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Abstract 

Recently, traditional Euclidean-distance-based algorithms have shown their 

disabilities because the intrinsic space which samples lie in may not be Euclidean space. 

An excellent distance metric which can describe similarities between samples correctly 

can improve the performances of most machine learning tasks greatly. Therefore, 

learning an excellent distance metric is of vital importance but challenging. Up to now, 

many distance metric learning methods have been proposed using various techniques. 

This paper proposed a novel method named Distance Metric with Kullback-Leibler 

Divergence (DMKD) which fully utilizes Kullback-Leibler Divergence to describe scatters 

between classes. DMKD introduces the theory of information entropy into the field of 

distance metric. It maximizes Kullback-Leibler Divergences between classes to improve 

its discriminative ability. Meanwhile, an iterative optimization strategy is adopted to find 

the optimization solution of DMKD. The obtained distance metric can separate samples 

from different classes easily. Various experiments on benchmark datasets have been 

carried out to verify the excellent performance of this novel method. 

 

Keywords: Distance Metric Learning, Kullback-Leibler Divergence, Image 

classification 

 

1. Introduction 

As we all know, the performances of most traditional algorithms based on Euclidean 

metric may failure facing with samples which don't lie in Euclidean space. Therefore, 

learning an appropriate distance metric is of vital importance for many machine learning 

and computer vision tasks [1-3], such as classification [1], face recognition [2] and image 

retrieval. In order to overcome the limitations of these Euclidean-distance-based 

algorithms, many researchers have proposed some distance metric learning methods [4-7] 

from different perspectives. Xing.P [4] proposed a global method which constructs a 

convex optimization model maximizes the sum of all distances between samples from 

different classes. Meanwhile, two constraints are added to ensure a feasible solution. 

Large Margin Nearest Neighbor (LMNN) [5] aims to find an dimensional spaces where 

the margins between different classes are pulled away as far as possible. Information-

Theoretic Metric Learning (ITML) [6] constructs an Bregman optimization which 

minimizes the differential relative entropy between two multivariate Gaussians. 

Constraint-Margin Maximization (CMM) [7] embeds original samples into a low-

dimensional space and calculates Euclidean distance in this space.  

In this paper, we proposed a novel distance metric learning method called Distance 

Metric with Kullback–Leibler Divergence (DMKD) which adopts Kullback–Leibler (KL) 

[9] divergence to describe scatters between classes. DMKD maximizes the sum of KL 

divergences between classes to separate samples from different classes. Meanwhile, a 
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constraint is added in DMKD. The constraint ensures that the sum of distances between 

samples from the same class is less than one certain constant. Then we develop an 

iterative optimization strategy to find the optimization solution of DMKD. 

This paper is organized as follows: Section 2 introduces some basic knowledge of 

distance metric. In Section 3, the procedure to construct DMKD is illustrated in detail. 

Meanwhile, the optimization procedure is explained. In Section 4, we conduct several 

experiments on benchmark datasets to show the excellent performance of this novel 

distance metric learning method. In Section 5, we summarize this paper and make a 

conclusion. 

 

2. Related Work 

In this section, we introduce some basic knowledge of distance metric briefly. The 4 

properties which all distance metric must follow are illustrated. For any two samples ix  

and jx  which locates in a d -dimensional space, their Mahalanobis distance can be 

calculated as follows: 

     ,
T

A i j i j i jd x x x x A x x                                        (1) 

where Ad  is the distance between ix  and jx  using the distance metric matrix A . 

d dA R   is the metric matrix which is positively semi-definite. Therefore, A can be 

decomposed into
TA WW , where 

l dW R   and l d . Therefore, it's equivalent to find 

an optimal projection matrix W  to project samples into the low-dimensional space and 

calculate the Euclidean distance between samples. Meanwhile, for any distance metric, 

the four properities should be always satisfied: 

1) Triangular inequality:      , , ,A i j A j k A i kd x x d x x d x x   

2) Non-negativity:  , 0A i jd x x   

3) Symmetry:    , ,A i j A j id x x d x x   

4) Distinguishability:  , 0A i j i jd x x x x    

 

3. Distance Metric with Kullback–Leibler Divergence 

In this section, we proposed a novel distance metric learning method called distance 

metric with Kullback-Leibler divergence (DMKD). DMKD is a novel distance metric 

which maximizes KL divergence to separate samples from different classes. There is a 

constraint adopted to ensure DMKD to obtain a feasible metric. Then the optimization 

procedure of DMDK is illustrated in detail.  

