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Abstract 

Locating faults is one of the most expensive and time-consuming components of 

debugging process. Fault localization technique based on mining associations analyzes 

the dependencies between application code and narrow down the location of faults. 

However, the efficiency of this technology will decrease with the increase of the number 

of faults. This paper presents a new fault location technique based on cluster analysis of 

program failures. Failures are categorized into different failure classes using cluster 

analysis method, and the failures are caused by one and only one fault in each class. We 

also study characteristics of a set of statements covered by failed executions, which are 

due to the same fault. According to  failure classes’ difference, we describe a target 

association algorithm and a corresponding way to examine code.  Empirical studies 

based on SIR benchmarks indicate that, for the subject we studied, our technique has 

higher efficiency than the popular Tarantula, Ochiai and Jaccard techniques in  

multiple-fault programs, and can be implemented in effective space and time complexity. 

 

Keywords: multi-fault location, cluster analysis, failure classes, target association, 

software test. 

 

1. Introduction 

It is commonly recognized that debugging software is an expensive and mostly manual 

process. Of all debugging activities, locating faults is a very resource-consuming task, 

including the time and the cost.  Due to its high cost, any improvement in the process of 

finding faults is able to greatly decrease the cost of debugging. Depending on such 

realizations, a variety of fault localization techniques have been proposed recently, and 

each of which aims to guide programmers to the locations of faults in one way or another 

[1-12]. 

Reducing the search scopes is the main approach of fault localization technique to 

improve efficiency. In [1], Cleve and Zeller reported a program state-based debugging 

technology, called Cause Transitions, to recognize the locations and times, in which a 

cause of failure changes from one variable to another. This is an expansion of their earlier 

work with delta debugging [2-3]. An algorithm named     is proposed to quickly locate 

cause transitions in a program execution. One of the potential problems of the cause 

transition technique is that the cost of it is relatively high; there may not only
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exist thousands of states in a program execution, also delta debugging at each matching 

point needs additional test runs to narrow down the causes.  

Traditional program slicing technique can be roughly classified as static [4] and 

dynamic [5]. The technique gets slices that are associated with the fault to reduce the 

searching area by analyzing the data dependences and control dependences in programs. 

However, the time complexity and space complexity of conventional program slicing 

technique are quite big, and program slicing is conservative, so they are inefficient.  

Current spectrum-based approaches for fault localization assess the suspiciousness of 

program entities to locate faults [6-10]. Effectively, the coverage information cannot 

reflect the complicated control- and data-dependency relationships, and simplify the 

execution spectra. On this basis, mining associations-based fault localization technique 

[12] has been shown to have better diagnostic performance than spectrum-based 

approaches. However, with the increase of the number of bugs, failed executions caused 

by different faults would affect the suspiciousness of the same statement. And the effect 

of fault localization will reduce, when blocks with high suspiciousness span through 

multiple function bodies. 

This paper presents the details of our multiple fault localization technique with a 

description of cluster analysis. This paper also presents the results of empirical studies 

that evaluate the technique to determine whether it helps to locate faults in the program. 

We performed the study on C programs with a number of faulty versions, every version 

containing from two to five known faults. In particular, we make the following 

contributions: 

1. A presentation of a new technique for cluster-analysis-based multiple fault 

localization (CA-MFL), which provides a new approach for categorizing the failures 

caused by different faults. The clustering analysis method helps in locating two or more 

faults in a program by illuminating likely faulty statements which belong to the same kind 

of failures. 

2. We describe a target association algorithm and a corresponding way to review codes, 

according to the failure classes’ differences, which are not restricted to a single way and 

can maintain the effectiveness of fault localization. 

3. We systematically evaluate the effectiveness of cluster-based multiple fault 

localization on the SIR benchmarks [13] under the same setting as previous studies. Four 

existing fault localization techniques are compared with our technique in this study, 

which demonstrates the superior accuracy achieved by our technique in fault localization. 

 

2. Preliminaries  

In this section we introduce program spectra, and present a detailed example which 

illustrates the advantage of modeling cluster analysis. 

In this paper we use the following terminology. A failure is an event that occurs when 

delivered service deviates from correct service. An error is a system state that may cause 

a failure. A fault is the cause of an error in the system. In our discussion, faults are bugs in 

program code, and failures occur when the actual output for a given input deviates from 

the expected output for that input. 

