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Abstract 

This paper presents a novel approach for the fast example-based super-resolution 

based upon sparse dictionaries. The proposed method uses a sparse model to learn 

dictionaries, where the dictionary atoms have sparse representations over a base 

dictionary. And the batch orthogonal matching pursuit algorithm is used for the 

sparse-coding operations. The effectiveness of sparse dictionaries is manifested by both 

well reconstructed quality and speed improvement. We also employ an anchored 

neighborhood regression to achieve the fast super-resolution. The experimental 

comparisons with current state-of-the-art algorithms demonstrate the effectiveness of the 

proposed approach. 
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1. Introduction 

Image super-resolution (SR) aims at reconstructing a high-resolution (HR) image from 

one or a series of low-resolution (LR) observing images. This technique is essential in 

many practical applications, e.g. computer vision, medical image processing and remote 

sensing. Existing image SR researches can be divided into three main approaches: 

interpolation-based methods [1, 2], reconstruction-based methods [3, 4] and machine 

learning (ML) based methods [5, 6]. The latter has been shown to achieve preferable 

results by using ML techniques. Here we mainly focus on the recent and popular 

example-based learning SR methods. 

Example-based methods use a patch-based approach to learn the relationship between 

HR and LR image patches, and then obtain the HR estimation. These methods are mostly 

based on the work of Freeman et al. [6]. [6] proposes to construct the HR prediction of the 

LR image through a Markov random field (MRF). The fundamental example-based 

methods are based upon neighbor embedding (NE). Cheng et al. [7] assume that HR and 

LR image patch spaces have the similar manifold, and adopt locally linear embedding [8] 

to estimate HR image patches as a linear combination of neighbors. To reduce the 

computational complexity, [9] extends this approach by using a Least Squares 

approximation of LR patches with non-negativity weights. Zhang et al. [10] propose a 

sparse neighbor selection method by clustering the histograms of oriented gradients of LR 

image patches. The method in [11] exploits the correlation between HR and LR patch 

features via canonical correlation analysis. 

Another class of the example-based method is based on sparse coding [12-14], which 

attempts to find a sparse representation with respect to an over-complete dictionary for 

image patches. Yang et al. [12] first propose to solve image SR based on this idea. In [12], 

two HR and LR dictionaries are learned to guarantee the HR and LR patches have the 

same sparse representation over their corresponding dictionaries. Zeyde et al. [13] modify 

the dictionary learning method, and obtain improvement in both computational 
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complexity and simulation results. Dong et al. [14] propose to learn various 

sub-dictionaries, and select the sparse domain for each input LR image patch adaptively. 

Compared to NE-based methods, these methods no longer limit the number of dictionary 

atoms needed, and adopt sparse coding algorithms to solve the representation coefficients. 

The above two classes of example-based methods both rely on manifold similarity 

between HR and LR patch spaces. Being different from them, the third class method aims 

at learning a regression function to construct the relationship between HR and LR image 

patches. Kim et al. [15] propose to learn a map from input LR images to target HR images 

via kernel ridge regression. To achieve fast image SR, the method presented in [16] learns 

a robust first-order regression model for image SR based on in-place examples. In [17], 

instead, an anchored neighborhood regression (ANR) model is presented by combining 

the ideas of NE and sparse coding methods. 

Besides the patch reconstruction method used, another consideration in example-based 

SR is the choice of the dictionary [18]. In [19], dictionary selection methods are divided 

into two classes: the analytic method and the learning-based method. The analysis 

dictionaries include Wavelets [20], Curvelets [21], Bandelets [22] and so on. These 

dictionaries have the advantage of fast implementation. The SR methods described above 

mainly adopt the learning-based dictionary, which is obtained from a set of training 

examples via the ML techniques and has a matrix representation. The matrix coefficients 

have good adaptability, which can be adapted to the training data. However, this 

dictionary is computationally expensive to apply. Rubinstein et al. [19] present a sparse 

dictionary learning model that is both adaptive and efficient.  

Inspired by the idea of sparse dictionary model, we propose a fast example-based SR 

method in this paper. We reconstruct HR image patches using sparse dictionaries and the 

batch orthogonal matching pursuit (Batch-OMP) algorithm [23]. The Batch-OMP method 

is an efficient implementation of OMP algorithm. It can speed up the SR process, with 

compromising the reconstructed quality. Moreover, in the image reconstruction phase, an 

ANR model is introduced to further improve the algorithm efficiency. Experimental 

results and comparisons with other similar SR methods show that our algorithm can give 

competitive performance in terms of the image quality and running time. 

