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Abstract 

Waveform design for multi-input multi-output (MIMO) radar, which usually relies on 

the initial parameter estimates (i.e., some prior information on the target of interest and 

scenario), is often sensitive to estimation errors in these parameters. To systematically 

alleviate this sensitivity, robust waveform design has been studied in recent years by 

explicitly incorporating a parameter uncertainty model into the optimization problem. In 

this paper, the robust MIMO radar waveform optimization is investigated to improve the 

worst-case performance of parameter estimation over a convex uncertainty model, which 

is based on the Cramer-Rao bound (CRB). To solve the resultant complicated nonlinear 

optimization problem, an iterative algorithm is proposed to optimize the waveform 

covariance matrix (WCM) such that the worst-case performance can be improved. Each 

iteration step in the proposed algorithm can be relaxed as a semidefinite programming 

(SDP) problem by using the associated matrix inequality. Numerical results show that the 

worst-case parameter estimation performance can be improved considerably by the 

proposed method compared to uncorrelated waveforms. 

 

Keywords: Multi-input multi-output (MIMO) radar, robust waveform design, convex 

relaxation, parameter estimation, semidefinite programming (SDP) 

 

1. Introduction 

Radar system employing multiple antennas on both transmitter and receiver has been 

intensively researched in the last decade, which is the so-called multi-input multi-output 

(MIMO) radar [1]-[13]. MIMO radar has the flexibility to transmit diverse waveforms 

from its different transmit antenna elements, which is the so-called waveform diversity 

[1]. In terms of the spacing between its antennas, MIMO radar can be classified into two 

categories shown as: (1) MIMO radar with widely separated antennas (e.g. [2]), and (2) 

MIMO radar with colocated antennas (e.g. [1]). The former employs widely-spaced the 

transmitting and receiving elements along with diverse transmitted waveforms to view the 

different aspects of the target thereby improving the target detection performance. In 

contrast, the latter employs close-spaced elements in transmitting and receiving arrays to 

obtain the identical target radar cross sections (RCSs) observed from all transmit/receive 

paths, which can utilize the waveform diversity to increase the virtual aperture of the 

receiving array [1]. Accordingly, it has several advantages including improved parameter 

identifiability [3], and more flexibility for transmit beampattern design [4]-[12]. In this 

paper, we consider MIMO radar with collocated antennas. 
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A particularly critical issue for both types of MIMO radar is the waveform 

optimization [4]-[12], which has received considerable attention recently. According to 

the objects needed to be optimized, the current design methods can be divided into two 

categories: (1) only the transmitter to be designed [4]-[6], and (2) the transmitter and 

receiver to be designed jointly [7]-[12]. In [4], the waveform covariance matrix (WCM) 

was designed to attain a desired beam pattern, while the constant modulus signal design is 

considered in [5]. Meanwhile, the spatial-range-Dopper domain characteristics of the 

transmitted waveforms were considered jointly in [6]. In [7], the transmit waveforms were 

optimized for multiple point targets based on several design criteria, for example, 

minimizing the trace of the Cramér-Rao Bound (CRB) matrix. The output signal-to-

interference-plus-noise ratio (SINR) was maximized in [8] to improve the detection 

performance for MIMO radar. Unfortunately, the method proposed in [8] cannot 

guarantee nondecreasing SINR in each iteration step. In order to guarantee convergence, a 

new iterative algorithm was derived in [9].The mutual information between the received 

waveforms and the target radar signatures was employed to design the transmit waveform 

for extended target [10]. In [11], MIMO waveform was devised by minimizing the 

estimation error of the minimum mean squared error (MMSE). The joint optimization of 

the WCM and receiver is investigated to improve the parameter estimation performance 

in [12]. 

In [7], the problem of MIMO radar waveform design for parameter estimation of point 

targets has been investigated, which is based on the Cramer-Rao bound (CRB). It is 

obvious that the optimization problem to be solved in this document requires the 

specification of parameters, e.g., the target location, reflection coefficients, etc.. However, 

these parameters cannot be obtained directly and must be estimated in practice, and hence 

they are uncertain. As illustrated by numerical examples in [7], the resultant accuracy of 

parameter estimation is sensitive to these estimation errors and uncertainty in parameters. 