 

2.1. Program Spectra 

A program spectrum is a collection of data that provides a specific view on dynamic 

behaviors of software. Numerous different forms of program spectra exist [14], in this 

section we work with so-called basic block spectra. A basic block spectrum includes a 

block of code in a program, which cannot be branched into or out of. This data is 

collected at run-time, and typically consists of a lot of counters or flags for the different 

parts of a program. 
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To facilitate basic block spectra, given a test suite   for a software system   and a 

test case   in  , this technique requires two types of information about the execution of 

  with  : pass/fail results and code coverage. Test case   passes if the actual output for 

an execution of   with   is the same as the expected output for  . If it is, the test case   

is a passing case and the execution is a passing execution; otherwise,   fails, the test case 

  is a failing case and the execution trace is a failing execution or a failure in short. 

The spectra of   constitutes a binary matrix, whose rows correspond to   different 

blocks of the program (see Table 1). Where        *   +, and             . Besides, 

         indicates the block    was touched in the execution of test case  ; otherwise, 

        . The fail/pass results of the test cases are listed as “F” or “P”.  

Table 1. The Ingredients of Fault Localization 

Basic Block 

Test Cases ( ) 

Suspiciousness F P 

   …          …    

        …              …       
 
 

        …              …       
 
 

…
 

…
 

 …
 

 …
 

 …
 

…
 

        …              …       
 
 

 

Many similarity coefficients exist. As an example, below are three different similarity 

coefficients, namely the Tarantula coefficients, used in the Tarantula fault localization 

tool [6], the Jaccard coefficients which is used by the Pinpoint tool [7-8], and the Ochiai 

coefficients, taken from the molecular biology domain [7-8]: 

T        ( )  
   ( ) (   ( )    ( ))⁄

   ( ) (   ( )    ( ))⁄     ( ) (   ( )    ( ))⁄
                                 ( ) 

J      ( ) 
   ( )

   ( )    ( )    ( )
                                                                                   ( ) 

      ( )  
   ( )

√(   ( )    ( )) (   ( )    ( ))

                                                             ( ) 

Where   ( ) |* |          +|, and     *   +. Besides,       indicates whether 

block   was involved (   ) in the execution of run   or not (   ). Likewise,      

indicates whether one run   was faulty (   ) or not (   ). 

Under the assumption that a high similarity to the faulty block indicates a high 

probability that the corresponding statements of the software cause the detected bugs, the 

calculated similarity coefficients rank the parts of the program in regard to their likelihood 

of containing the faults. 

 

2.2. Motivating Example 

In this section, we present a simple example of a C program that is designed to 

illustrate the process of finding and localizing faults. Consider the erroneous program for 

determining the max of the four input values, as shown in Figure 1. Faults lie on basic 

blocks 3 and 6 in this program which has been divided into 8 basic blocks. There, the 
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value  , representing the max, should be assigned the value of   rather than the value of 

  or  . 

                int m, x, y, z, w;            

b1                   Read(x, y, z, w);                                                        

                  if(x > y)                                  

                         m = x;                             

b2                      if(m < z)                                                            

                         m = x;          /*fault, b3' is the revised block;*/ 

b3                      if(m < w) 

                      /*b3'  m = z;  

                         if(m < w ) */ 

b4                      m = w;                                                              

                else               

b5                      m = y;               

                          if(m < z)                                                           

                          m = y;    /*fault, b6' is the revised block;*/      

b6                       if(m < w) 

                       /*b6'  m = z;  

                          if(m < w ) */ 

b7                       m = w;                                                              

b8              print(m);                                                                    

 

Figure 1. The Instance Containing Two Faults 

2.2.1. single-fault localization: Suppose that the program has a single fault which 

occurred on basic block 6. The similarity coefficients have been calculated using three 

techniques above, and Table 2 shows the corresponding block spectra. In this figure, 

blocks that were touched were shown by “1”, otherwise blocks were shown by “0”. 

