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Abstract 

In this paper, a new mixed near-field and far-field sources localization method based 

on cumulant sparse representation was proposed. By constructing a special cumulant 

matrix which is only related to the DOA parameters of mixed sources, we obtain the DOA 

estimation of all sources using the weighted 1- norm algorithm. And then, a mixed 

overcomplete matrix on the basis of DOA estimation is introduced in the sparse signal 

representation framework to estimate the range parameters and distinguish far-field 

sources from the mixed sources. The proposed algorithm avoids two-dimensional 

searching and parameter matching, moreover, it has higher resolution and better 

accuracy. Simulation results verify the effectiveness of the proposed algorithm. 

 
Keywords: Fourth-order cumulant; Sparse representation; Near-field; Far-field; DOA 

estimation 

 

1. Introduction 

Source localization is a key problem in array signal processing and has received 

significant attention in the last several decades. For far-field sources, large amount of 

algorithms have been proposed to achieve the direction-of-arrival (DOA) estimation, 

among them the ESPRIT algorithm [1] and MUSIC algorithm [2] are most representative. 

When a source lies in the near-field region, the assumption of plane waves for far-field 

sources no longer holds true. In this case, the wavefront must be characterized by not only 

the azimuth DOA, but also range parameter. Numerous effective methods, such as the 

two-dimensional MUSIC method [3] and the high-order ESPRIT method [4], are also 

available to deal with this issue.  

However, in some practical applications, the signals received by the array are often the 

mixture of near-field and far-field sources. Liang [5] proposed a high-order MUSIC 

algorithm to estimate the parameters of the mixed sources, one weakness of this algorithm 

is that it suffers high computation complexity. In order to reduce the computation 

complexity, a second-order statistic (SOS)-based algorithm was suggested in [6], but it 

needs to know the number of near-field sources in advance. A second-order MUSIC 

algorithm was presented in [7], it has a great aperture loss which in turn makes it suffer 

serious performance degradation. In [8], by utilizing sparse signal reconstruction for 

mixed source localization to improve estimation accuracy and resolution, a weakness of it 

is undemocratic penalization for large coefficients incurs the degradation of signal 

recovery performance. To conquer this problem, the weighted 1- norm minimization [9] 

was proposed, but the computational complexity influenced by the number of sensors 

seriously.  

In order to overcome the aforementioned shortcoming of the mixed sources 

localization, we proposed a new mixed source localization algorithm based on cumulant 

sparse signal recovery. In this paper, Firstly, we use the fourth-order cumulant matrix to 
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eliminate the range parameter of near-field sources, all the azimuth of incoming signals 

can be estimated by weighted 
1  norm algorithm. Then, another special cumulant matrix 

which contains the DOAs and ranges parameter is constructed to estimate range 

parameters and distinguish far-field sources from the mixed sources. Simulation results 

are provided to demonstrate the performance improvement of the proposed method. 

 

2. Mixed Near-Field and Far-Field Signal Model 

Suppose that K  narrow-band, independent mix sources impinging on a uniform 

linear array with 2 1M   sensors as [10]. The center sensor regard as phase reference 

point. Data of the thm  sensor received can be expressed as 

1

( ) ( )e ( ), 0, , 1mk

K
j

m k m

k

x t s t n t t T



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where T  is the snapshot number, ( )ks t  is the thk narrow-band source signal, 

( )mn t  is the additive Gaussian noise, 
mk  is the delay associated with the thk  source 

propagation time between the 0th  and thm sensor. When the source located at 

near-field, 
mk  can be given by 

2

mk k km m                                                       (2) 

where 
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where   is the wavelength, 
k  and 

kr  are the thk  source azimuth and range 

parameter.  When the source located at far-field, 
k  can be considered as zero, 

mk  

can be expressed as 

mk km  .                                                          (5) 

The received data can be expressed as a matrix form  

( ) ( ) ( )t t t x As n                                                    (6) 

where 

 0 1( ) ( ), , ( ), ( ), , ( )
T

M Mt x t x t x t x tx                                 (7) 

 1 1( , ), , ( , ), , ( , )k k K K      a a a                                (8) 

1( ) [ ( ), , ( ), ( )]T

k Kt s t s t s ts                                          (9) 

 0 1( ) ( ), , ( ), ( ), , ( )
T

M Mt n t n t n t n tn .                              (10) 

If the source lies in near-field, the steering vector can be written as 
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Otherwise, if the source located at far-field, the array manifold vector can be expressed 

as 

     ( ) ( )( 1)
( ) , , ,k kk

T
j M j Mj M

k e e e
 
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 
a .                            (12) 

In this paper, the following hypotheses are required: 

1. The signals are statistically independent, zero mean stationary process. 

2. The noise is zero-mean, circular Gaussian, spatially uniform white and 

independent from the source signals. 

