F 20 20 

25 M 16 16 

26 M 12 12 

27 M 16 16 

28 M 20 20 

29 F 20 20 

30 F 20 20 
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Figure 4. Results of Wilcoxon Signed Ranked Test 

The test estimated a P-value of 0.135, which is higher than 0.05. This indicates that 

there is not enough statistical evidence to reject the null hypothesis with a 95% of 

confidence, which states that the two measurements (device and physical observation) are 

not significantly different. This result supports that the implementation of the proposed 

method is accurate enough compared with traditional methods, and can be easily 

implemented in a wearable device. The method shows a mean error of 1.4 breaths per 

minute, this is an acceptable performance for most medical applications. Figure 5 shows a 

boxplot of the difference between the measures obtained by the device and the physical 

observations. 

 

 

Figure 5. Boxplot of Difference between the Two Measurements 
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5. Conclusions 

A method for estimating respiratory rate from the photoplethysmograph signal has 

been presented. This method is not computationally expensive and shows an adequate 

accuracy. In the validation tests there was no statistically significant difference between 

the measures obtained by the device with the implementation of the method and the ones 

obtained by traditional methods.  

The possibility of measuring the breath rate in one skin sensor makes PPG attractive as 

a method for pre or postoperative monitoring of vital signs, and for many other medical 

applications. For future work a more exhaustive validation should be made. It is necessary 

to expand the sample of volunteers, from all ranks of ages, healthy and sick, and develop 

new studies in order to share new results with the international scientific community. Also 

the proposed method will be tested with well-known benchmark datasets, such as 

CapnoBase [24] and its performance will be compared with other recent algorithms. 

Another focus of future work will be improving the algorithms robustness. The method 

should be able to detect and discard motion artifacts and low-quality samples of the signal 

automatically, so the accuracy of the measures does not get compromised if these 

probable eventualities occur.  
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