Table 2. Example of basic Block Spectra-based Single Fault Localization 

Basic Blocks 

Test Cases ( ) 
Suspiciousness 

F P  

6
,6

,7
,5

 

6
,7

,9
,3

 

 

8
,6

,9
,7

 

5
,4

,6
,8

 

7
,6

,6
,4

 

4
,5

,6
,7

 

5
,7

,6
,3

 

7
,6

,8
,8

 

 

T
ar

an
tu

la
 

Ja
cc

ar
d
 

O
ch

ia
i 

   1 1  1 1 1 1 1 1  0.50 0.25 0.50 

   0 0  1 1 1 0 0 1  0.00 0.00 0.00 

 
 
  0 0  1 1 1 0 0 1  0.00 0.00 0.00 

   0 0  0 1 0 0 0 0  0.00 0.00 0.00 

   1 1  0 0 0 0 1 1  0.75 0.50 0.71 

   1 1  0 0 0 0 1 1  0.75 0.50 0.71 

   0 0  0 0 0 0 1 0  0.00 0.00 0.00 

   1 1  1 1 1 1 1 1  0.50 0.25 0.50 

Eight test cases are supplied to the program as shown in the table: two of the 

executions produce the incorrect output and six of the executions produce correct output. 

Each test case is represented by a column in Table 2. The test-case input is at the top of 

each column; and the fail/pass results from the execution of the test cases, listed as “F” or 
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“P”, respectively, is at the head of the table. For example, the first test case has an input of 

“6, 6, 7, 5”, executes basic blocks      , and   , and fails.    

Rank the basic blocks of the program with respect to their likelihood of containing the 

faults according to the calculated similarity coefficients. The second lookup enables you 

to navigate to the faulty basic block by using mining associations-based fault localization 

technique, which shows better efficiency. 

 

2.2.2. Multi-fault localization: In this particular example, we suppose that the program 

has two faults which occurred on basic blocks 3 and 6. The similarity coefficients have 

been again calculated using three techniques above (see Table 3). In contrast to the 

example above, the third test case that has an input of “8, 6, 9, 7” fails. 

Table 3. Example of basic Block Spectra-based Multiple Fault Localization 

Basic Blocks 

Test Cases ( ) 
Suspiciousness 

F P 

 

6
,6

,7
,5

 

6
,7

,9
,3

 

8
,6

,9
,7

 

 

5
,4

,6
,8

 

7
,6

,6
,4

 

4
,5

,6
,7

 

5
,7

,6
,3

 

7
,6

,8
,8

 

T
ar

an
tu

la
 

Ja
cc

ar
d
 

O
ch

ia
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   1 1 1  1 1 1 1 1  0.50 0.38 0.61 

   0 0 1  1 1 0 0 1  0.36 0.17 0.29 

   0 0 1  1 1 0 0 1  0.36 0.17 0.29 

   0 0 0  1 0 0 0 1  0.00 0.00 0.00 

   1 1 0  0 0 1 1 0  0.63 0.40 0.58 

   1 1 0  0 0 1 1 0  0.63 0.40 0.58 

   0 0 0  0 0 1 0 0  0.00 0.00 0.00 

   1 1 1  1 1 1 1 1  0.50 0.38 0.61 

 

The spectrum identifies basic block 6 as the most likely location of the fault: the 

suspiciousness of basic block 6, calculated respectively by the Tarantula/Jaccard/Ochiai 

coefficients, rank first and third, especially the suspiciousness of basic block 3 rank 

second to last. As expected, the effectiveness of the technique declines as the number of 

faults increases.  Users, with the mining associations-based fault localization technique, 

are still able to locate faulty block 6 pretty quickly according to suspiciousness ranking 

order. However, it takes more time and expense to locate faulty block 3. 

Of course, this example is contrived in many ways: tests are reasonably small, no latent 

faults have occurred, the structure of the program is simple, etc. However, it serves to 

illustrate the mining associations-based fault localization technique does not perform very 

well. 

 

3. Cluster-Analysis-Based Technique 

In this section, we describe the multi-fault localization based on cluster analysis 

approach and the target association algorithm that implement this intuition. 