3. The sensor array is a symmetric uniform line array. To avoid an ambiguity of 

phase in mixed sources localization scenario, the inter-element spacing is within a 

quarter-wavelength. 

 

3. Proposed Method 
 

3.1. DOA Estimation 

In this section, a cumulant is considered to eliminate the Gaussian noise and to improve 

the accuracy of parameter estimation. A fourth-order cumulant will be constructed, it can 

be expressed as 

 
2 2 2 2

* *

{[( ) ( )] [( ) ( )] }
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where 
* *

4, cum{ ( ), ( ), ( ), ( )}sk k k k kc s t s t s t s t , stands for complex conjugate. In order 

to retain the azimuth and eliminate the range parameter in (13), both 
2 2 2 2( ) ( ) 0m i n q     and ( ) ( ) 0m i n q    , we assume ,i m q n    [5]. 

Then (13) becomes 
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Let 1m m M   and 1n n M   , and thus  , 1,2 1m n M  , the  , thm n  

element of special cumulant matrix 
1C  can be given by 

* *
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(2 1) (2 1)M M   matrix 
1C  can be expressed as a compact matrix form 

   1 4

H

S  C A C A                                              (16) 
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where   1( ), , ( ), , ( )k K         A a a a  is a virtual steering matrix 

which is only relate to DOAs of sources, 
2 2

( ) , , 1, ,k k
T

j M j M

k e e
 

 
   a  is 

the virtual steering vector, 
14 4, 4, 4,diag , , , , , 1, ,

k Ks s s sc c c k K   C . 

Then, we start to formulate the DOA estimation problem of the mixed sources through 

sparse representation. We sample the whole direction domain from a set 

 1 1, , N   with N K . Assume the directions of actual sources only lie 

within the N  grids, the sparse signal representation of (16) is  

 1 1 SSC = A S                                                    (17) 

where  4, 1N

H

SS S S C A  , it has the same sparseness as the signal,  1A   is 

the overcomplete basis, it can be expressed as 
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In order to reduce the computation complexity, we extract the subspace only contains 

the signal information [11]. The signal value decomposition (SVD) from of (17) is  

 1, 1SV SVC A S                                                (19) 

where 
1
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(2 1 )K M K  0  denotes (2 1 )K M K    zero matrix. 
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s S S . The minimization 
1

-norm of 
2ls  is the 

objective function, the DOA estimation of the mixed sources can then be converted into 

the following optimization problem 
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where 
iw  is the weighted value, it can improve the performances of 

1
-norm 

minimization which penalizes the larger elements in 
1
-norm term more heavily than 

smaller ones [12]. 
nU  is the (2 1) (2 1 )M M K     noise-subspace matrix of 

1C , 

which is corresponding to the 2 1M K   small signal value, 
iw  can be expressed as  

( ) ( )H H

i i n n iw    a U U a .                                          (21) 

The optimization problem (20) can be efficiently solved by SOC software package of 

CVX [13]. 
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3.2. Range Estimation 

Once the DOAs 
1

ˆ ˆ ˆ[ , , ]K    are estimated, the next task is to estimate the range 

parameter relate to the DOAs. We construct another special fourth-order cumulant as 

follows 
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where 1, 1,m m M n n M       , [ , 1]m n M M   . Then the thn  column 

of the cumulant matrix 
2C  can be expressed as 
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where 
k

a  is a 2M  vector 
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A  is a 2M K  matrix 

1 2
, , ,

K   
   A a a a                                               (25) 
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The cumulant matrix 
2C  could be regard as a virtual array output, with  ns  as the 

virtual signals and 
k

a  as the steering vector, which only depend on 
k . Note that the 

near-field source is in the Fresnel region, and range r  is in the interval 

 
1

3 220.62 ,2D D  
  

 with D  representing the array aperture. We divide the 

whole range region of near-field source uniformly into 
1N  girds, and a range set is given 

by 
1,1 ,, ,n n n Nr r   r . In order to distinguished mixed source, we define the range girds 

set for far-field sources with 
2,1 ,, ,f f f Nr r   r , the girds should be greater than the 

upper bound of the Fresnel region 
22D  . For example, let 

fr  

be
2 24 , ,8D D     with 

2D   interval in experiments. Then the sparse form of 

2C  can be expressed as 

2 ,C A XR
                                                        (27) 

where X  of dimension  1 2 2K N N M   is the sparse of S with only K  

non-zero rows, and      1 , 2 , , 2M   S s s s . 
,A R

 of dimension 
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 1 22M K N N   is the overcomplete basis  
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 
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Similar to (19), the SVD version of the sparse representation (27) to reduce the 

computational complexity is given by 

2, ,SV SVC A XR
                                                   (31) 

