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Abstract 

In high-rate data or multi-antenna orthogonal frequency division multiplex (OFDM) 

scenarios, many encountered channels trend to have the structure of sparse multi-paths. 

The communication systems over multipath channels usually require that the channel 

response be known at the receiver and thus channel estimation is obligatory. In this 

paper, we focus on exploring a channel estimator by exploiting the sparse features of 

multipath fading channels for OFDM communication systems. At the same time, a novel 

scheme based on the sparse reconstruction by separable approximation (SpaRSA) for the 

sparse channel estimation is presented to improve the poor performance of the typical 

least square (LS) and ℓ2-norm channel estimations. Compared with the greedy pursuit 

algorithm, such as matching pursuit (MP) and orthogonal matching pursuit (OMP), the 

algorithm is able to reach the global optimal solution. By applying a threshold to 

determine the non-zero taps and introducing the noise effect into the regularization 

parameter in the SpaRSA algorithm, this proposed scheme leads to a superior estimation 

performance. The complexity of the proposed algorithm is lower than the SpaRSA 

algorithm because only a few channel taps are needed to recover with high accuracy 

considering the nature of sparse channels. In the simulation section, the proposed method 

is compared and contrasted with the existing estimation methods. And the simulation 

results show the validity of the proposed approach. 

 

Keywords: Sparse channel estimation, sparse reconstruction by separable 

approximation, orthogonal frequency division multiplex 

 

1. Introduction 

In OFDM communication systems, signals transmitted via other reflectors or 

diffraction are severely attenuated, and arrive at the receiver as a superposition of multiple 

copies of the transmitted signal, called multipath signal components. This multipath signal 

propagation leads to fading in the received signal strength that severely affects the rate 

and reliability of wireless communication systems [1]. However, if the knowledge of 

channel state information (CSI) is available at the receiver, it enables the exploitation of 

delay, Doppler, and/or spatial diversity to combat fading while further gains in rate and 

reliability are possible as well [1][2]. In practice, CSI is seldom available to 

communication systems a priori and the channel impulse response (CIR) needs to be 

(periodically) estimated at the receiver in order to gain the reliable copy of the transmitted 

signals. 

Many wireless channels encountered in practice tend to exhibit a sparse multipath 

structure at high signal space dimension [3]-[5]. Such sparse multipath communication 

channels include cellular communication environments, underwater acoustic channels, 

aeronautical communication channels, high-frequency radio communication channels and 

terrestrial high-definition television broadcasting channels. For this type of channels, the 

majority of channel taps are zero-value taps and the number of the most significant taps, 
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which capture dominant channel power, is far less than the maximum number of excess 

delay.  

Because of the variation of the number and position of non-zero taps, it becomes a 

challenge to perform the channel estimation with robust and prominent performance. The 

sophisticated least-squared (LS) algorithm [6] does not need the real-time computation of 

matrix inversion and assumes minimal a priori knowledge about the unknown channel 

because it estimates all the channel coefficients directly. But, in sparse channels, the 

estimation accuracy of LS is worse than that of the algorithms tailored for sparse channel 

estimation [2][7-12]. MP algorithm [7] is a typical representative of the sparse channel 

estimation algorithms. It sequentially takes a strongly correlated column of dictionary 

matrix with the residual signal and estimates the corresponding channel taps. By pre-

specifying the stopping rule reasonably, the algorithm can remove the noise in some of 

zero taps. Therefore it achieves a substantial reduction in estimation error compared with 

LS algorithm in sparse channels. By avoiding re-selecting the basis vectors, OMP 

algorithm has been shown to achieve much better performance than MP algorithm [11]. In 

[12], an iterative detector (IDE) scheme with threshold attempts to estimate the locations 

of non-zero channel taps by transforming the tap detection problem into an equivalent on-

off keying detection problem. A modified iterative detector/estimator (MIDE) algorithm 

[13] has improved performance by applying an iteration-varying threshold instead of 

multiple thresholds in parallel for each iteration in IDE algorithm. IDE and MIDE offer 

different tradeoffs between performance and complexity, in the case of appropriate 

stopping rules of zero-tap search. However, these algorithms [7-12] are sensitive to the 

choice of the stopping rules. And in some multipath scenarios, these algorithms may 

result in significant performance degradation, which are even worse than LS algorithm 

[6].  

