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Abstract 

An effective compression algorithm of hyperspectral image based on discrete wavelet 

transform (DWT) and improved Karhunen-Loeve transform(KLT) is proposed in this 

paper. It could achieve better performance with effective combination of the two methods 

which convert the energy of images to a small number of coefficients. In order to reduce 

the most redundancy of space, it deals with each spectrum with fast 5/3 2-D DWT firstly. 

Then the spectral 1-D KLT is applied on the 2-D DWT coefficients to reduce spectral 

redundancy and the other spatial redundancy. Finally, entropy coding is executed to 

obtain the compressed code stream. The experimental results show that the average peak 

signal to noise ratio (PSNR) of the proposed compression algorithm is 3.01 bit per pixel 

(bpp), which improves greatly through comparing with the other approaches, and reduces 

the operating time and improves the performance of hyperspectral image compression 

algorithm. It proposes the hardware implementation strategy at the same time, verifies the 

correctness and feasibility of our method. The work in this paper has a good reference 

value and significance for the similar case. 
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1. Introduction 

With the developments in the fields of aerospace, geological, medical, etc. the 

traditional two-dimensional images can not satisfy the needs of the users, so arise the 

hyperspectral technologies which can carry more information at the historic moment. 

However, the amount of data transmission increasingly more and more fast when the 

spectrum compositions of hyperspectral image are more and more complex. Existing 

transfer and storage systems cannot adapt to a large amount data of hyperspectral images, 

in order to transmit and process these data faster, and reduce the storage space at the same 

time, the hyperspectral image must be compressed [1-6]. 

At present, the basic method for compressing hyperspectral image is using discrete 

cosine transform (DCT) to remove spatial correlation or using KLT to remove spectral 

correlation [7, 8]. The correlation among DCT coefficients diminishes, and most of the 

energy concentrates in just a few coefficients after two-dimensional discrete cosine 

transform (2D-DCT), then it could achieve the purpose of compression through 

quantization for correspond coefficients and entropy coding. DCT is the closest method 

with KLT in terms of the removing pixel correlation, and it achieves low implementation 

complexity by using its fast algorithm. However, the compression algorithm based on 

DCT transform is divided into several non-overlapping small pieces, then DCT 

transformation is applied with each sub-block, which makes the reconstruction images 

appear obvious “block effect” when in low bit rate. It will increase the complexity of the 
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algorithm in order to remove the “block-effect”; So DCT is not used directly on the image 

in consequence. 

KLT has many good qualities, such as strongly remove correlation, highly concentrate 

after transform, and it could carry out the optimal sparse representation, etc. It rarely used 

in the practical engineering due to its large amount of calculation without the fast 

algorithm, so it is necessary to do the further improvement for KLT. 

Combining the spectral characteristics of hyperspectral and referring to the latest 

technology of the KLT [9 -11], it puts forward a kind of efficient compression algorithm 

based on DWT and improvement KLT. It transforms the energy into a series of 

coefficients in spatial direction using 2D-DWT firstly, and then transforms the 

coefficients with KLT which bases on different basis. The algorithm overcomes the 

limitation of compression performance with the single KLT basis, effectively protects the 

hyperspectral information, and implements the high compression performance and 

compression efficiency. 

 

2. Design Thought of Compression Algorithm 

Hyperspectral image is one kind of 3D images which generally composed by two-

dimensional spatial geometry information and one dimensional spectral information[12]. 

The image has not only space correlation, but also spectral correlation. It puts forward the 

following structure (take 3 bands from a hyperspectral image as an example) to remove 

the spatial correlation and spectral correlation effectively. 
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Figure 1. Structure of the Compression System 

Traditional algorithm often takes KLT first, and then carries on the DCT and DWT. 

Because of the inconsistencies within the same spectrum, it is hard to reach the ideal 

compression effect using the same KLT basis. Referencing the related technology [13 -17] 

and combining with the characteristics of hyperspectral image, it puts forward a near 

lossless compression algorithm which is applicable to the hyperspectral image. Firstly, 

two dimensional discrete wavelet transform is used for the image, and then comes one 

dimensional KLT with different KLT basis for different areas of the same spectrum, and 

optimizes the algorithm of every part later. It greatly improves the distortion problem of 

adjacent blocks, and realizes easier at the same time. 