It means that the optimized waveforms based on a certain parameter estimate can give a 

very low performance of parameter estimation for another reasonable estimate.  

In this paper, the problem of robust waveform design to improve the worst-case 

estimation performance of MIMO radar is investigated based on CRB, which attempts to 

systematically alleviate the sensitivity by explicitly incorporating a convex parameter 

uncertainty model in the optimization issue. To solve the resultant complicated nonlinear 

optimization problem, an iterative algorithm is proposed to design the WCM such that the 

worst-case performance can be improved. By using some matrix inequalities, each step in 

the proposed algorithm can be relaxed as a semidefinite programming (SDP) problem 

[13], and hence it can be solved efficiently. 

The rest of this paper is organized as follows. Section 2 introduces the MIMO radar 

model, gives the derivation of the CRB, and formulates the robust waveform optimization 

problem. Section 3 proposes an iteration algorithm and recasts each iteration step as the 

convex relaxation formulation. Section 4 shows the effectiveness of the proposed method 

via numerical examples. Finally, Section 5 concludes this paper. 

Throughout the paper, matrices and vectors are denoted by boldface uppercase and 

lowercase letters, respectively. We use 
T

 , 
*

 , and 
H

  to represent the transpose, 

conjugate, and conjugate transpose, respectively. The symbol   indicates the Kronecker 

product, I  denotes the identity matrix, and vec   is the vectorization operator stacking 

the columns of a matrix on top of each other. The notation 
F

A  stands for the Frobenius 

norm of the matrix A , and  diag a  for a diagonal matrix with its diagonal given by the 

vector a . Denote by tr   , Re   and Im   the trace, the real and imaginary part of a 

matrix, respectively. Given a vector function : n kf , we denote by 




f


 the k n  
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matrix whose ijth element is 
i

j





f


. Finally, the notation A B°  means that B - A  is 

positive semidefinite. 

 

2. Problem Formulation 

The signal model adopted in this paper is the same as that illustrated in [7], and the 

signals received by MIMO radar can be expressed as:  

1

K

k k
k




Y H S W                                                          (1) 

where 1 2[ , , , ] t

t

M LT

M


 S s s s  be the transmitted waveform matrix with  1L

i

s  

denoting the discrete-time baseband signal of the ith transmitting element along with L  

being the number of snapshots. 
1

{ }
K

k k



 are the complex amplitudes proportional to the 

RCSs of these targets, and 
1

{ }
K

k k



 denote those location parameters with K  being the 

number of targets of interest, both of which need to be estimated from the received signal 
rM L

Y . The term W  is the noise plus interference, similar to that illustrated in [7], 

whose columns can be assumed to be independent and identically distributed circularly 

symmetric complex Gaussian random vectors with mean zero and an unknown covariance 

denoting by Q . Also, ( ) ( )
k

T

k k H a v  represents the kth target channel matrix. 

Besides, ( )
k

a  and ( )
k

v  denote, respectively, the receiving and transmitting steering 

vectors for the target located at k
 , which can be described as 

00 1 0 2

00 1 0 2

2 ( )2 ( ) 2 ( )

2 ( )2 ( ) 2 ( )

( ) [ , , , ]

( ) [ , , , ]

M kk k r

M kk k t

j fj f j f T

k

j fj f j f T

k

e e e

e e e

       

       









a

v
                               (2) 

where 0f  represents the carrier frequency. ( ), 1,2,m k rm M    is the propagation 

time from the target located at k  to the mth receiving element, and  

( ), 1,2,n k tn M    is the propagation time from the nth transmitting element to the 

target. 

We now consider the CRB of the unknown parameters 
1 2

[ , , , ]
K

T
    for the case 

of known 
1

{ }
K

k k



, which is the so-called constrained CRB [14]. The constrained CRB is 

derived in Appendix A, which can be expressed as 

11 2

2 2 2

K K

CCRB

K K K K



 

 
  
 

C 0
C

0 0
                                                   (3) 

where  
1

11 11(2Re( ))C F                                                             (4) 

and 

  * 1

11
= tr[ ]

H

i j i jij
 



S
F H Q H R                                                  (5) 

in which 
H


S

R SS , and , 1, 2, ,k

k

k

k K



 


H
H . 