In addition, a threshold-based approach [14] for sparse channel estimation in 

orthogonal frequency division multiplexing (OFDM) systems (named as TMSE) is 

derived by minimizing mean squared error (MSE) per CIR coefficient and these 

thresholds are then applied on the CIR LS estimate to detect its structure. Unfortunately, 

MSE is very sensitive to tap missing and false detection that is likely to degrade the 

detection performance for channel taps. In Bayesian statistics, a maximum a posteriori 

(MAP) algorithm [15] can obtain an accurate estimate on the basis of a priori knowledge 

of channel probability distribution. However, the priori knowledge is usually difficult to 

be obtained in practice. 

The SpaRSA algorithm [16] based on the basis pursuit denoising (BPDN) in [17] is 

used to find sparse approximate solutions to large under-determined linear equations. It is 

an algorithmic scheme that is one of the fastest algorithms for solving a ℓ2-ℓ1 optimization 

subproblem and can reach the optimal solution [16][18]. The regularization parameter in 

SpaRSA algorithm, which balances the sparsity of signals against the residual error, is 

very important for the whole algorithm. However, it was set to be a fixed number in the 

original algorithm [16] and hence cannot reflect the noise effect. As noise level varies, the 

estimation performance would suffer degradations. 

Considering the nature of sparse channels, the estimation efforts can be focused on a 

small number of non-zero taps after the position of non-zero taps are detected, thus 

leading to a more accurate estimate of the channel coefficients. To achieve this goal, a 

threshold derived from the raw LS estimate is presented to determine the position of non-

zero taps. Then, the estimates of channel taps are further refined by the improved SpaRSA 

algorithm, which is obtained by introducing the noise effect into the regularization 

parameter. With the use of this threshold and the proposed regularization parameter, the 

whole algorithm enhances the estimation efficiency and hence improves the estimation 

accuracy. 

The rest of this paper is organized as follows. We present the OFDM system model in 

Section II. In Section III, we address the sparse estimation formulations. Section IV 
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proposes the novel channel estimation scheme and presents detailed steps of the proposed 

algorithm. In Section V, the performance of the proposed method is verified through 

simulations. And we conclude the paper in Section VI. 

Notations used throughout this paper are based on the convention. Vectors are 

represented as boldface lowercase letters and matrices as boldface uppercase letters. (  )T, 

(  )H, (  )-1, (  )+, ||  ||0, ||  ||1 and ||  ||2 denote the transpose, the Hermitian transpose, the 

inverse, the pseudo-inverse, ℓ0-norm, ℓ1-norm, ℓ2-norm, respectively. 

 

2. OFDM System Model 

Consider a pilot-assisted OFDM system with N subcarriers in each symbol, among 

which Nd data symbols are used for delivering messages and Np pilot symbols indicated 

by p1, p2, ..., pNp are used for pilot-assisted channel estimation. The subcarriers are 

modulated by symbols mapped from QAM or PSK constellation. After OFDM 

modulation, Lcp samples of the cyclic prefix (CP) are added at the beginning of the N 

samples of inverse discrete Fourier transform (IDFT) to form one OFDM symbol of N+ 

Lcp samples, which can be written as 

nnn pdx  ,   -Lcp   n   N-1.                                                       (1) 

Here dn and pn represent the data and pilot symbols, respectively.  