 

3. Key Technology 
 

3.1. Discrete Wavelet Transform（DWT） 

Discrete wavelet transform is a kind of transformation which discretizes the scale 

factor and shift factor of continuous wavelet. It has smaller redundancy and computational 
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complexity comparing with continuous wavelet, so it is more suitable for hardware 

implementation. 

It will produce four sub zones, low frequency sub band (LL), the horizontal high 

frequency sub band (LH), vertical high frequency sub band (HL), and diagonal direction 

high frequency sub band (HH) respectively for one wavelet transform. The second 

transformation is similar with the first whose division is on the basis of the low frequency 

sub band (LL). 

Lifting scheme is the efficient method to realize discrete wavelet transform (DWT). 

The lifting wavelet transformation can be thought as the decomposition process for the 

multiple matrix of target wavelet filter, which is decomposed into a constant diagonal 

matrix, M order triangular matrix, and lower triangular matrix in the form of product. The 

decomposition formula for lifting 5/3 wavelet transform matrix is expressed as follows: 

( 2 n) x( 2 n 2)
( 2 n 1) x( 2 n 1)

2

( 2 1) d( 2 n 1) 2
( 2 n) x( 2 n)

4

x
d

d n
d
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The lifting wavelet can be achieved by a forecast and update operations. 

Implementation process is shown in Figure 2. 

 

1/Z ↓2

1/2

1/Z↓2

1/4

2

1/Z
d(2n+1)

d(2n)

x(n)
+

-

 

Figure 2. Achievement for The Lifting Wavelet 

3.2. KLT  

KLT is a kind of linear invertible transform to remove the correlation, which can be 

used in the principal component analysis (PCA). Compared with other orthogonal 

transformation, the energy is the most concentrated, and the error is minimum. The larger 

variances are all concentrate on a few coefficients after Transform, so that it could 

achieve good image compression effect through the appropriate coding. It is difficult for 

hardware implementation due to its large amount of calculation, so the method is rarely 

used in practical engineering. Aiming at this disadvantage, we make the appropriate 

improvement on the basis of the original algorithm to make it more suitable for hardware 

implementation. The calculation process of original algorithm is as follows:  

Firstly, we get the average of a spectrum matrix for the target image, and then the 

matrix will minus the average for getting matrix H. Secondly, we can work out the 

covariance of H, namely COV(H), and the eigenvalues R of the covariance and 

characteristic vector A. Finally we can get the KLT expression Y=A×H. It has huge 

computational complexity, needs M×N-1 times addition and 1 time division when 

calculating the band size of M×N, needs M×N times subtraction for calculating H, and 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 11, No. 1 (2018) 

 

 

72  Copyright ©  2018 SERSC Australia 

need more for other steps, so we will do the following improvement in view of the above 

problems. 

On the premise of good quality and less computational complexity for the image, we 

randomly select a subset of the spectral vector and properly choose the subset size when 

calculating the covariance rather than using them all. The Figure 3 shows that the 

compression performance just begin to decline and computational complexity is very low 

when the sampling size is thousandth of the traditional method, this value is chosen as the 

sample to estimate covariance considering the compression performance and calculation 

time. 

 

 

Figure. 3 Sampling Ratio on Compression Performance 

Table 1 is the execution time of KLT for the use of sampling method to calculate the 

images with the size of 512×512×4. 

Table.1 Computation Time Comparison 

methods Computing time(s) Total time(s) 

sample 0.65 3.28 

without sample 1.73 4.56 

enhance 62.43% 28.07% 

The Figure 3 and Table 1 shows that on the premise of guaranteeing the compression 

performance, computing time is greatly reduced using the method. We will adopt the 

following methods for calculating the eigenvalue and eigenvector.  
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Covariance matrix is a real symmetric matrix, which can be calculated through Jacobi 

algorithm[18] normally. Jacobi algorithm adopts a series of Jacobi rotation planes to 

transform the symmetry matrix M into a diagonal matrix T, namely 
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T TMV V T ， T is an 

orthogonal array, whose first I column is the eigenvalues for the feature vector  i


 of the 

matrix M. The rotation transform structure for Jacobi algorithm is shown as type (1). 