The rest of this paper is organized as follows. Section 2 presents how to lean sparse 

dictionaries. Section 3 details the proposed SR method based on sparse dictionaries. 

Section 4 demonstrates the efficiency of this approach, and Section 5 concludes the paper. 

 

2. Learning Sparse Dictionaries 

The sparse coding model suggests that an input signal 
nx R  can be represented 

as a linear combination of several specified atom signals, chosen from an 

over-complete dictionary ( )n ND R n N  . Given a set of training examples 
n LX R  , the problem of learning a dictionary for sparse coding can be formulated 

as [24]: 
2

0 2,
min   . .  ,   ,  1i jFD

X D s t i j t d


     ,            (1) 

where i  is the column of the sparse representation matrix  , 
jd  is the dictionary 

atom, and 
0
  denotes the number of non-zero entries of a vector. The model (1) can be 

solved by the K-SVD iteration algorithm [29]. 

Rubinstein et al. [19] propose a sparse dictionary model. And assume that each 

dictionary atom has itself a sparse representation over a specified base dictionary, 

i.e. 

D A  ,                              (2) 
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where A  is the atom representation matrix suggested to be sparse. Inspired by the 

original K-SVD algorithm, the sparse dictionary learning model is given by:  

02

,

0 2

  
min   s.t.   

  ,  1

i

FA
j j

i t
X A

j a p a





 
  

   

,             (3) 

with 
0ja p  denotes the sparse constraint on D . Compared to analysis 

dictionaries and the model (1), the sparse dictionary model (3) can provide both 

adaptability via updating A , and fast implementation by choosing an appropriate 

base dictionary. Experimental results in [19] have shown the advantages of sparse 

dictionaries. 

 

3. Proposed Methods 

Image SR via sparse representation [12] aims to reconstruct HR images by jointly 

learning two coupled dictionaries, which enforces similar representation coefficients 

between the LR and HR image patch pair. In the learning phase, given a set of 

training image patch pairs  ,  h lX Y , where lY  is the corresponding LR patches of 

HR patches  hX . The dictionaries are obtained using the following minimization 

problem: 

 
2 2

1
, ,

1 1 1 1
, , argmin ( )

h l

h l h h l lF F
D D Z

D D Z X D Z Y D Z Z
N M M N

      ,    (4) 

where hD  and lD  denote the HR and LR dictionaries respectively, N  and 

M  are the dimensions of HR and LR patches and Z  is the sparse representation 

matrix. In the reconstruction phase, LR image patches are sparsely represented on 

the learned LR dictionary: 

2

2 1
arg min l ly D



      ,                   (5) 

where ly  is an input LR feature patch,   is the sparse coefficient and   is a 

balance parameter. Then the HR image patch can be estimated as hx D . 

This paper builds upon the SR framework in [12] and proposes to reconstruct the HR 

image by learning sparse dictionaries. In addition, we introduce an ANR model on the 

sparse dictionaries to achieve fast SR.  
 

3.1. Image SR Based on Sparse Dictionaries 

Note that the joint dictionary learning model (4) does not guarantee that the sparse 

representation of a LR image patch can well reconstruct its underlying HR image patch. 

In order to make the learned dictionaries more compact, we train the HR and LR 

dictionaries in their own feature spaces. First, the sparse dictionary model (3) is applied to 

these LR image patches, resulting in the optimization of the LR dictionary: 

 
02

,
0 2

  
,  arg min   s.t.   
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l F
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i t
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



 
    

   

,        (6) 

where the matrix A  is the sparse representation of the dictionary,   is the 

coefficient matrix of the LR patches. The problem can be solved by alternating sparse 

coding and updating of A . As the HR image patches are recovered by the product 

of the HR dictionary and LR sparse coefficients. Then the HR dictionary hD  is 
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therefore constructed so that the approximation is as exact as possible. So the 

learning task for hD  is given by: 

2
arg min .

h

h h h F
D

D X D                       (7) 

The solution of this problem is given by the following Pseudo-Inverse expression: 

 
1

† .T T

h h hD X X


                           (8) 

Thus far, we have obtained the sparse representation matrix A  of the LR dictionary 

and the HR dictionary hD . In the reconstruction phase, for the input LR patch ly , its 

sparse  representation is calculated by the following optimization: 
2

2 0
arg min    s.t.  ly A t



     ,                   (9) 

Then the corresponding HR patch is derived as hx D  . 

