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Abstract 

Based on the fact that the adaptation gain vector of the recursive least square (RLS) 

algorithm converges to zero as time increases when the parameters are time-invariant, a 

novel recursive least square with constant gain vectors (RLS-CGV) lossless compression 

method for ultraspectral images is proposed in this paper. Namely, an optimized 

recursive least square based on optimal number of prediction bands is introduced firstly. 

Then we randomly select a predetermined number of granules and use that set of granules 

for computing constant gain vectors. These gain vectors are used in the compression of 

all the other granules. Experimental results on publicly available NASA’s Atmospheric 

Infrared Sounder (AIRS) data show that the proposed method outperforms the state-of-

the-art method, i.e., RLS, not only in terms of bit rate but also in terms of computing 

complexity. 
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1. Introduction 

The compression technique is an active research topic in remote sensing. It is generally 

known that ultraspectral instruments acquire images in thousands of narrow and 

continuous spectral bands. Moreover, the data volume of ultraspectral images has been 

drastically increased with the growing scientific and technological demands in spatial and 

spectral resolutions. For example, there are more than 25×10
6
 pixels for each granule of 

AIRS (accounting for well over 40 MB of data per single image). This poses a significant 

challenge to data transmission and storage. Therefore, there is an increasing need for 

highly performing image compression techniques. Typically, those compression 

techniques are classified into three modalities: lossless, lossy, and near-lossless. Since any 

degradation in images’ quality is unacceptable, lossless compression has been one 

compression technique being widely used. 

The predictive partitioned vector quantization (PPVQ) method [1] converts the 

ultraspectral sounder data into a Gaussian source using linear prediction. The residuals are 

partitioned based on bit depths. Vector quantization (VQ) is applied to each partition 

separately. In [2], independent component analysis (ICA) was applied for lossless 

compression of ultraspectral data. Wei and Huang [3] proposed a modified Tunstall code 

which grows an optimal non-exhaustive parse tree by assigning the complete codewords 

only to top probability nodes in the infinite tree, based on an infinitely extended parse tree. 

The linear prediction with optimal granule ordering (LP-OGO) method [4] computes 

linear prediction coefficients using a different granule. The optimal ordering problem of 

the granules is solved by using Edmonds’ algorithm. In [5], a low-complexity linear 

prediction method (LP-CC) was proposed based on constant prediction coefficients. This 

method gives comparable results to the LP-OGO. Herrero and Ingle [6] presented a novel 

architecture that integrates both preprocessing and compression stages providing efficient 
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lossy compression. A quantized-principal-component-analysis-based (ADQPCA) scheme 

[7] is presented by combining 3D prediction, positive mapping, and histogram packing 

using binary indexing vectors (positive packing) followed by a range coder. In [8], the use 

of linear prediction in the context of ultraspectral image compression from two particular 

points of view was explored; (1) it extends the traditional forward LP scheme and (2) it 

improves the precision of the mathematical modeling of the rate–distortion. The recursive 

least square (RLS) method [9] divides the compression process into two stages. First, the 

average value of four neighbor pixels of the current pixel is calculated as local mean, 

which is subtracted by the current pixel to eliminate correlation in the current band image. 

The residual produced by this step is called local difference. The local differences of the 

pixels which co-locate with the current pixel in previous bands form the input vector of 

the RLS filter, by which the prediction value of the current local difference is produced. 

Then, the prediction residual is sent to the adaptive arithmetic encoder.  

In this paper, we propose a new recursive least square with constant gain vectors (RLS-

CGV) lossless compression method. First, we introduce an optimized RLS model based 

on optimal number of prediction bands. This model has a comparable average 

compression gain by spreading the spectral information from the current pixel to its 

neighbors until achieving a global stable state on the whole image. Then, according to the 

characteristic of the adaptation gain vector converging to zero, we randomly select a 

predetermined number of granules and use that set of granules for computing constant 

gain vectors. After that, we use RLS-CGV to compress all the granules. The rest of this 

paper is organized as follows. Section II describes the recursive least square with constant 

gain vectors (RLS-CGV) compression method. Experimental results are given in Section 

III. Section IV concludes this paper.  

 

2. RLS-CGV 

A. Recursive Least Square (RLS) 

As an adaptive filtering algorithm, RLS can automatically adjust the current filter 

parameters using the previously obtained ones, in order to adapt the unknown or time-

varying statistical properties of the signal and noise, and achieve optimal filtering. For the 

above reasons, the applications of RLS have drawn wide attention in recent years. In [9], 