( i , j )  presents the positions of the eliminated elements in the matrix. 

cosc  , si ns  , and   is the rotation angle. Iterative process of characteristic 

value is shown as type (2). 
1 ( ) ( ) ( )( )   k k T k kM V M V                                       (2) 

Take A as the characteristic vector, so the iterative process of characteristic vector is 

shown as type (3). 

                                                 
1 ( ) ( )  k k kA A V                                          (3) 

It is complex to calculate the correlation, and difficult to parallel implementation with 

Jacobi algorithm for not only selecting characteristic value of the main elements, but also 

rotating the rows and columns. To solve the above problems, we will use the following 

improved algorithm. 

For calculating the eigenvalue of symmetric matrix M, we adopt a series of 

transformation taking M into square matrix T whose every two columns are all orthogonal, 

namely 1
. . .

k
MV V T

, so 1 1
. . . . . .T T T T

k k
T T V V M MV V

. We can get the spectrum norm of 

every column for the square matrix T according to the relationship between matrix T and 

TTT, namely, the absolute value of eigenvalue for symmetrical matrix. The positive and 

negative can be judged through the relation i i i
Mb b

and  i
b

 is same, and negative 

otherwise. 

The transform structure of the algorithm is shown as type (4). 
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1kM  is the same as 
KM unless the column i and j, namely 

1 cos sin   k k k
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The rotation angle    could be gotten through the following formula. 

2

2
tan 2 , 0

1

0, 0






 


  

t
x

t

x

                                         (7) 

Among them, 
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. x is the vector inner product between 

column i and column j, y is the vector inner product between column i and column i, z is 

the vector inner product between column j and column j.   
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It only affects the elements related to i and j when transformation, the other elements 

are not be affected. So we can use 2×2 submatrix 
2 2

,i j
S R 

 to rotate the transformation 

process. 
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The Iterative process is as type (9) -(11): 
( 1) ( ) ( )

,( )  k k k

j jS S R a                                         (9) 

( ) ( )

( )

( ) ( )

cos( ) sin( )
( )

sin( ) cos( )

 


 

 
  
 

k k

k

k k
R

                               (10) 
( )

,( ) ( )

, , ( ) ( )

, ,

2
tan(2 ) tan(2 )  



k

i jk k

i i j j k k

j j i j

s

s s
                         (11) 

Among them，
( 0)S S  . 

( )( ) kR  is a rotate matrix，
( )

, k

i i   and 

( )

, k

j j   are rotate 

angles. After a series of iterative, we get the first diagonal matrix 
( h) 2 2S R  . The feature 

vector for matrix S is defined as 
2 2V R   , where  

( 0) 2 2V I R   ，each iteration 

process is shown as (12). 
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                                       (12) 

In order to speed the algorithm and make it suitable for hardware implementation, we 

propose a pipelining parallel structure. The iterative process is as follows: 

1: Store the matrix  
TS . we know that  

2 2S R   is a symmetric matrix, so we can use 

its upper triangular matrix namely  
2 2TS R   to get its eigenvalue and eigenvector. 

2: The eigenvector matrix will be Initialized, and stored with the same memory size as 

ST. 

3: Formula (10) will be calculated through CORDIC rotation algorithm, and the 

rotation Angle  
( k)

,i j
a

 will be gotten through the formula, namely 
2 2

,

T

i j
S R 

. Then the 

rotation angle is stored in order to calculate the eigenvalue and eigenvector. 

4: Calculate the eigenvalue and eigenvector. We get each  
2 2

,

T

i j
S R 

 through 

formula (9), which include two multiplication operations of 2×2 child matrix.  Because 

the multiplication contains vector rotation for 
( k)

,i j
a

, therefore, the rotation pattern for 

CORDIC algorithm [19] will be used. 

