
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017), pp.63-74

http//dx.doi.org/10.14257/ijsip.2017.10.8.06

ISSN: 2005-4254 IJSIP

Copyright © 2017 SERSC Australia

Research of Multiple Fault Localization Based on Cluster Analysis

of Program Failures

Xiaoan Bao
1
, Yusen Wang

1
, Junyan Qian

2
, Zijian Xiong

1
, Na Zhang

1*
 and

Chenghai Yu
1

1
The institute of software of Zhejiang Sci-Tech University, Hangzhou 310027,

China
2
Guilin University of Electronic Technology, Guilin 541004, China

zhangna@zstu.edu.cn

Abstract

Locating faults is one of the most expensive and time-consuming components of

debugging process. Fault localization technique based on mining associations analyzes

the dependencies between application code and narrow down the location of faults.

However, the efficiency of this technology will decrease with the increase of the number

of faults. This paper presents a new fault location technique based on cluster analysis of

program failures. Failures are categorized into different failure classes using cluster

analysis method, and the failures are caused by one and only one fault in each class. We

also study characteristics of a set of statements covered by failed executions, which are

due to the same fault. According to failure classes’ difference, we describe a target

association algorithm and a corresponding way to examine code. Empirical studies

based on SIR benchmarks indicate that, for the subject we studied, our technique has

higher efficiency than the popular Tarantula, Ochiai and Jaccard techniques in

multiple-fault programs, and can be implemented in effective space and time complexity.

Keywords: multi-fault location, cluster analysis, failure classes, target association,

software test.

1. Introduction

It is commonly recognized that debugging software is an expensive and mostly manual

process. Of all debugging activities, locating faults is a very resource-consuming task,

including the time and the cost. Due to its high cost, any improvement in the process of

finding faults is able to greatly decrease the cost of debugging. Depending on such

realizations, a variety of fault localization techniques have been proposed recently, and

each of which aims to guide programmers to the locations of faults in one way or another

[1-12].

Reducing the search scopes is the main approach of fault localization technique to

improve efficiency. In [1], Cleve and Zeller reported a program state-based debugging

technology, called Cause Transitions, to recognize the locations and times, in which a

cause of failure changes from one variable to another. This is an expansion of their earlier

work with delta debugging [2-3]. An algorithm named is proposed to quickly locate

cause transitions in a program execution. One of the potential problems of the cause

transition technique is that the cost of it is relatively high; there may not only

1
 Na Zhang is the corresponding author.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

64 Copyright © 2017 SERSC Australia

exist thousands of states in a program execution, also delta debugging at each matching

point needs additional test runs to narrow down the causes.

Traditional program slicing technique can be roughly classified as static [4] and

dynamic [5]. The technique gets slices that are associated with the fault to reduce the

searching area by analyzing the data dependences and control dependences in programs.

However, the time complexity and space complexity of conventional program slicing

technique are quite big, and program slicing is conservative, so they are inefficient.

Current spectrum-based approaches for fault localization assess the suspiciousness of

program entities to locate faults [6-10]. Effectively, the coverage information cannot

reflect the complicated control- and data-dependency relationships, and simplify the

execution spectra. On this basis, mining associations-based fault localization technique

[12] has been shown to have better diagnostic performance than spectrum-based

approaches. However, with the increase of the number of bugs, failed executions caused

by different faults would affect the suspiciousness of the same statement. And the effect

of fault localization will reduce, when blocks with high suspiciousness span through

multiple function bodies.

This paper presents the details of our multiple fault localization technique with a

description of cluster analysis. This paper also presents the results of empirical studies

that evaluate the technique to determine whether it helps to locate faults in the program.

We performed the study on C programs with a number of faulty versions, every version

containing from two to five known faults. In particular, we make the following

contributions:

1. A presentation of a new technique for cluster-analysis-based multiple fault

localization (CA-MFL), which provides a new approach for categorizing the failures

caused by different faults. The clustering analysis method helps in locating two or more

faults in a program by illuminating likely faulty statements which belong to the same kind

of failures.

2. We describe a target association algorithm and a corresponding way to review codes,

according to the failure classes’ differences, which are not restricted to a single way and

can maintain the effectiveness of fault localization.

3. We systematically evaluate the effectiveness of cluster-based multiple fault

localization on the SIR benchmarks [13] under the same setting as previous studies. Four

existing fault localization techniques are compared with our technique in this study,

which demonstrates the superior accuracy achieved by our technique in fault localization.