It can be seen from (5) that the constrained CRB is a function with respect to the 

location   as well as the noise plus interference. In practice, these parameters are 

estimated with errors and so they are uncertain. Hence, the optimized waveforms based on 

the CRB employing a parameter estimate can give a very low accuracy for another 

reasonable estimate, which has been illustrated via numerical examples in [7].  
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Here, we assume that the derivation of the kth target channel matrix is uncertain, but 

known to belong to a convex compact set, which can be modeled as: 

, 1,2, ,k k k k K  H H                                                     (6) 

where 
kH  and kH  are, respectively, the derivation of the kth actual target channel 

matrix and the corresponding presumed target channel matrix, and k  denotes the error of 

kH , which belongs to the set  

 , 1,2, ,k k k
F

k K   U                                             (7) 

We assume that k k F
  H  in this paper. 

The robust waveform optimization for improving the performance of parameter 

estimation can now be briefly stated as follows: Optimize the WCM to minimize the 

worst-case CRB over the convex set U  under the constraints about the WCM. Under the 

Trace-opt criterion [7], this optimization problem can be illustrated as 

  

 
1

min max ( )

s.t.

tr( )

K

k k

CCRB

k

tr

LP







SR

S

S

C

R

R 0±

U



                                                      (8) 

where P  denotes the total transmitted power. The third constraint holds due to the 

power transmitted by any transmitting element is more than or equal to zero in practice.  

It is obvious that the trace of the objective in (8), is a rather complicated nonlinear 

function of SR  and 1,2, , ,k k K . Consequently, the problem is difficult to be solved 

by using the tradition method, for example, the convex optimization method [13]. 

 

3. Proposed Iterative Method 

In this section, we demonstrate how to obtain an optimal solution of the nonlinear 

optimization problem in (8). For this purpose, we first consider the inner optimization 

problem, i.e., solving k  in terms of SR . In order to solve it, we can rely on the following 

lemma [16]: 

Lemma 1: Let A  be a M M  positive semidefinite Hermitian matrix, then the 

following inequalities  

1

1

1
tr( )

M

i iia





A                                                             (9) 

holds, where the equality is achieved if and only if A  is diagonal. 

According to Lemma 1, the maximization in (8) can be relaxed to  

 
1

2 1 1

1

max (2 tr[ ])

. .

K

k k

K
H

k k k
k

ks t




 





 SH Q H R


 U

                                    (10) 

omitting the operator Re   due to every term in the summation is a real number. It 

can be seen from (10) that the kth term in the summation only depends on k . Therefore, 

the problem (10) is equivalent to maximizing every term in the summation subject to the 

corresponding constraint, i.e., it can be represented as K  independent problems shown as 
2 1 1max (2 tr[ ])

. .

k

H

k k k

k k
F

s t





 



SH Q H R



, 1,2, ,k K                             (11) 
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Note that the optimization variables in the problem above are complex. In order to 

recast the problem (11) as a convex one, we can reformulate this problem as a problem 

with real variables in Appendix B, which can be illustrated as 

,

2 1 1

, , ,

,

max ( tr[ ])

s.t.

R k

T

k R k R R k R

R k kF





 



S
H Q H R





                                         (12) 

where 
,R k

H , ,R S
R , and ,R k

  are defined in (31), k
  in (37), and 

x y

R

y x

 
 
 

=
Q -Q

Q
Q Q

                                                            (13) 

Im( )Re( ),
yx

 Q QQ Q . Because Q  is positive definite, according to [17], R
Q  is 

also positive definite symmetric matrix. 

It is obvious that the term 1

, , ,
tr( )

T

R k R R k R



S
H Q H R  is convex with respect to ,R k

  [16], and 

then (12) is equivalent to minimizing this term with respect to ,R k
 , which can be 

equivalently represented as 

, ,

1

, ,

,

min

s.t. tr( )

R k t

T T

R k R R k

R k kF

t

t








T H Q H T





                                             (14) 

where 
1/2

,R S
T = R , i.e., T  is the square root of ,R S

R  [16], and t  is an auxiliary variable.  