RLS has been proved to be an extremely powerful compression tool for remote sensing 

images, which has strong correlations on both spectral and spatial dimensions, and leads 

to the state-of-the-art performance. To define the problem in mathematical terms for 

compression stage, let )(tsz  represent the current pixel, where x and y are the coordinates 

of the current pixel in the current band, W and H are the image’s width and height, and 

xWyt  . For the first band, the intraband estimate of pixel )(tsz  ( )(~ tsz ) is given as 

follows: 
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denote four neighboring pixels, respectively. For 

the other bands, the RLS filter is adopted to conduct the interband prediction by the 

following model: 
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 )(),()( 1 twtwt pw , p is the number of prediction bands used for predicting the current 

band, w(0)=[0], and t=1. The gain vector k(t), the inverse correlation matrix P(t), and the 

weight vector w(t) are updated as follows: 
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where 
PIP )0( , 0001.0 , 

pI  is the p-order identity matrix. Then t=t+1, and the 

next pixel is executed the same interband prediction. When t is larger than W×H, the 

procedure of current band prediction is ended. 

B. Optimized RLS Based on Optimal Number of Prediction Bands 

In ultraspectral images, spectral correlations are usually stronger than spatial 

correlations. It is expected that compression methods based on spectral correlation can 

work well. Previous works indicate that by taking advantage of the spectral correlation, 

compression performance can be significantly improved [6]-[8], and on the basis, 

prediction bands are further explored to optimize the compression results [4]-[5]. 

Since the spatial location of the current pixel is known, this aspect can be included in 

the RLS model to retain the spectral information of the current pixel and spread them to 

neighboring pixels. Thus, the compression results in bits-per-pixel (BPP) of the RLS 

model can be further reduced by spreading the spectral information from the current pixel 

to its neighbors until achieving a global stable state on the whole image. In order to obtain 

the optimal number of prediction bands for RLS, we varied the number of prediction 

bands from 50 to 600 using a stride value of 50 in the first test. For test data, we used 

NASA’s AIRS images (details of the dataset will be given in Section III). The results 

from tests are quantitatively shown in Table 1. The number of prediction bands is shown 

in column 1. Columns 2-11 show results using ten granules. For this test purpose, we are 

only interested in finding the optimal value for the number of prediction bands p. As can 

be seen form Table 1, the average compression bits-per-pixel reaches its minimum at 300 

previous prediction bands. Thus, we take the 300 previous bands of each granule for 

computing the prediction. 

Table 1. Compression Results of Different Previous Prediction Bands (Bits 
per Pixel) 

number of 

bands 
9 16 60 82 120 126 129 151 182 193 Average 

50 4.35 4.37 4.36 4.40 4.29 4.34 4.28 4.37 4.41 4.35 4.35 

100 4.34 4.38 4.35 4.39 4.27 4.34 4.26 4.36 4.37 4.32 4.34 

150 4.34 4.38 4.35 4.39 4.38 4.34 4.26 4.38 4.38 4.32 4.35 

200 4.34 4.38 4.35 4.51 4.27 4.35 4.26 4.38 4.38 4.32 4.35 

250 4.33 4.37 4.35 4.38 4.26 4.33 4.25 4.39 4.37 4.31 4.33 

300 4.32 4.36 4.34 4.37 4.25 4.32 4.24 4.38 4.36 4.30 4.32 

350 4.32 4.36 4.34 4.38 4.25 4.32 4.24 4.38 4.36 4.30 4.32 

400 4.32 4.36 4.34 4.38 4.25 4.32 4.24 4.38 4.36 4.30 4.32 

450 4.36 4.40 4.38 4.42 4.28 4.36 4.24 4.39 4.37 4.31 4.35 

500 4.36 4.40 4.38 4.42 4.27 4.36 4.24 4.38 4.37 4.31 4.34 

550 4.36 4.40 4.39 4.42 4.27 4.36 4.25 4.37 4.37 4.32 4.35 

600 4.36 4.40 4.39 4.42 4.27 4.35 4.24 4.38 4.37 4.31 4.35 

 