2. Preliminaries

In this section we introduce program spectra, and present a detailed example which

illustrates the advantage of modeling cluster analysis.

In this paper we use the following terminology. A failure is an event that occurs when

delivered service deviates from correct service. An error is a system state that may cause

a failure. A fault is the cause of an error in the system. In our discussion, faults are bugs in

program code, and failures occur when the actual output for a given input deviates from

the expected output for that input.

2.1. Program Spectra

A program spectrum is a collection of data that provides a specific view on dynamic

behaviors of software. Numerous different forms of program spectra exist [14], in this

section we work with so-called basic block spectra. A basic block spectrum includes a

block of code in a program, which cannot be branched into or out of. This data is

collected at run-time, and typically consists of a lot of counters or flags for the different

parts of a program.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

Copyright © 2017 SERSC Australia 65

To facilitate basic block spectra, given a test suite for a software system and a

test case in , this technique requires two types of information about the execution of

 with : pass/fail results and code coverage. Test case passes if the actual output for

an execution of with is the same as the expected output for . If it is, the test case

is a passing case and the execution is a passing execution; otherwise, fails, the test case

 is a failing case and the execution trace is a failing execution or a failure in short.

The spectra of constitutes a binary matrix, whose rows correspond to different

blocks of the program (see Table 1). Where * +, and . Besides,

 indicates the block was touched in the execution of test case ; otherwise,

 . The fail/pass results of the test cases are listed as “F” or “P”.

Table 1. The Ingredients of Fault Localization

Basic Block

Test Cases ()

Suspiciousness F P

 … …

 … …

 … …

…

…

 …

 …

 …

…

 … …

Many similarity coefficients exist. As an example, below are three different similarity

coefficients, namely the Tarantula coefficients, used in the Tarantula fault localization

tool [6], the Jaccard coefficients which is used by the Pinpoint tool [7-8], and the Ochiai

coefficients, taken from the molecular biology domain [7-8]:

T ()
 () (() ())⁄

 () (() ())⁄ () (() ())⁄
 ()

J ()
 ()

 () () ()
 ()

 ()
 ()

√(() ()) (() ())

 ()

Where () |* | +|, and * +. Besides, indicates whether

block was involved () in the execution of run or not (). Likewise,

indicates whether one run was faulty () or not ().

Under the assumption that a high similarity to the faulty block indicates a high

probability that the corresponding statements of the software cause the detected bugs, the

calculated similarity coefficients rank the parts of the program in regard to their likelihood

of containing the faults.

2.2. Motivating Example

In this section, we present a simple example of a C program that is designed to

illustrate the process of finding and localizing faults. Consider the erroneous program for

determining the max of the four input values, as shown in Figure 1. Faults lie on basic

blocks 3 and 6 in this program which has been divided into 8 basic blocks. There, the

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

66 Copyright © 2017 SERSC Australia

value , representing the max, should be assigned the value of rather than the value of

 or .

 int m, x, y, z, w;

b1 Read(x, y, z, w);

 if(x > y)

 m = x;

b2 if(m < z)

 m = x; /*fault, b3' is the revised block;*/

b3 if(m < w)

 /*b3' m = z;

 if(m < w) */

b4 m = w;

 else

b5 m = y;

 if(m < z)

 m = y; /*fault, b6' is the revised block;*/

b6 if(m < w)

 /*b6' m = z;

 if(m < w) */

b7 m = w;

b8 print(m);

Figure 1. The Instance Containing Two Faults

2.2.1. single-fault localization: Suppose that the program has a single fault which

occurred on basic block 6. The similarity coefficients have been calculated using three

techniques above, and Table 2 shows the corresponding block spectra. In this figure,

blocks that were touched were shown by “1”, otherwise blocks were shown by “0”.