Due to the fact that tr( ) (vec( )) ( )vec( )T T T ABCD D A C B , we can obtain 

1 1

, , , ,

1

, ,

tr( ) (vec( )) ( ( ) )vec(( ) )

(vec( )) ( ) vec( )

T T T T T

R k R R k R k R R k

T

R k R k

T T

R

 



 

 

T H Q H T H T I Q T H

H T I Q H T
                 (15) 

Using Schur’s Complement [16, pp.472] and (15), the problem (14) can be recast as an 

SDP  

, ,

,

,

2

,

,

min

(vec( ))
. .

vec( )

R k t

T

R k

R k

k

R

T

R k

R k

t

t
s t





 
 
  

 
 
 

H T
0

H T I Q

0
I







±

±

                               (16) 

Substituting  , 1

K

R k k
  obtained from (16) into (8), SR  can be solved by an SDP 

,

11

min

(vec( ))
. .

vec( )

tr( )

t

T

t

t
s t

LP

 
 

 



SR

S

S

I
0

I I F

R

R 0

±

±

                                         (17) 

So far, we know how to solve k  for fixed SR , and SR  for fixed k . Similar to 

Algorithm 3 proposed in [9], an iterative algorithm is proposed to improve the worst-case 

performance of parameter estimation, which is shown as follows.  
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Algorithm:  Given an initial value of the WCM, k  and SR  in the case of the Trace-

opt criterion can be optimized by repeating the following steps: 

1. Solve (16) to obtain the optimum k . 

2. Substituting k  into (8), solve (17) to obtain SR . 

3. Go to step 1 until the CRB decrease becomes insignificant. 

Using many well-known algorithms (see, e.g., [13]), the problems (16), (17) can 

be solved very efficiently. It is noted that the proposed method can only obtain the 

WCM other than the ultimate transmitted waveforms. In practice, the ultimate 

waveforms can be asymptotically synthesized by using the method in [18].  

 

4. Numerical Examples 

In this section, several numerical simulations are given to demonstrate the benefits of 

the proposed method, as compared to uncorrelated waveforms. Similar to that in [7], 

uncorrelated waveforms can be generated by using Hadamard codes with  256K   

samples for each transmitted pulse which are orthogonal to each other. 

Consider the following two MIMO radar systems with 3tM   transmitting elements 

and 3rM   receiving elements possessing various antenna configurations: MIMO radar 

(0.5, 0.5), and MIMO radar (1.5, 0.5), where the parameters specifying each radar system 

are the inter-element spacing of the transmitter and receiver (in units of wavelengths), 

respectively. The number of snapshots is 256L  . The array signal-to-noise ratio 

(ASNR) defined as 
2/t rPM M W  varies from -10 to 30 dB, where P  stands for the total 

transmitted power, and 
2W  denotes the variance of the additive white thermal noise. 

There is a strong jammer at 5  with an array-interference-to-noise ratio (AINR) defined 

as the product of the incident interference power and rM  divided by 
2W , equal to 60dB. 

In the following numerical examples, there is only one target with unit amplitude at 

20   in the considered range bin. 

It is known from Section Ⅱ that the CRB must be estimated using the initial location 

parameter estimate. There are many methods for estimating this parameter (see, e.g., [19] 

and the reference therein for more details).  

In the following examples, we examine the effectiveness of the proposed method in the 

case of only existing the initial angle estimate error. In this scenario, we assume that the 

initial angle estimate has an uncertainty [ 3 ,3 ]   , i.e., [17 ,23 ]  , where   is the 

estimate of  . After calculating, we can obtain 9.8962   for MIMO (0.5,0.5), and 

32.2755   for MIMO (1.5,0.5). 