C. Recursive Least Square with Constant Gain Vectors 

As is well known, a large number of physical processes in the real world are not time-

invariant, such as ultraspectral image process. Thus the adaptation gain vector converges 

to zero as time increases [10]. Meanwhile, we know that the adaptation gain vector is only 

the intermediate variable used to meet the computing needs in the RLS filter. Its 

computation involves three multiplication, one addition, and one division operations, 

which has been the most time-consuming part. For these reasons, we use optimized RLS 

based on optimal number of prediction bands as a case study to further optimize its 

computing complexity by adopting the constant gain vectors. 
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In order to demonstrate the trend of the original adaptation gain vectors, we compress 

the AIRS-Granule-9 image using the 300 previous prediction bands, and reserve its 

adaptation gain vectors. Figure 1 illustrates the trend of each mean component (for 

example, the 100th mean component) for each band. From Figure 1, it can be found that 

the adaptation gain vector converges to zero as time increases, and each band has the 

same trend. Thus, we will carry out the ultraspectral compression using RLS with 

constant gain vectors, instead of adaptation gain vectors. 

We now continue to pay attention to the bit rate. The optimized RLS based on optimal 

number of prediction bands, it is true, can effectively reduce the compression results in 

terms of BPP on AIRS images. Nevertheless, the number of the base granules and their 

component granules used to calculate the constant gain vectors still have an important 

influence on the compression results. Two small examples of the different number of base 

granules and the different combination of base granules for computing the constant gain 

vectors are presented next, respectively. 

 

 

Figure 1. The Trend of the 100th Mean Component for each Band of AIRS-
Granule-9 Image 

For both examples, the compression results are shown in Tables 2 and 3 respectively. 

As can be seen from Table 2, three base granules are sufficient to utilize the statistical 

properties of a set of AIRS granules for the compression of another set of granules. In 

Table 3, the final row shows the average values, which are fairly stable with regard to the 

base granules set. This indicates that we can expect the method to perform well on novel 

data. 
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Table 2. Compression Results of RLS Using Different Number of Base 
Granules (Bits per Pixel) 

Number of 
base granules 

9 16 60 82 120 126 129 151 182 193 Average 

2 4.42 4.46 4.45 4.48 4.33 4.41 4.30 4.44 4.43 4.37 4.41 

3 4.37 4.42 4.40 4.43 4.27 4.35 4.25 4.39 4.39 4.32 4.36 

5 4.40 4.42 4.41 4.46 4.30 4.39 4.27 4.40 4.40 4.34 4.38 

6 4.42 4.42 4.43 4.46 4.31 4.40 4.29 4.40 4.40 4.36 4.39 

7 4.42 4.45 4.45 4.49 4.33 4.41 4.31 4.43 4.44 4.36 4.41 

8 4.42 4.46 4.46 4.47 4.34 4.41 4.30 4.43 4.43 4.37 4.41 

9 4.43 4.48 4.45 4.49 4.33 4.43 4.31 4.45 4.44 4.38 4.42 

Table 3. Compression Results of RLS Using Different Combination of Base 
Granules (Bits per Pixel) 

9 16 60 82 120 126 129 151 182 193 Average 

4.35 4.40 4.38 4.41 4.25 4.33 4.23 4.37 4.37 4.30 4.34 

4.37 4.41 4.41 4.42 4.27 4.36 4.24 4.39 4.40 4.32 4.36 

4.36 4.42 4.38 4.42 4.26 4.33 4.26 4.38 4.39 4.30 4.35 

4.35 4.39 4.37 4.41 4.26 4.33 4.24 4.37 4.38 4.29 4.34 

4.38 4.40 4.40 4.43 4.28 4.35 4.24 4.38 4.41 4.32 4.36 

4.35 4.43 4.39 4.41 4.27 4.33 4.26 4.37 4.38 4.31 4.35 

4.37 4.42 4.40 4.42 4.31 4.36 4.24 4.37 4.38 4.32 4.36 

4.36 4.41 4.42 4.41 4.28 4.36 4.25 4.39 4.40 4.31 4.36 

4.37 4.42 4.37 4.43 4.26 4.32 4.26 4.39 4.38 4.30 4.35 

4.36 4.39 4.39 4.42 4.24 4.33 4.23 4.36 4.37 4.30 4.34 

        4.36 4.41 4.39 4.42 4.27 4.34 4.25 4.38 4.38 4.30 4.35 

 

The prediction phase is followed by an adaptive arithmetic coder (AAC). Namely, after 

prediction, the difference between the predicted and original values is computed. The 

difference is further entropy-coded using the AAC. 