Table 2. Example of basic Block Spectra-based Single Fault Localization

Basic Blocks

Test Cases ()
Suspiciousness

F P

6
,6

,7
,5

6
,7

,9
,3

8
,6

,9
,7

5
,4

,6
,8

7
,6

,6
,4

4
,5

,6
,7

5
,7

,6
,3

7
,6

,8
,8

T
ar

an
tu

la

Ja
cc

ar
d

O
ch

ia
i

 1 1 1 1 1 1 1 1 0.50 0.25 0.50

 0 0 1 1 1 0 0 1 0.00 0.00 0.00

 0 0 1 1 1 0 0 1 0.00 0.00 0.00

 0 0 0 1 0 0 0 0 0.00 0.00 0.00

 1 1 0 0 0 0 1 1 0.75 0.50 0.71

 1 1 0 0 0 0 1 1 0.75 0.50 0.71

 0 0 0 0 0 0 1 0 0.00 0.00 0.00

 1 1 1 1 1 1 1 1 0.50 0.25 0.50

Eight test cases are supplied to the program as shown in the table: two of the

executions produce the incorrect output and six of the executions produce correct output.

Each test case is represented by a column in Table 2. The test-case input is at the top of

each column; and the fail/pass results from the execution of the test cases, listed as “F” or

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

Copyright © 2017 SERSC Australia 67

“P”, respectively, is at the head of the table. For example, the first test case has an input of

“6, 6, 7, 5”, executes basic blocks , and , and fails.

Rank the basic blocks of the program with respect to their likelihood of containing the

faults according to the calculated similarity coefficients. The second lookup enables you

to navigate to the faulty basic block by using mining associations-based fault localization

technique, which shows better efficiency.

2.2.2. Multi-fault localization: In this particular example, we suppose that the program

has two faults which occurred on basic blocks 3 and 6. The similarity coefficients have

been again calculated using three techniques above (see Table 3). In contrast to the

example above, the third test case that has an input of “8, 6, 9, 7” fails.

Table 3. Example of basic Block Spectra-based Multiple Fault Localization

Basic Blocks

Test Cases ()
Suspiciousness

F P

6
,6

,7
,5

6
,7

,9
,3

8
,6

,9
,7

5
,4

,6
,8

7
,6

,6
,4

4
,5

,6
,7

5
,7

,6
,3

7
,6

,8
,8

T
ar

an
tu

la

Ja
cc

ar
d

O
ch

ia
i

 1 1 1 1 1 1 1 1 0.50 0.38 0.61

 0 0 1 1 1 0 0 1 0.36 0.17 0.29

 0 0 1 1 1 0 0 1 0.36 0.17 0.29

 0 0 0 1 0 0 0 1 0.00 0.00 0.00

 1 1 0 0 0 1 1 0 0.63 0.40 0.58

 1 1 0 0 0 1 1 0 0.63 0.40 0.58

 0 0 0 0 0 1 0 0 0.00 0.00 0.00

 1 1 1 1 1 1 1 1 0.50 0.38 0.61

The spectrum identifies basic block 6 as the most likely location of the fault: the

suspiciousness of basic block 6, calculated respectively by the Tarantula/Jaccard/Ochiai

coefficients, rank first and third, especially the suspiciousness of basic block 3 rank

second to last. As expected, the effectiveness of the technique declines as the number of

faults increases. Users, with the mining associations-based fault localization technique,

are still able to locate faulty block 6 pretty quickly according to suspiciousness ranking

order. However, it takes more time and expense to locate faulty block 3.

Of course, this example is contrived in many ways: tests are reasonably small, no latent

faults have occurred, the structure of the program is simple, etc. However, it serves to

illustrate the mining associations-based fault localization technique does not perform very

well.

3. Cluster-Analysis-Based Technique

In this section, we describe the multi-fault localization based on cluster analysis

approach and the target association algorithm that implement this intuition.

3.1 Problem Settings

Branch-instruction-based partition technique [15] divides a program during runtime

into different blocks, and each block reflects the runtime behavior of the program. For

example, the sequence of the program state segments () denotes that the

program performs a function call.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

68 Copyright © 2017 SERSC Australia

 The sequence of the program state segments and the code coverage are recorded at

each execution. The code coverage of an execution of a program, called an execution

slice, is the set of program statements which are ever executed in [16]. On account of

the execution slice is essentially a set of executed statements, we can use any distance

formula to calculate the pairwise distance between two sets. Jaccard distance, proposed by

Levandowsky and Winter, is chosen here [17]. Given two nonempty sets and , the

Jaccard distance between them is

 ()
| ⋂ |

| ⋃ |

Where | | denotes the number of elements of the set . The Jaccard distance is a

metric, satisfying the following four properties:

1. Nonnegativity: () ; () if and only if ;

2. Symmetry: () (); and

3. Triangle inequality: () () ().

Note that we use the Jaccard distance to calculate the distance between failures and

 in this paper, then the failures can be partition into different failure classes by cluster

analysis method.