Figure 1 shows the optimal transmit beampatterns obtained by the proposed method 

with ASNR=10 dB. One can see that the peak of the transmit beampattern is placed 

around the target location, which means that the worst-case performance in the convex 

uncertainty can be improved. Moreover, there are grating lobes of the peak in the case of 

MIMO radar (1.5, 0.5) shown in Figure 1 (b) due to the sparse transmit array. 
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Figure 1. Optimal Transmit Beampatterns Obtained by the Proposed Method 
with ASNR=10 Db. (a) Optimal Transmit Beampatterns for MIMO Radar (0.5, 

0.5). (b) Optimal Transmit Beampatterns for MIMO Radar (1.5, 0.5) 

In Figure 2, the worst-case CRB obtained by the proposed method versus ASNR is 

showed, as compared to that of uncorrelated waveforms. It is obvious that the CRB 

decreases as the increase of ASNR. Moreover, one can observe that the transmitted 

waveforms obtained by the proposed method have a better worst-case performance of 

parameter estimation than uncorrelated waveforms. Furthermore, the CRB obtained by 

the proposed method is asymptotically identical to that of uncorrelated waveforms as 

ASNR increases, which is similar to that in [11] (see this reference for explanation.). 

Also, it is noted that the CRB obtained for MIMO radar (1.5, 0.5) shown in Figure 2 (b) is 

lower than that for MIMO radar (0.5, 0.5) shown in Figure 2 (a), which is due to the 

virtual receiving aperture for the former is larger than that for the latter [2]. 
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Figure 2. The Worst-Case CRB Obtained by the Proposed Method versus a 
SNR, as Well as that of Uncorrelated Waveforms. (a) CRB for MIMO Radar 

(0.5, 0.5). (b) CRB for MIMO Radar (1.5, 0.5) 

 

5. Conclusions 

In this paper, we have investigated the problem of robust MIMO radar waveform 

optimization to improve the worst-case performance of parameter estimation by explicitly 

incorporating the uncertainty in the parameters error into the optimization model, which is 

based on the constrained CRB. An iterative algorithm has been proposed for jointly 

optimizing the transmitted waveforms and the perturbation of the derivation of the target 

channel matrix, each step in which can be relaxed as an SDP by using some matrix 
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inequality, and hence it can be solved efficiently. Numerical examples have shown that 

the proposed algorithm lowers the worst-case CRB very obviously compared to 

uncorrelated waveforms. 
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Appendix A 
 

Constrained Cramero-Rao Bound 

Based on the signal model in (1), in the following, we derive the constrained CRB of 

the unknown target parameters 1 2[ , , , ]T

K   . According to [14], the constrained 

CRB can be written as 
1( )H H

CCRB

C U U FU U                                                (18) 

where U  satisfies 

( ( ) , ( ) ( )H  G x U x 0 U x U x I                                       (19) 

in which 
( )

( )G





g x
x

x
 is assumed to have full row rank, and U  is the tangent 

hyperplane of ( )g x  that is equality constraint set on x . In addition, F  is the Fisher 

Information Matrix (FIM) with respect to [ , , ]T T T T

R Ix    , where 

,1 ,2 ,[ , , , ]T

R R R R K   , ,1 ,2 ,[ , , , ]T

I I I I K   , Re( )R  , and Im( )I  . 

Following [14], some prior information can be available in array signal processing, for 

example, constant modulus constraint on the transmitted waveform, etc.. Here, the 

complex amplitude matrix 1 2diag K         can be assumed to be known as 

,

,

( ) 1 0, 1, ,

( ) 1 0, 1, ,2

i R i

j I j

g i K

g j K K





   

    

x

x
                                     (20) 

Therefore, 
( )

( )





g x
G x

x
 has the form 2 2 2[ , ]K K K K G 0 I  with 2K K0  denoting a zero 

matrix of size 2K K , and the corresponding null space U  can be represented as 

2[ ]H

K K K K U I 0                                                       (21) 

In what follows, we will calculate the FIM with respect to x  (Here we only consider 

one-dimensional targets.). According to [15], we can obtain 

11 1

( ) ( )

( , ) 2 Re tr

K K
H

k k k k
k k

i j

i j

x x
x x

 
 

 


 

  
  
  
  

  

 H S H S

F Q                          (22) 

And then 

11 1

* 1

( ) ( )

( , ) 2 Re tr

= 2 Re tr[ ]

K K
H

k k k k
k k

i j

i j

H

i j i j

 

 

 

 



 


 

  
  
  
  

  

 

S

H S H S

F Q

H Q H R

                         (23) 
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Hence, 
11

( , ) = 2Re( )F F   with 
11

F  given in (5). 