Since a variety of channels are prone to multipath propagation due to refraction, 

reflection, and scattering, the channel impulse response h(k) has the form 







1

0

)()(
L

l

ll kakh  ,                                                              (2) 

where )(  is the delta function. 
la  and 

l  is the amplitude and time-delay of the lth 

path, respectively. In the above model, path delays are sample spaced and L denotes the 

delay spread of a channel. The OFDM symbols are then transmitted over a multipath 

fading channel. Assume that the CP, with the length Lcp samples, is longer than the 

maximum path delay of the channel L in order to guarantee the orthogonality of 

subcarriers of the OFDM system, i.e.,  Lcp >L, and that the synchronization is perfect at 

the receiver. 

Then, at the receiver the remaining samples, after the CP is removed, are demodulated 

by the N-point discrete Fourier transform (DFT) operation. So, the received sample vector 

is expressed as 

fnXFHy  ,                                                                   (3) 

where T

Nyyy ],...,,[ 110 y  is the received symbols. X is the N   N diagonal matrix of 

transmitted data comprising data matrix D and pilot matrix P, i.e., X= D+P= 

0 1 1diag[ , ,..., ]T

Nx x x 
. F is N   N DFT matrix with entires 

2 ( 1)( 1)

,
1 ,

j l m

N
l mF e

N

  

  

where , 1,2,...,l m N  and the channel vector H= TLhh ]0,...,0),1(),...,0([  . The zero-mean 

complex Gaussian noise vector nf has its covariance matrix
Nf I

2 , i.e., nf ~ N(0, Nf I
2 ). 

Generally, the received samples of pilot symbols are used for the channel estimation, 

which can be expressed as  

r= PFph+n=Ah+n,                                                              (4) 

i.e. 
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where A=PFp is usually known as measurement matrix. P is the 
p pN N diagonal 

matrix of the pilots. The channel vector h=[ (0), (1),..., ( 1)]Th h h L and n is the additive 

white Gaussian noise vector. In practice, since the sampling period is usually much 

smaller than the channel delay spread, most components of h are either zero or nearly 

zero, meaning that h is sparse vector. Fp is a 
pN L  matrix formed by the first L columns 

of the DFT matrix F in (3) and the Np rows of the selected matrix associated with the pilot 

subcarriers, which is written as 

1 1
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where 
2j

Ne





 .   
 

3. Sparse Estimation Formulations 

In the literature, the sum of the non-zero taps is often used to measure the sparseness of 

the channel, i.e., the ℓ0-norm of h: 

|| h ||0=
0

1( 0)
L

i

i

h


 ,                                                           (7) 

where 1(hi  0) denotes that if hi  0, the value of the function 1(  ) equals to 1; 

otherwise it equals to 0. From (13), the ℓ0-norm of h is equal to the number of non-zero 

taps, D. So, the sparse channel estimation comes down to solving the following 

optimization problem: 

0min || ||
h

h    s.t. || r -Ah ||
2

2  ,                                         (8) 

where  is a non nonnegative real parameter. The above equation is a non-convex 

optimization problem and it is hard to obtain its solutions. To solve the problem, the 

following formulation  

2

2min || ||
h

r - Ah     s.t. ||h|| 1 T ,                                            (9) 

is frequently used. Under certain conditions, ℓ1-norm is equal to ℓ0-norm [19]. 

Therefore, we have 

1min || ||
h

h   s.t. 
2

2|| ||r - Ah  ,                                       (10) 

where T are nonnegative real parameters. This formula, however, is not taken noises 

into account. As an improvement, the optimization problem with the consideration of 

noises can be expressed as: 
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2

2 1

1
min || || || ||

2h
r - Ah h .                                           (11) 

where   is a nonnegative real parameter and is referred to as the regularization 

parameter that balances the permissible errors and the signal sparsity. The above equation 

is the now famous ℓ2-ℓ1 problem. To solve this problem, we will propose the following 

algorithm. 