 

4.1. The Construction Procedure of DMKD 

In this section, we introduce the procedure of DMKD in detail. In order to describe 

scatters between classes, DMKD introduces KL divergence into the field of distance 

metric. It maximizes KL divergences between classes to improve the discriminative 

ability. Assume we are given n  samples 1 2, , , nx x x  from c  classes which follow 

Gaussian distributions. Each 
d

ix R  locates in a d -dimensional space. For Gaussian 

probability density functions  ; ,i i ip N x u  , where 
d

iu R  is the mean vector of the 

i  class measurements, and 
d d

i R    is the with-class covariance matrix of the i  class. 

Then the KL divergence between the i  and j  classes is listed as follows: 
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   
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1
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2
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tr tr D 


 



         
 


             (2) 

where  i jD p p  is the KL divergence between two classes. 

  
T

d d

ij i j i jD u u u u R      and  det   . However, KL divergence in Eq.(2) 

is the calculated in the Euclidean space. Because the distance metric matrix is 
T d dA WW R   , the KL divergence between these two classes using the new distance 

metric can be expressed as follows: 

      

     1

| |

ln ln
1

2

T T

W i j

T T

j i

T T

j i ij

D p p D p W x y i p W x y j

W W W W

tr W W W D W


  

    
 
   
  

                (3) 

Then the construction procedure of metric matrix A  is equivalent to find the optimal 

projection matrix 
d lW R  . DMKD aims to maximize the sum of KL divergences 

between all classes to separate samples from different classes. And the objective function 

of DMKD is constructed as follows: 

 
1 ,

max W i j
W

i j c

D p p
 

                                                 (4) 

Maximizing Eq.(4) makes samples from different classes separate in the new built 

metric space. Meanwhile, in order to obtain a feasible distance metric, distances between 

samples from the same class should be restricted. Therefore, DMKD is added a constraint 

as follows: 

 
1 ,

2

1 ,

max

. . 1

W W i j
W

i j c

T T

ab a b

a b c

L D p p

s t W x W x

 

 



 




                               (5) 

If ax  and bx  belongs to the same class 1ab  , 0  otherwise. DMKD aims to 

maximizing the sum of KL divergences between classes while compacting samples from 

the same class. Contrast with other distance metric learning methods, such LMNN, CMM, 

DMKD utilizes KL divergence to describe scatters between classes and it is more 

suitable. 

 

3.2. The Optimization Procedure of DMKD 

In this section, we introduce the optimization procedure of DMKD in detail. DMKD 

utilizes gradient ascent and iterative projection to achieve the optimal solution. Gradient 

ascent is utilized by DMKD to maximize the objective function of Eq.(5) while iterative 

projection is utilized to ensure the constraint of Eq.(5) satisfied. The optimization 

procedure repeats the two steps until A  converges. First, DMKD takes a gradient step 

WL
W W

W



 


 to maximize the objective function of Eq.(5). And WL

W




 is calculated as 

follows: 
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 
1 ,

W
W W i j

i j c

L
D p p

W  
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                                         (7) 

where  
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                  (8) 

Therefore, we can utilize gradient ascent to update W  which can maximize Eq.(5). 

Then, W  should be updated again to meet the constraint of Eq.(5). Finally, the distance 

metric A  can be represented as 
TWW . 

 

4. Experiment 

In this section, we construct several experiments on various benchmark datasets to 

show the excellent performance of our proposed method. At first, we summarize the 

attributes of all datasets and the comparing methods in Section 4.1. And the experiment 

results are shown in Section 4.2 to show the performance of DMKD. 