 

3.1 Problem Settings 

Branch-instruction-based partition technique [15] divides  a program during runtime 

into different blocks, and each block reflects the  runtime behavior of the  program. For 

example, the sequence of the program state segments (            ) denotes that the 

program performs a function call. 
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 The sequence of the program state segments and the code coverage are recorded at 

each execution. The code coverage of an execution   of a program, called an execution 

slice, is the set of program statements which are ever executed in   [16]. On account of 

the execution slice is essentially a set of executed statements, we can use any distance 

formula to calculate the pairwise distance between two sets. Jaccard distance, proposed by 

Levandowsky and Winter, is chosen here [17]. Given two nonempty sets   and  , the 

Jaccard distance between them is 

 (   )   
| ⋂ |

| ⋃ |
                                                                                                                 

Where | | denotes the number of elements of the set  . The Jaccard distance is a 

metric, satisfying the following four properties: 

1. Nonnegativity:  (   )  ;   (   )   if and only if    ; 

2. Symmetry:  (   )  (   ); and 

3. Triangle inequality:  (   )  (   )  (   ). 

Note that we use the Jaccard distance to calculate the distance between failures    and 

   in this paper, then the failures can be partition into different failure classes by cluster 

analysis method.   

Let   {          }  be a set of   failures caused by   faults   { 
 
  
 
    

 
} , 

where neither   nor   are known. Assume an unknown oracle function      , we 

specify the relationship between   and  : A failure    is due to the fault  
 
 if and only 

if 

 (  )                                                                                                                                     

The oracle function   divides the set of failures   into   mutually exclusive and 

collectively exhaustive failure classes K {  }   
 

, where 

   *  | (  )                  +                                                                                              

Given a failure  , we use   * + to denote the failure class which   belongs to and 

  * + includes all failures due to the same fault, such as  . 

 

3.2 Methodology Overview 

We formulate the main idea of our method in this section and its details are narrated in 

Section 3.3. With the distance between failing execution slices as data source, partition 

the failures into different failure classes using cluster analysis method. Specific steps are 

as follows: 

Executing the program component on the input and checking for failures. Then gets a 

collection of failures, failing execution slices and the sequence of the program state 

segments, respectively. 

1. Calculating the Jaccard distance between two failures, then get an     proximity 

matrix   

M  [

   ⋯    

⋮ ⋱ ⋮
   ⋯    

]                                                                                                          7  

Where      is the distance between failures    and   . 

2. Dividing failures based on the computed matrix   into different failure classes 

using cluster analysis method. We choose here k-means algorithm which is one of the 

simplest unsupervised learning algorithms and gives a better result. 

In accordance with the sequence of the program state segments, the number of function 

calls of different failure classes is not the same. As the number of times functions are 
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called increases, the program may have more than one infected basic blocks or statements. 

This is mainly because when a fault affects the output, propagation of the fault occurs. 

We propose the following way to locate faults in the object code, aiming at the failure 

   sses’ differences:  

1. Compute the similarity coefficient of each basic block/statement, and create a 

ranking of basic blocks/statements in descending order. According to the sequence of the 

program state segments, check if the number of function calls is less than  (    for this 

paper), go to step 2. If it is not, continue with step 4. 

2. Check each basic block in turn for the presence of the faulty block, then go to step 6. 

Otherwise, go to step 3. 

3. Take the basic block as a target, according to the target association algorithm, and 

create the target association set. Calculate the similarity coefficient of each element of the 

set, and create a ranking of elements in descending order. Check each element in turn for 

any faults, and if it is, go to step 6. Otherwise, go to step 2. 

4. Check each statement in turn for the presence of the faulty statement, then go to step 

6. Otherwise, go to step 5. 

5. Take the statement as a target, and create the target association set. Calculate the 

similarity coefficient of each element of the set and sort them descending order. Check 

each element in turn for the presence of the faulty statement, then go to step 6. Otherwise, 

go to step 4. 

6. Count the number of basic blocks/lines of code that have been checked. 

If we locate faults in a single way, the effect of fault localization will reduce when 

blocks with high suspiciousness are in multiple function bodies. In order not to influence 

the effect of fault localization, we check each suspicious statement in turn when the 

number of function calls is greater than  . 

 

3.3 Target Association Algorithm 

This section presents our algorithm for obtaining the association set whose elements 

are in line with the target in coverage information. Given a set of coverage vector 

              , where    indicates that the     test case is executed. The vector set   is 

partitioned into two disjoint subsets    and   , corresponding to the passing and failing 

cases respectively. Besides,                , where  

  (  )  {
                 s       e       e e e                  

                                                             e   se 
                                                          

And e  indicates that the     basic block or statement in the object program. Finally, the 

workflow of our approach of creating the association set, target association algorithm, is 

detailed in Alg 1. 