Let { } be a set of failures caused by faults {

} ,

where neither nor are known. Assume an unknown oracle function , we

specify the relationship between and : A failure is due to the fault

 if and only

if

 ()

The oracle function divides the set of failures into mutually exclusive and

collectively exhaustive failure classes K { }

, where

 * | () +

Given a failure , we use * + to denote the failure class which belongs to and

 * + includes all failures due to the same fault, such as .

3.2 Methodology Overview

We formulate the main idea of our method in this section and its details are narrated in

Section 3.3. With the distance between failing execution slices as data source, partition

the failures into different failure classes using cluster analysis method. Specific steps are

as follows:

Executing the program component on the input and checking for failures. Then gets a

collection of failures, failing execution slices and the sequence of the program state

segments, respectively.

1. Calculating the Jaccard distance between two failures, then get an proximity

matrix

M [

 ⋯

⋮ ⋱ ⋮
 ⋯

] 7

Where is the distance between failures and .

2. Dividing failures based on the computed matrix into different failure classes

using cluster analysis method. We choose here k-means algorithm which is one of the

simplest unsupervised learning algorithms and gives a better result.

In accordance with the sequence of the program state segments, the number of function

calls of different failure classes is not the same. As the number of times functions are

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

Copyright © 2017 SERSC Australia 69

called increases, the program may have more than one infected basic blocks or statements.

This is mainly because when a fault affects the output, propagation of the fault occurs.

We propose the following way to locate faults in the object code, aiming at the failure

 sses’ differences:

1. Compute the similarity coefficient of each basic block/statement, and create a

ranking of basic blocks/statements in descending order. According to the sequence of the

program state segments, check if the number of function calls is less than (for this

paper), go to step 2. If it is not, continue with step 4.

2. Check each basic block in turn for the presence of the faulty block, then go to step 6.

Otherwise, go to step 3.

3. Take the basic block as a target, according to the target association algorithm, and

create the target association set. Calculate the similarity coefficient of each element of the

set, and create a ranking of elements in descending order. Check each element in turn for

any faults, and if it is, go to step 6. Otherwise, go to step 2.

4. Check each statement in turn for the presence of the faulty statement, then go to step

6. Otherwise, go to step 5.

5. Take the statement as a target, and create the target association set. Calculate the

similarity coefficient of each element of the set and sort them descending order. Check

each element in turn for the presence of the faulty statement, then go to step 6. Otherwise,

go to step 4.

6. Count the number of basic blocks/lines of code that have been checked.

If we locate faults in a single way, the effect of fault localization will reduce when

blocks with high suspiciousness are in multiple function bodies. In order not to influence

the effect of fault localization, we check each suspicious statement in turn when the

number of function calls is greater than .

3.3 Target Association Algorithm

This section presents our algorithm for obtaining the association set whose elements

are in line with the target in coverage information. Given a set of coverage vector

 , where indicates that the test case is executed. The vector set is

partitioned into two disjoint subsets and , corresponding to the passing and failing

cases respectively. Besides, , where

 () {
 s e e e e

 e se

And e indicates that the basic block or statement in the object program. Finally, the

workflow of our approach of creating the association set, target association algorithm, is

detailed in Alg 1.

To illustrate the algorithm, we mark basic blocks/statements and target association set

as and respectively. And () is an association set in which is treated as

the target.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

70 Copyright © 2017 SERSC Australia

Alg 1 Target Association Algorithm

Inputs: Ranking basic blocks or statements , Failing Vector set

Output: Target Association set

1. ∈
2. () ← I
3. ← ∅

4. for each ∈

5. for each ∈

6. if () then

7. () ← ()⋀
8. ← ⋃ ()
9. end if

10. end for

11. end for

12. return

4. Empirical Study

For evaluating the performance of our approach we used the well-known Siemens

benchmark set, as well as gzip and sed, which could be obtained from SIR [13]. Every

single program has a correct version and a set of faulty versions of the same program.

Although the faulty may span multiple statements and/or functions, each faulty version

contains single fault. For each program a set of inputs was also provided, which was

created to test full coverage. Table 4 provides more information about the programs used

in our experiments.