Moreover, we use the Batch-OMP algorithm for sparse coding, which can achieve 

good improvements for fast implementation compared to the traditional OMP 

method. Our experimental results show that the dictionary learning model (6) and 

reconstruction model (9) can be solved efficiently while maintaining the 

reconstructed quality. 

 

3.2. Anchored Neighborhood Regression 

Timofte et al. [17] use the ridge regression and reformulate the problem (5) as: 

2

2 2
argmin l ly D



      .                   (10) 

The closed-form solution is given by: 

 
1

= T T

l l l lD D I D y 


 . 

The HR patch can then be calculated using the coefficient and hD  

 
1

= T T

h h l l l lx D D D D I D y 


  ,                   (11) 

where the projection matrix
 

 
1

= T T

h l l lP D D D I D


  can be computed offline. 

Hence, it only needs multiply the input LR feature patch and P  to construct the HR 

patch.  

The above SR approach can be regarded as a regression on the entire dictionary. 

Instead, the ANR algorithm [17] aims to calculate a separate projection matrix 
jP
 

for 

each dictionary atom 
jd  by employing its K nearest neighbors as the dictionaries 

 ,
h l

j jD D
. 

The SR problem can then be solved by finding the nearest dictionary atom 

jd
 

for each input LR patch 
ly , followed by calculating the HR patch using the 

corresponding projection matrix jP : 

j lx P y  

[17] adopts a learned dictionary as the approach of Zeyde et al. [13]. Here, we 

combine the sparse dictionaries  ,h lD D  in Section 3.1 with the ANR method to 

achieve the fast SR. In the next section, the experimental results will show the 

comparisons of different methods in terms of the running time and recovery 

performance. 
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4. Experimental Results 

We refer to the proposed method based on the sparse dictionaries in Section 3.1 as our 

method (i), and the method combined with the ANR model in Section 3.2 as our method 

(ii). The proposed methods are compared with Bicubic interpolation, the representative 

sparse coding-based methods of Yang et al. [12] and Zeyde et al. [13], and ANR [17]. In 

our experiments, we magnify the LR image by a factor of 3. We use the same training 

data as Zeyde et al. [13]. The HR feature patches are subtracted means, and the LR 

patches are derived by concatenating the first and second order gradients. The 

Structural Similarity Index (SSIM) [25] and PSNR are employed to evaluate the 

objective quality of the proposed and comparison methods. All the experiments were 

tested using MATLAB on an Intel E8400, 3.0 GHz, 3 G RAM. 

In the sparse dictionary learning phase, the image patch size is 5×5 and around 

130000 training patch-pairs are collected. We apply the over-complete DCT as the 

based dictionary, fix 1000 atoms in the dictionary, and use 16p   coefficients per 

atom. We set the initial matrix A  to identity, the maximum number of iterations as 

40, and 3t   atoms per patch representation. In our experiments, the average time 

of the proposed method for learning dictionaries is 8 minutes, which of Yang et al. 

[12] and Zeyde et al. [13] are 4 hours and 12 minutes, respectively. This mainly owes to 

the application of the Batch-OMP algorithm. 

Table 1. PSNR (dB) and Running Time (s) Results of Different Methods for 
The Test Images (Magnification ×3) 

Images Bicubic Yang et al. [12] Zeyde et al.[13] Our method (i) ANR [17] Our method (ii) 

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time 

baboon 23.2 0.0 23.5 136.1 23.5 5.7 23.6 3.9 23.6 1.7 23.6 1.7 

barbara 26.2 0.0 26.4 163.8 26.8 10.2 26.8 7.1 26.7 3.1 26.8 3.2 
bridge 24.4 0.0 24.8 160.3 25.0 6.2 25.2 4.4 25.0 1.9 25.1 1.9 

coastguard 26.6 0.0 27.0 39.7 27.1 2.3 27.1 1.6 27.1 0.7 27.1 0.7 

comic 23.1 0.0 23.9 54.0 24.0 2.1 24.1 1.5 24.0 0.7 24.0 0.6 
face 32.8 0.0 33.1 21.9 33.5 1.7 33.5 1.2 33.6 0.5 33.5 0.5 