5: Store  ,

( )

i j

T kS
 and 

( )

,

k

i j
V

  with the same storage size as the initialized one. 

6: Performing the previous steps to complete the first iteration, and then repeat Step 3 

to Step5 for h times. 

Repeat steps 3 to 5 to complete the parallel operation of the proposed algorithm after 

the first iteration. 
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Figure 4. KL Rransform for Each Spectrum 

From Figure 4 we can see that KLT is used for the first three spectrums (a, b, c) of 

hyperspectral image (including four spectrums). It eliminates the redundancy between 

most of the spectrums, and energy spectrums mainly concentrate in the first two segments 

after transformation. 

 

4. Experiment Results 

In order to verify the feasibility of the algorithm, the hyperspectral image AVIRIS 

taken by JPL is chosen for testing. We use lifting 5/3 wavelet transform as the DWT filter 

first, then the improved KLT is used for removing spectral redundancy, finally, we use 

3D-SPIHT for encoding. It can be seen that a is the original image, and b is the 

reconstruction image in Figure 5. 
 

 

Figure 5. The Original Image and The Restored One 
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Because lossless compression is used, there is nearly no difference between the original 

image and reconstruction image theoretically. We use mean square error (MSE) formula 

to compare the original image and the reconstructed image of Figure 5, the MSE formula 

is as follows: 

2

1 1

( f ( x, y) g( x, y) )
M N

x yMSE
MN

 






                              (13) 

Among them, ( x, y)f and ( x, y)g  are the original image and the reconstructed image 

respectively, and M and N are the size of image. The MSE of image is approximate to 0 

through calculation, so it is feasible. In addition, most of the space redundancy is 

eliminated after 2D 5/3 wavelet transform, depth of pixels for HL ranges from 8 bit to 0 ~ 

6 bit, and most of the pixel values are 5 bit. It eliminates most of the spectral redundancy 

after KLT, and most of the depth for pixels is1 bit. We use image entropy formula to see 

the values, image entropy formula for predicting residual is: 

log( )i i

i I

E p p


                                             (14) 

Among them, pi is the probability of the pixel i. Through calculation, we can get the 

values of image entropy for the three hyperspectrums were 4.39, 3.91, 3.25 respectively, 

so it eliminates most of the spectral redundancy, and greatly improves the compression 

ratio of the system. 

Table 2. Compression Results 

Images Average compression ratio 

Jasper Ridge 3.05 

Lake Monona 2.88 

Moffett Field 3.20 

Low Altitude 2.91 

Average 3.01 

For testing the compression performance for our algorithm, a mass of AVIRIS and 

Hyperion hyperspectral images are used. The results are shown in Table 2. 

In order to further verify the quality of compressed image, the average compression 

ratio is compared with the traditional hyperspectral image compression algorithm, and the 

results are shown in Table 3. 

The Table 3 shows that the average compression ratio of the algorithm increased 0.04 ~ 

2.23 than existing methods, and the average compression ratio is less than 4 bpp, so it has 

a good compression performance and suitable for hyperspectral image compression. 

Table 3. The Versus for This Algorithm and Other Algorithms 

algorithms           compression ratio 

1.s-DSC-inf[20] 3.22 

2.bidirectional prediction[21] 5.24 

3.improved LUT[22] 3.05 

4.OUR METHORD 3.01 

 

5. Conclusion 

Traditional compression algorithm cannot achieve good compression performance for 

using the single KLT basis. Aiming at this problem, it puts forward a hyperspectral image 

compression algorithm based on DWT and multiple KLT basis, both make up for the 

deficiency of the traditional algorithms, and make a further improvement in hardware 
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implementation, greatly reduces the computing time. Experimental results show that the 

algorithm guarantees the signal-to-noise ratio, effectively protects the texture and edge 

information of hyperspectral image, and establishes a certain foundation for later study of 

hyperspectral image compression. 
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