For our experiments, we extended the subject programs with program versions where

we could activate arbitrary combinations of 2-5 faults. For this purpose, we limited

ourselves to a selection of 143 out of the 183 faults, based on criteria such as faults being

attributable to a single line of code, to enable unambiguous evaluation.

Table 4. The Subject Programs

Program Faulty Versions Number of Lines Test Cases Description

sed 6 14,427 370 Textual manipulator

gzip 7 5,680 210 Data compression

Print_tokens 7 539 4,130 Lexical Analyzer

print_tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition

schedule 9 397 2,650 Priority Scheduler

schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation

tot_info 23 398 1,052 Information Measure

We now proceed to evaluate our approach (CA-MFL) in the context of multiple faults,

using our extended Siemens benchmark set, gzip and sed. We compared our technique

with several well-known techniques, such as Tarantula, Ochiai, Jaccard and SBI. For

compatibility with previous work in fault localization, we used the percentage of basic

blocks or statements that need to be inspected to localize the fault to evaluate the

performance of our technique. All measurements except for the four- fault version of

print_tokens were averages over 100 versions, or over the maximum number of

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

Copyright © 2017 SERSC Australia 71

combinations available, where we verified that all faults are active in at least one failed

run.

Figure 2. Effectiveness Comparison in two to five-fault programs

Figure 2 plots the percentage of located faults in terms of blocks or statements to

examine. From Figure 2 we conclude that CA-MFL is consistently the best performing

technique, finding 55% approximately of the faults by examining 20% of the source code.

For the same percentage of examined code, using Ochiai leads a developer to find about

40% of the faulty versions, and with Tarantula only 30% is found. Our approach

outperforms Ochiai, which is consistently better than Jaccard and Tarantula.

And then we report on the time/space complexity of CA-MFL, compared to other fault

localization techniques. The time complexity of the target associate algorithm and ranking

components in fault likelihood are () and () respectively. We measure

the time efficiency by conducting our experiments on a 2.6 GHz Intel Core i5 with 4GB

of memory. As expected, the less expensive technique is Tarantula, while CA-MFL needs

slightly more time.

With respect to space complexity, Ochiai needs two store the counters

for the similarity computation for all components, and represents the size of the

object program. Hence, the space complexity is (). CA-MFL also stores similar

counters, and it has () space complexity.

5. Conclusions

In this paper we have presented a multiple-fault localization technique, coined

CA-MFL. Our synthetic experiments using a benchmark set of well-known programs

have confirmed that CA-MFL consistently outperforms other renowned techniques such

as Ochiai, Jaccard and Tarantula. Although our evaluation clearly demonstrates a

trade-off between reduction and fault-localization effectiveness, faults are due to the

choice of test samples and the test suites have a highly biased sample of passing and

failing test cases. Specifically, we plan to study different kinds of programs containing

more faults that may provide greater ability to generalize the results. We also would like

to explore adaptive strategies that enable the way of examining code adapt to the structure

of code to provide more alternatives in the trade-off between reduction and

fault-localization effectiveness.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
a). Two-fault programs

% of blocks\statements to examine

%
 o

f
lo

c
a
liz

e
d
 f

a
u
lt
s

CA-MFL

Ochiai

Jaccard

Tarantula

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
b). Three-fault programs

% of blocks\statements to examine

%
 o

f
lo

c
a
liz

e
d
 f

a
u
lt
s

CA-MFL

Ochiai

Jaccard

Tarantula

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
c). Four-fault programs

% of blocks\statements to examine

%
 o

f
lo

c
a
liz

e
d
 f

a
u
lt
s

CA-MFL

Ochiai

Jaccard

Tarantula

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
d). Five-fault programs

% of blocks\statements to examine

%
 o

f
lo

c
a
liz

e
d
 f

a
u
lt
s

CA-MFL

Ochiai

Jaccard

Tarantula

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

72 Copyright © 2017 SERSC Australia

Acknowledgements

This research was supported in part by the National Natural Science Foundation of

China (No.61379036, 61562015, 61502430); Major scientific and technological special

key industrial projects of Zhejiang Province, China (Grant No. 2014C01047); the Natural

Science Foundation of Zhejiang Province, China (No.LY12F02041); the Natural Science

Foundation of Guangxi Province, China (No. 2015GXNSFDA139038); 521 ta-lent

project of Zhejiang Sci-Tech University.