 

4. Proposed Sparse Channel Estimation Method 
 

4.1. Sparse Channel Estimation 

The LS estimator for channel impulse response h is given by 

 1ˆ [ ]H H

LS

  h A r A A A r ,                                                    (12) 

where 
1[ ]H H A A A A is the pseudo-inverse of A. Substituting (4) into (12), the 

above equation is expressed as 

1ˆ [ ]H H

LS

 h h A A A n .                                                      (13) 

We consider the case that the pilots are uniformly distributed and HA A  = Np I , the 

equation of (13) can be rewritten as: 

1ˆ H

LS

pN
   h h A n h v .                                                   (14) 

where v=(1/Np)A
Hn and it is still a zero-mean complex Gaussian vector with its 

covariance matrix Cm expressed as: 

2 2( ) /H

m f p vE N   C vv I I ,                                        (15) 

where 2

v  is the standard deviation of the noise vector v. Based on the observation that 

the channel length is shorter than the CP duration, the first Lcp components of the raw LS 

estimate ˆ
LSh can be viewed as the initial estimate of the sparse channel vector ĥ : 

ˆ
ˆ

LS

   
         

h + v h
h h + v

0 v 0 v
.                                              (16) 

where   v v v .  

Obviously seen from (14), the estimated results of CIRs are fully contaminated by 

noise. Therefore, we essentially have a binary hypothesis test for the channel tap: 


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

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

iibiii

ibiii

vhvhH

vvhH

i

i

11

00

1:
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 ,                                            (17) 

where H0i indicates that hi is a zero tap in the ith tap position whereas H1i indicates that 

hi is a non-zero tap in the ith tap position. Note that the above hypothesis test is 

independent of the number of non-zero taps, which render the consequent detection of 

channel taps. 

In order to build a detectable strategy for non-zero taps, we have the following 

expression as:   

        r=Adiag(b)h+n.                                                       (18) 
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The non-zero values of the channel vector h are in the set of positions 

 =(
110 ,..., , Dzzz ). The total number of non-zero taps in the CIRs, D, is unknown a 

priori and generally D<L<
cpL  for sparse channels. b is a sparse vector, which indicates 

the sparse structure of the channels and its entries are given by 



 


.,0

,1

otherwise

i
bi

                                                           (19) 

To detect the D non-zero taps out of the initial estimate of the sparse channel vector ĥ , 

the universal threshold   proposed in [20] for compressed channel sensing is applied as 

   
2= 4 logv cpL .                                                          (20) 

From the above equation, we propose to estimate 2

v  from the noisy part of the raw LS 

estimate of CIR, which is written as: 

2 2

( )

1

1 ˆˆ | |
p

cp

N

v LS k

k Lp cpN L


 




 h .                                                (21) 

Hence, the threshold can be re-written as: 

                                         
2ˆ4 logv cpL .                                                    (22) 

Then, the processed initial estimate of the sparse channel vector ĥ  can be determined 

as  

ˆ ˆ( ), | ( ) | ; non-zero tapsˆ( ) 0 1
ˆ0, | ( ) | ; zero taps

cp

h l h l
h l l L

h l

  
   

 

.                   (23) 

Since the estimation accuracy of LS method is not satisfactory for sparse channels, we 

will make use of the SpaRSA algorithm, one of the fastest algorithms for solving the ℓ2-ℓ1 

problem, to refine the selected non-zero taps in the processed initial estimate of ĥ . 

 

4.2. Improved SpaRSA Algorithm 

The SpaRSA is an algorithmic framework that has comparable computational speed 

with the state-of-the-art algorithms used in solving the standard ℓ2-ℓ1 problems of (11), 

which is written as: 

min ( ) ( ) ( )
h

h f h c h   ,                                                      (24) 

where 

2

2

1
( ) || ||

2
f h  r - Ah ,                                                               (25) 

1( ) || ||c h  h .                                                                 (26) 

In the SpaRSA method, a subproblem is set up and solved efficiently at each iteration. 