Similar to [7], we have  

12
( , ) = ( , ) 2Re( )

T

R R
F F F                                             (24) 

and 

12
( , ) = ( , ) 2 Im( )

T

I I
 F F F                                           (25) 

where   * 1

12
= tr[ ]

H

i i jij




S
F H Q H R . 

Also,  

22
( , ) = ( , ) 2Re( )

R R I I
F F F                                          (26) 

and 

22
( , ) = ( , ) 2 Im( )

T

R I I R
 F F F                                       (27) 

where   1

22
= tr[ ]

H

i jij



S
F H Q H R . 

Based on the discussion above, the FIM F  with respect to x  can be expressed as  

11 12 12

12 22 22

12 22 22

Re( ) Re( ) Im( )

2 Re ( ) Re( ) Im( )

Im ( ) Im ( ) Re( )

T

T T

 
 


 
   

F F F

F = F F F

F F F

                                 (28) 

With (18), (21), (5), and (24)-(28), (3) can be obtained immediately. 

 

Appendix B 
 

Derivation of (12) 

To simplify notation, we define 

, , , , ,

, y
Im( )

Re( ), Im( ), Re( ), Im( ), Re( )

Im( ), Re( ), Im( ), Re( ),
y

k x k k y k k x k k y k k x k

k y k x x

    

    
S, S S, S

Z Z

H H H H H H H H

R R R R Z Z

 

 
     (29) 

where 1
Z Q . 

Then 
1

, , , , y

, , , , , , , , , ,

, , , , , ,

( ) ( )( )( )

(

y x y

H H

k k k x k y x y k x k y x

T T T T T

k x x k x k x y k x k y x k x k y y k x k x x k y

T T T

k x k y k y k y k y k
j

j j j j

j j j



  

    

    

S S, S,

Z Z Z

R Z Z R R

H Z H H Z H H Z H H Z H H Z H

H H H H H H

H Q H H H H H

, , , , , , , ,

, , , , , , , ,

)( )
x

y x

y

y

T T T T

k x x k x x k x k y x k y k y x k y y k x x

T T T T

k x y k x y k y x k x y k x x k y y k y k y y

j

  

   

S, S, y

S, S, S, S,

S, S, S, S,

R R

Z Z

Z

H Z H R - H H R H H R H Z H R

Z R Z R Z R RH H H H H H H H

   (30) 

Let   

, ,, , , ,

, , ,

, , , ,
, ,

, ,

,

k x k yk x k y k x k y

R k R k R k

k y k x k y k x
k y k x

x y x y

R

y x y x

R

  



    
    
     

   
   
   

S, S,

,S

S, S,

H -HH -H
H H

H H H H

R -R Z -Z
R Z =

R R Z Z

 


 
           (31)  

Then we have 
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, , , , , , ,

, , , ,

,

, , , ,

,

2(
y x

T T T T

k x x k x x k x k y x k y k y x k y y

T

k x k y x y k x k y x y

R k R

y x y x
k y k x k y k x

T

R k R

 





      
      
         

S, S, S,

S, S,

,S

S, S,

Z ZZ R - R R Z

H -H Z -Z H -H R -R
H Z H R

Z Z R RH H H H

H H H H H H H H
,

, , , , , , , ,
)

y

k x x

T T T T

k x y k x y k y x k x y k x x k y y k y k y y
   

S,

S, S, S, S,
Z

R

Z R Z R Z R RH H H H H H H H

     (32) 

Therefore, (12) holds immediately. 

Besides, because 

, , ,R k R k R k
 H H                                                    (33) 

, ,

,

, ,

k x k y

R k

k y k x


 
 
 

 


 
                                                  (34) 

and 

k k
F

                                                    (35) 

we can obtain 

,R k kF
                                                   (36) 

where 

2
k k
                                                      (37) 
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