References

[1] H. Cleve and A. Zeller, “Locating causes of program failures.” Proceedings of the 27th international

conference on Software engineering. ACM, (2005).

[2] A. Zeller, “Isolating cause-effect chains from computer programs.” Proceedings of the 10th ACM

SIGSOFT symposium on Foundations of software engineering. ACM, (2002).

[3] A Ze e R H eb “S mp y g s g e-inducing input.” IEEE Transactions.

Software Engineering, vol. 28, no. 2, pp. 183–200, February. (2002).

[4] M. Weiser, “Programmers use slices when debugging.” Communications of the ACM 25.7 (1982):

446-452.

[5] H. Agrawal, R. A. DeMillo and E. H. Spafford, “Debugging with dynamic slicing and backtracking.”

Software: Practice and Experience 23.6 (1993): 589-616.

[6] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-localization

technique.” Proceedings of the 20th IEEE/ACM international Conference on Automated software

engineering. ACM, (2005).

[7] R. Abreu, P. Zoeteweij and A. J. C. Van Gemund, “On the accuracy of spectrum-based fault

localization.” Testing: Academic and Industrial Conference Practice and Research

Techniques-MUTATION, (2007).

[8] R. Abreu, P. Zoeteweij and A. J. C. Van Gemund, “An evaluation of similarity coefficients for software

fault localization.” Dependable Computing, 2006. PRDC'06. 12th Pacific Rim International Symposium

on. IEEE, (2006).

[9] R. Abreu, A. Gonzalez-Sanchez and A. J. C. Van Gemund, “Exploiting count spectra for bayesian fault

localization.” Proceedings of the 6th International Conference on Predictive Models in Software

Engineering. ACM, (2010).

[10] S. Artzi, J. Dolby, F. Tip and M. Pistoia, “Fault localization for dynamic Web applications.” Software

Engineering, IEEE Transactions on 38.2 (2012): 314-335.

[11] W. Wen, B. Li, X. Sun and C. Liu, “Technique of software fault localization based on hierarchical

s g spe m ” Journal of Software 24.5 (2013): 977-992.

[12] L. Zhao, L. Wang, D. Gao, Z. Zhang and Z. Xiong, “Mining associations to improve the effectiveness of

fault localization.” Jisuanji Xuebao (Chinese Journal of Computers) 35.12 (2012): 2528-2540.

[13] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled Experimentation with Testing Techniques:

An Infrastructure and its Potential Impact.” Empirical Software Engineering 10.4(2005):405-435.

[14] M. J. Harrold, G. Rothermel, R. Wu and L. Yi, “An empirical investigation of program spectra.” ACM

SIGPLAN Notices. Vol. 33. No. 7. ACM, (1998).

[15] D. Zhang, J. Jiang and L. Chen, “A method for validating the effectiveness of fault clustering and failure

clustering of programs.” SCIENTIA SINICA Information is 10 (2014): 011.

[16] C. Liu, X. Zhang and J. Han, “A systematic study of failure proximity.” Software Engineering, IEEE

Transactions on 34.6 (2008): 826-843.

[17] M. Levandowsky and D. Winter, “Distance between sets.” Nature 234.5323 (1971): 34-35.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

Copyright © 2017 SERSC Australia 73

Authors

Xiao’an Bao, born in 1973, M.S. He is currently a full

Professor in the institute of software, Zhejiang Sci-Tech

University, China. He mainly researches adaptive software,

software testing and intelligent information processing.

Yusen Wang, born in 1990, Master candidate. Her main

research interests include fault localization technology.

Junyan Qian, born in 1973, He holds a Master degree in

Computer Science from Guilin University of Electronic

Technology, China, and a Ph. D. degree in Software Engineering

from Southeast University, China. His research interests include

formal software verification, model checking and real-time

system.

Zijian Xiong, born in 1991, Master candidate. His main

research interests include software testing technology.

Na Zhang, born in 1977. She holds a Master degree in

Computer Application from Zhejiang University, China. She

is an associate Professor in the institute of software, Zhejiang

Sci-Tech University, China. She mainly researches software

engineering and software testing technology.

Chenghai Yu, born in 1975,M.S. He is an associate

Professor in the institute of software, Zhejiang Sci-Tech

University, China. He mainly researches software engineering

and software testing technology.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 8 (2017)

74 Copyright © 2017 SERSC Australia