flowers 27.2 0.0 28.2 80.0 28.4 4.2 28.4 3.0 28.5 1.3 28.3 1.2 

foreman 31.2 0.0 32.0 27.3 33.2 2.4 33.3 1.6 33.2 0.7 33.1 0.8 

lenna 31.7 0.0 32.6 78.4 33.0 6.2 33.0 4.4 33.1 1.9 32.9 2.0 

man 27.0 0.0 27.8 111.9 27.9 6.1 28.0 4.2 27.9 1.8 28.0 1.8 
monarch 29.4 0.0 30.7 118.5 31.1 9.3 30.9 6.4 31.1 2.7 30.9 2.8 

pepper 32.4 0.0 33.3 67.9 34.1 6.2 33.9 4.3 33.8 1.9 33.8 1.7 

ppt3 23.7 0.0 25.0 100.0 25.2 7.5 25.1 5.1 25.0 2.4 25.0 2.3 
zebra 26.6 0.0 28.0 115.2 28.5 5.4 28.6 3.8 28.4 1.6 28.5 1.6 

average 27.54 0.02 28.31 91.09 28.67 5.39 28.68 3.75 28.65 1.63 28.61 1.63 

 

In the reconstruction phase, we chose 14 test images, and the results of Bicubic 

interpolation as the initial HR images. Table 1 shows the PSNR values and running time 

of different methods for the test images. It shows that our methods outperform the method 

of Yang et al., and are competitive with the current state-of-the-art ANR algorithm. 

Although the proposed method (i) performs slightly worse than the method of Zeyde et al. 

for PSNR, it speeds up the SR process by 30%. The proposed method (ii) gets similar 

quality performance as the method (i), but its running time reduces by 43% due to the 

introduce of the ANR model. 
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Figure 1. Reconstructed HR Images and SSIM Values of Barbara by Different 
Methods (a) The LR Image; (b) The Original Image; (c) Bicubic (0.651); (d) 
Yang [12] (0.694); (e) Zeyde [13] (0.698); (f) Our Method (i) (0.705); (g) ANR 

[17] (0.703); (h) Our Method (ii) (0.704) 
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Figure 2. Reconstructed HR Images and SSIM Values of Zebra by Different 
Methods (a) The LR Image; (b) The Original Image; (c) Bicubic (0.795); (d) 
Yang [12] (0.827); (e) Zeyde [13] (0.842); (f) Our Method (i) (0.843); (g) ANR 

[17] (0.843); (h) Our Method (ii) (0.841) 
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Figure 3. Reconstructed HR Images and SSIM values of Bridge by 
Different Methods (a) The LR Image; (b) The Original Image; (c) Bicubic 

(0.611); (d) Yang [12] (0.635); (e) Zeyde [13] (0.650); (f) Our Method (i) 
(0.653); (g) ANR [17] (0.654); (h) Our Method (ii) (0.654) 
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Figure 4. Reconstructed HR Images and SSIM values of Face by Different 
Methods (a) The LR Image; (b) The Original Image; (c) Bicubic (0.797); (d) 

Yang [12] (0.800); (e) Zeyde [13] (0.819); (f) Our Method (i) (0.821); (g) 
ANR [17] (0.822); (h) Our Method (ii) (0.821) 

In Figures 1-4, we show some reconstructed HR images by the above algorithms. From 

Figures 1-3, we can see that HR images by Bicubic interpolation have blurred edges and 

artifacts. The method of Yang et al. shows improvements in most places, but fails in the 

areas with fine image details (e.g., the cloth in Figure 1(d) and the face in Figure 4(d)). By 

contrast, our methods show better performance both in terms of objective metrics and 

subjective visual results. This is mainly because that the sparse dictionaries learning 

approach can improve the reconstruction accuracy. Compared to the method of Zeyde et 

al. and ANR, our methods can achieve competitive visual quality and SSIM values. 

From Table 1 and Figures 1-4, we can see that the proposed methods get visually 

pleasant results with high objective index values. Moreover, it can achieve fast SR. This 

clearly demonstrates the effectiveness of sparse dictionaries in solving the problem of fast 

image SR. 
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5. Conclusion 

In this paper, we propose a fast example-based SR method, which introduced a novel 

dictionary learning approach. The approach employs a base dictionary to learn the 

sparse matrix of the dictionary, being adaptive and efficient. The Batch-OMP 

algorithm is used to sparse coding and can provide great improvement in calculation 

speed. Moreover, we incorporate the ANR model into the sparse dictionaries and 

achieve fast SR using the projection matrices. Simulation results indicate that the 

proposed method can obtain qualitatively reconstructed images with high values of 

PSNR and SSIM. In future work, we would like to learn an internal dictionary from 

the given image online to obtain better adaptivity and reconstruction. 
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