 

3. Experimental Results 

In order to test the performance of our proposed method, some experiments are carried 

out. The ultraspectral images for test are the NASA’s AIRS radiance data. The AIRS data 

cover 2378 infrared channels in the 3.74-15.4 um region of the spectrum. The data 

gathered during the 24 h period are divided into 240 granules. Each granule consists of 

135 scan lines and 90 cross-track footprints per scan line. Ten selected test data granules 

are available via anonymous ftp (ftp://ftp.ssec.wisc.edu/pub/bormin/Count). In order to 

make the test more generic to other ultraspectral sounders, 270 bad channels have been 

excluded from the publicly available test data. The bit depth of a channel rages from 12 to 

14 bits for different channels. Figure 2 shows five representative bands of AIRS granule 9. 

All experiments were run on a 4.0 GHz Intel Core i7-4790K, and were performed using 

the 64-bit Microsoft Windows 7 operating system. 
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(a) Band 1        (b) Band 500        (c) Band 1000           (d) Band 1500         (e) Band 2000 

Figure 2. AIRS Granule 9 

The first experiment was carried out to test the compression results in BPP of the 

proposed method compared to several other methods. The compression results are 

quantitatively shown in Table 4. For the RLS-CGV method, we report the average results 

from Table 3. Thus, we get a more accurate picture of how the method will perform on 

novel data. The results indicate that our proposed method achieves the best compression 

performance in terms of bit rate, and outperforms the state-of-the-art RLS method by 

more than 0.11 BPP. Exploring its reason, it can be found that this is primarily 

attributable to the use of optimal prediction bands. Its essence is that RLS-CGV spreads 

the spectral information from the current pixel to its neighbors until achieving a global 

stable state on the whole image. 

Table 4. Compression Results of Several Other Compression Methods (Bits 
per Pixel) 

            granule 

algorithm 
9 16 60 82 120 126 129 151 182 193 Average 

LP 5.17 5.09 5.312 4.93 5.16 5.32 4.92 5.24 5.36 5.29 5.18 

JPEG-LS 5.24 5.14 5.37 5.00 5.20 5.37 5.00 5.28 5.44 5.35 5.24 

LUT 5.63 5.39 5.73 5.30 5.65 5.68 6.11 5.81 5.94 5.81 5.71 

FL 4.58 4.64 4.60 4.65 4.11 4.57 4.50 4.62 4.60 4.52 4.58 

IP3 4.52 4.57 4.53 4.57 4.42 4.48 4.41 4.53 4.52 4.45 4.50 

RLS 4.45 4.51 4.52 4.53 4.39 4.45 4.36 4.48 4.48 4.42 4.46 

RLS-CGV 4.36 4.41 4.39 4.42 4.27 4.34 4.25 4.38 4.38 4.30 4.35 

 

In order to evaluate the computing complexity of our method, we run all methods on 

the considered computer platform, in which one out of four processor cores is used. The 

average compression times of JPEG-LS and IP3 are 3.09 s and 42.67 s, respectively. They 

represent the lowest and the highest computing complexities. For RLS, its most time-

consuming part is the computation of the adaptation gain vector. Meanwhile, it requires 

updating formulas (1) to (6) when compressing each pixel. Thus tentatively compressing a 

granule would take 29.43 s. Using 240 granules, the computation would take 1.96 hours. 

In comparison, RLS-CGV would require 1.62 hours for the compression of 240 granules. 

That means that RLS-CGV gets a 2.47% decrease in BPP while the computation times are 

reduced by 17.35%. Therefore, it is worth mentioning that RLS-CGV is a more practical 

compression method than the state-of-the-art method RLS. 

 

4. Conclusion 

In this paper, a novel efficient method (RLS-CGV) of lossless compression for 

ultraspectral images is proposed using recursive least square with constant gain vectors. 

The experimental results on publicly available NASA’s AIRS data show that RLS-CGV 

gets 2.47% and 17.35% decreases in terms of bit rate and computation time, respectively, 
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compared to the state-of-the-art method RLS. Because the scheme based on optimal 

number of prediction bands features better compression results at the expense of higher 

computation times, which have caused the optimization of the computation time being not 

significant, future work will focus on further reduction of the computation time by 

algorithm optimization. 
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