For the ℓ1 regularization problem, the subproblem has the following equivalent form 

 
1 2

2

1
argmin || || ( )

2

t t

z
t

c




  h z - u z ,                                        (27) 
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where 

1
( )t t T t

t
  u h A Ah r .                                               (28) 

When ( )c z = 1|| ||z , the unique minimizer is given by 

2( ) | |
argmin soft( , )

2

t
ti
i

z
t t

z u z
u

 

 
 

-
,                                    (29) 

where soft(u,a) sign( )max{| | ,0}u u a   is the well-known soft-threshold function.  

Choosing a proper value of the regularization parameter   is vital to SpaRSA 

algorithm. The selection of   will allows the ℓ2-ℓ1 formulation to recover the solution 

with high accuracy. As seen in [16], the unique solution to (29) is the zero vector if 

 |||| rAT , thus the regularization parameter must be selected within the scope of (0, 

|| ||T

A r ).  

In [16],  is set to 0.1|| ||T

A r . However, this strategy cannot reflect the change of 

noise effect. So, we propose a parameter strategy as:  

20.1 || ||T

v     A r  ,                                                    (30) 

which can help the algorithm adapt with the noise change. With the estimate of 
2

v  in 

(21), the above equation can be written as: 

2ˆ0.1 || ||T

v    A r .                                                         (31) 

Based on the above expressions, the main steps of the proposed channel estimation 

method are summarized as the following steps: 

Step 1: Initialize the channel estimation 
0ĥ by the first Lcp components of the raw LS 

estimate ˆ
LSh in (12) 

Step 2:  Calculate 2ˆ
v  by (21) and the threshold    by (22). 

Step 3:  Update 
0ĥ by (23). 

Step 4: Use the improved SpaRSA algorithm to refine the non-zero taps in 
0ĥ : 

4-1.  Choose   and constants min and max ; 

4-2.  Choose min max[ , ]t   ; 

4-3.  Choose by (31); 

4-4.  Calculate
1ˆ th by the subproblem (27);  

4-5.  Set 1t t   and if  21 | |ˆˆ| | tt hh , increase t and return to (4-2).  

Otherwise, the current estimate 
1ˆ th  is the solution of CIR estimation. 

Note that the parameters 
30

max min1/ 10    and 2   are set for our simulations. In 

this algorithm, the prior information of the number of non-zero channel taps is not 

required. This property will benefit the practical application of this algorithm as well. 
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5. Simulation Results and Analysis 
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Figure 1. The Impulse Response of Channel (a) and Channel (b) 

In this section, we do the simulation experiments that demonstrate the competitive 

performance of the proposed channel estimation approach. A 16QAM modulated OFDM 

system we consider in simulations has N=512 subcarriers and Np=128 pilot subcarriers. 

Lcp is set to 64 symbols. The length of channel impulse responses is L=35. The channel 

estimation algorithms are compared using the following channel models, which are 

illustrated in Figure 1: (a) 3-tap sparse channel in [21]; (b) 5-tap sparse Rayleigh fading 

channel with exponentially decaying power profile, p(l)=e-0.125l. This type of channel 

model (b) is widely used in many literatures. Both channels are assumed to be time-

invariant over the OFDM symbol duration. The channel power is normalized, that is, 

1H h h , and thus, the signal-to-noise ratio (SNR) is equal to 
2 1

H

v
h h . In the 

simulations, the performance of different channel estimators is evaluated in terms of the 

MSE, defined as  











 



mN

n

mN
1

2

10 ||ˆ||1/log10MSE(dB) hh                                             (32) 

where Nm is the total number of Monte Carlo iterations.  
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Figure 2. MSE Comparison of Channel (a) with Different Regularization 
Parameters 
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Figure 3. MSE Comparison of Channel (b) With Different Regularization 
Parameters 

To access the effectiveness of the improved regularization scheme proposed in Section 

IV, we compare its MSE performance with the SpaRSA algorithm [16] using the fixed 

regularization parameter 0.1|| ||T  A r under the two channel conditions in Figure 2 and 