To illustrate the algorithm, we mark basic blocks/statements and target association set 

as    and     respectively. And    ( ) is an association set in which   is treated as 

the target. 
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Alg 1 Target Association Algorithm 

Inputs: Ranking basic blocks or statements   , Failing Vector set    

Output: Target Association set     

1.    ∈     
2.    ( ) ← I 
3.     ← ∅ 

4. for each   ∈    

5.    for each   ∈    

6.       if  ( )   then 

7.            ( ) ←    ( )⋀   
8.             ←   ⋃    ( ) 
9.       end if  

10.     end for     

11.  end for 

12.  return     

 

4. Empirical Study 

For evaluating the performance of our approach we used the well-known Siemens 

benchmark set, as well as gzip and sed, which could be obtained from SIR [13]. Every 

single program has a correct version and a set of faulty versions of the same program. 

Although the faulty may span multiple statements and/or functions, each faulty version 

contains single fault. For each program a set of inputs was also provided, which was 

created to test full coverage. Table 4 provides more information about the programs used 

in our experiments. 

For our experiments, we extended the subject programs with program versions where 

we could activate arbitrary combinations of 2-5 faults. For this purpose, we limited 

ourselves to a selection of 143 out of the 183 faults, based on criteria such as faults being 

attributable to a single line of code, to enable unambiguous evaluation. 

Table 4. The Subject Programs 

Program Faulty Versions Number of Lines Test Cases Description 

sed 6 14,427 370 Textual manipulator 

gzip 7 5,680 210 Data compression 

Print_tokens 7 539 4,130 Lexical Analyzer 

print_tokens2 10 489 4,115 Lexical Analyzer 

replace 32 507 5,542 Pattern Recognition 

schedule 9 397 2,650 Priority Scheduler 

schedule2 10 299 2,710 Priority Scheduler 

tcas 41 174 1,608 Altitude Separation 

tot_info 23 398 1,052 Information Measure 

  

We now proceed to evaluate our approach (CA-MFL) in the context of multiple faults, 

using our extended Siemens benchmark set, gzip and sed. We compared our technique 

with several well-known techniques, such as Tarantula, Ochiai, Jaccard and SBI. For 

compatibility with previous work in fault localization, we used the percentage of basic 

blocks or statements that need to be inspected to localize the fault to evaluate the 

performance of our technique. All measurements except for the four- fault version of 

print_tokens were averages over 100 versions, or over the maximum number of 
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combinations available, where we verified that all faults are active in at least one failed 

run.  

Figure 2. Effectiveness Comparison in two to five-fault programs 

Figure 2 plots the percentage of located faults in terms of blocks or statements to 

examine. From Figure 2 we conclude that CA-MFL is consistently the best performing 

technique, finding 55% approximately of the faults by examining 20% of the source code. 

For the same percentage of examined code, using Ochiai leads a developer to find about 

40% of the faulty versions, and with Tarantula only 30% is found. Our approach 

outperforms Ochiai, which is consistently better than Jaccard and Tarantula. 

And then we report on the time/space complexity of CA-MFL, compared to other fault 

localization techniques. The time complexity of the target associate algorithm and ranking 

components in fault likelihood are  (    ) and  (      ) respectively. We measure 

the time efficiency by conducting our experiments on a 2.6 GHz Intel Core i5 with 4GB 

of memory. As expected, the less expensive technique is Tarantula, while CA-MFL needs 

slightly more time. 

With respect to space complexity, Ochiai needs two store the counters                 

for the similarity computation for all   components, and   represents the size of the 

object program. Hence, the space complexity is  ( ). CA-MFL also stores similar 

counters, and it has  ( ) space complexity. 

 

5. Conclusions 

In this paper we have presented a multiple-fault localization technique, coined 

CA-MFL. Our synthetic experiments using a benchmark set of well-known programs 

have confirmed that CA-MFL consistently outperforms other renowned techniques such 

as Ochiai, Jaccard and Tarantula. Although our evaluation clearly demonstrates a 

trade-off between reduction and fault-localization effectiveness, faults are due to the 

choice of test samples and the test suites have a highly biased sample of passing and 

failing test cases. Specifically, we plan to study different kinds of programs containing 

more faults that may provide greater ability to generalize the results. We also would like 

to explore adaptive strategies that enable the way of examining code adapt to the structure 

of code to provide more alternatives in the trade-off between reduction and 

fault-localization effectiveness.  
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