 

4.1. Datasets and Comparing Methods 

There are 4 datasets utilized in our experiment, including ORL1, AR2, Isolet3 and 

Caltech 1014 datasets. All attributes of these datasets are summarized in Table.1 as 

follows: 

Table 1. Attributes of All Datasets 

Datasets Sizes Classes Dimensions 

ORL 400 40 1024 

AR 1680 120 2000 

Isolet 7797 26 617 

Caltech 101 9146 102 −−  

 

For ORL face dataset, there are 400 faces corresponding to 40 people’s faces. And each 

people has 10 face images. All images are taken at different times, facial expressions, 

varying the lighting and some facial details. AR face dataset consists of 1680 images 

corresponding to 120 people’s faces. Each people has 14 face images with different 

expressions. Isolet is a dataset of letters of English alphabet spoken in isolation. It consists 

of 7797 spoken letters, 2 productions of each letter by 150 speakers. Caltech 101 is an 

image dataset which contains 9145 images from 102 different objects. And the size of 

each image is roughly 300 × 200 pixels. And some images from these datasets are shown 

in Table.1 as follows: 

 

                                                           
1 http://www.uk.research.att.com/facedatabase.html 
2 http://rvl1.ecn.purdue.edu/∼ aleix/aleix face DB.html 
3 http://archive.ics.uci.edu/ml/datasets/ISOLET 
4 http://www.vision.caltech.edu/Image Datasets/Caltech101/ 
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(a) Some Images from ORL Dataset 

 

(b) Some Images from AR Dataset 

 

(c) Some Images from Caltech 101 Dataset 

Figure 1. Some Images from Image Datasets 

In order to verify the performance of DMKD, we select 6 famous distance metrics to 

be comparing methods, including Xing [4], CMM [7], ITML [6], LMNN [5], Euclidean 

[10], Chebychev [11].  

 

4.2. Classification Experiment 

In order to verify the performance of DMKD, this section construct several 

classification experiments on the datasets above. At first, all distance metrics are trained 

on training samples using different methods. Then, 1NN classification is utilized to 

classify the testing samples into different classes. And the classification accuracies are 

calculated to show the performances of all distance metrics. 

For ORL dataset, we randomly select different numbers of samples as training ones. 

And the left samples are selected as testing ones. Figure2 shows the classification 

accuracies on ORL dataset .All accuracies are calculated 10 times and we show the mean 

values as Figure2. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 10, No. 7 (2017) 

 

 

162   Copyright © 2017 SERSC 

100 125 150 175 200 225 250 275 300 325 350
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Number

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y

 

 

DMKD

Xing

CMM

ITML

LMNN

Euclidean

Chebychev

 

Figure 2. The Classification Accuracies on ORL Dataset 

It's obvious that DMKD outperforms the other 6 distance metrics in most situations. 

Meanwhile, ITML and LMNN can also achieve good performances.  

Figure3 shows the classification accuracies on AR dataset. Different numbers of 

samples are randomly selected as training ones. All distance metrics are trained and 1NN 

classification is utilized on testing samples. And the classification accuracies are 

summarized in Figure3 as follows: 
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Figure 3. The Classification Accuracies on AR Dataset 
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We can clearly find that DMKD can achieve better performances than the other 6 

distance metrics. With the increase of the number of training samples, the performance of 

LMNN increases largely. 

Because Isolet contains 5 subsets, we choose the first 2 subsets(Isolet1, Isolet2) to 

conduct our experiment. For these two subsets, we randomly select 400 samples as 

training ones. The setting of this experiments is just like those above and the classification 

accuracies are summarized as box plots as Figure4. 
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(a) Classification Accuracies on Isolet1     (b) Classification Accuracies on Isolet2 

Figure 4. Box Plots of Classification Accuracies on Isolet Dataset 

For Caltech 101, we randomly select 5000 samples as training ones. Then, LLC[12] 

features are utilized to represent all samples. All distance metrics are trained and 1NN 

classifier is utilized to classify all testing samples. We conduct this experiment 10 times 

and show the mean and min classification errors as Figure5. 
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Figure 5. Mean and Min Classification Errors on Caltech 101 Datasets 

It's obviously that DMKD is a better distance metric compared with the other 6 distance 

metrics. Meanwhile, LMNN can also achieve a good performance. 
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5. Conclusion 

In this paper, we proposed a novel distance metric learning method called Distance 

Metric with Kullback-Leibler Divergence (DMKD). DMKD defines the divergences 

between two different classes using KL-divergence. Then, a constraint is added to ensure 

DMKD to obtain a feasible distance metric. Gradient ascent is utilized for DMKD to find 

the optimal solution. Various experiments on benchmark datasets show that DMKD can 

achieve good performances in most situations. 
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