Figure 3. The results in Figure 2 and Figure 3 show that when the regularization 

parameter is fixed the MSE trends to flat with the increase of SNRs. But the MSE 

decreases dramatically with the increase of SNRs when the regularization parameter is 

improved by introducing the noise effect. The reason is that when noise level decreases 

the regularization parameter should decrease in order to improve the accuracy of channel 
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estimation. But the noise change effect did not reflected in the regularization parameter of 

the original SpaRSA algorithm. 
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Figure 4. MSE Comparison of Channel (a) for Different Estimators 
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Figure 5. MSE Comparison of Channel (b) for Different Estimators 

To test the performance of the proposed algorithm, the MSE of LS [6], OMP [11] and 

the proposed estimation algorithm are compared under two different channel conditions 

and averaged over 2000 Monte Carlo iterations for each SNR in Figure 4 and Figure5. 

The SNR variation ranges from 5 to 35dB. From Figure 4 and Figure 5, the proposed 

method has the best performance among all the estimators. Since it introduces the noise 

effect into the regularization parameter and applies the threshold   to determine the non-

zero taps, the accuracies of the proposed method are superior to those of other methods. 
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The OMP algorithm results in significant performance degradation as the number of non-

zero taps increases in that it is very difficult to choose a good stopping rule [13][21]. 
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Figure 6. BER Comparison of Channel (a) for Different Estimators 
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Figure 7. BER Comparison of Channel (a) for Different Estimators 

By varying the SNR level, the performance of bit error rate (BER) comparison for 

different estimators is shown in Figure 6 and Figure 7 under two channel conditions to 

further test the performance of the proposed algorithm. It is shown that the proposed 

method leads to a better performance than LS method and OMP method. This is because 

that our method is deduced based on SpaRSA method, which can offer the optimal 

solution to the ℓ2-ℓ1 formulation of channel estimation.  
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Table I reports the average CPU times required by the algorithms tested, where SNR is 

set to be 35dB. The experiments are performed under the aforementioned two channels 

using MATLAB on the computer with a CPU of Intel Core i5 and 2.0GB RAM. These 

results show that the proposed method has the fastest speed among these channel 

estimators. LS is slightly faster than OMP, and the proposed algorithm is clearly faster 

than LS and OMP. Since OMP cannot always guarantee successful sparse recovery and 

sometimes it runs out of all matrix columns, the time cost of OMP is the highest among 

these channel estimators. The proposed method pre-processes the initial channel estimates 

and then only a few of channel taps are re-estimated. This strategy reduces the 

computational operations of SpaRSA method. Hence, the proposed method costs less time 

than SpaRSA method. 

Table 1. Table Label Average CPU Times of Channel Estimators 

Channel estimators 
CPU running times (in Seconds) 

Channel (a) Channel (b) 

LS 

OMP 

SpaRSA 

Proposed method 

23.615 

33.248 

30.815 

19.116 

23.437 

34.125 

31.078 

19.765 

 

6. Conclusion 

In this paper, we propose a new algorithm based on SpaRSA algorithm for the 

estimation of sparse channels encountered by OFDM systems. This algorithm preserves 

the advantage of SpaRSA algorithm which is able to reach the global optimal solution to 

the ℓ2-ℓ1 problem. It offers superior channel estimation performance by applying the 

threshold to determine the position of non-zero taps among the raw LS estimates which 

eliminates zero taps and helps the algorithm focus on the estimation of non-zero channel 

taps. Besides, introducing the noise effect into the regularization parameter overcomes the 

shortcoming of the original SpaRSA algorithm, which cannot reflect the change of 

channel noise. The influence of the regularization parameter is tested in the simulation. 

The simulation results also show that the proposed approach exhibits superior 

performance in terms of MSE, BER and average CPU running times when compared with 

the existing methods. Moreover, in contrast to the OMP method, our method does not 

require a priori information about the number of non-zero channel taps. 
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