Where 
2 1 1 1
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s X X . The minimization 
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of 2l

rs  is the objective function, the range estimation can be realized by solving the 

following optimization problem 
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where  

   , , , ,:, :,
H H

i r n r nw i i  A U U AR R                                     (33) 

where  , :,iA R
 is the thi column of 

,A R
, ,r nU  is the (2 ) (2 )M M K   

noise-subspace matrix of 
2C , which is corresponding to the 2M K  small signal 

value. The range parameter of sources can be obtained by solving the optimization 

problem(32). If the estimated range 
kr  falls into the set 

nr , the range parameter 

corresponds to the near-field source with DOA ˆ
k , otherwise, let 

kr  be   and the 

source lies in the far-field region.  

 

4. Discussion 
 

4.1. Computational Complexity 

Regarding the computational complexity, we consider the major part. Define the search 

step of DOA with   and the search step of range with r . The major computation of 

the algorithm [5] is to constructs one    2 1 2 1M M    and one    4 1 4 1M M    

cumulant matrix, to perform EVD of the two matrix, to execute MUSIC spectral search 

corresponding to the DOA estimation. Therefore, the computational complexity is 

O{          
2 2 3 3 2

9 2 1 9 4 1 4 3 2 1 4 3 4 1 180 2 1M T M T M M M           }. The 
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major computation of the algorithm[7] is to form one    2 1 2 1M M    and one 

   2 2M M    matrix, to perform eigen-decompositions of the two matrix, to 

execute MUSIC spectral search corresponding to the DOA and range estimation. 

Therefore, the computational burden of algorithm [7] is 

O{      
2 2 3

2 1 2 4 3 2 1M T M T M       

       
3 2 22 34 3 2 2 2 1 2 0.62 2 1M M K D D M r           }. 

However, for the proposed algorithm, we construct one    2 1 2 1M M    and one 

2 2M M  cumulant matrix, and implements their eigen-decomposition, the 

corresponding sparse signal reconstruction process requires O{  
33 3 6

1 2K N K N N  }. 

Therefore, the complexity of the proposed method is 

O{        
2 2 2 2 3 39 2 1 9 2 4 3 2 1 4 3 2 +M T M T M M K N       

 
36

1 2K N N }. 

From the analysis above, it can be seen that the computational complexity of the 

proposed method is much lower than that of [5]. Note that the main complexity of the 

algorithm [7] is in calculating second-order statistics and its eigenvalue decomposition, 

which is lower than the proposed algorithm. While the proposed algorithm used the 

cumulant, it alleviates the aperture loss. It is important note that the proposed algorithm 

can provide an improved DOA and range estimation.  

 

4.2. Array Aperture 

With an uniform linear array of 2 1M   sensors, the algorithm of [5] can construct 

   2 1 2 1M M    dimensional matrix. It needs at least one eigenvector of the 

constructed matrix to span the noise subspace. Thus, the algorithm [5] can localize 2M  

sources at most. The algorithm [7] can only localize M  sources because it has half 

aperture loss. The proposed algorithm has the same array aperture with the algorithm [5], 

then it has much better performance than the algorithm [7] at array aperture. 

 

4.3. Estimation Accuracy 

On the one hand, the proposed algorithm has the same array aperture with the 

algorithm [5] and has larger array aperture than the algorithm [7]; one the other hand, the 

algorithm [5] and algorithm [7] estimation the DOAs parameters of sources by means of 

MUSIC spectral search, whereas the proposed algorithm used the weighted 1- norm 

algorithm for sparse signal reconstruction, which can promote higher resolution and 

estimation. Therefore, the proposed algorithm is expected to have better estimation 

performance of both DOAs and range parameters than the compared algorithm. 

 

5. Simulations 

In this section, the proposed algorithm will compared with high-order MUSIC 

algorithm [5] and second-order statistic (SOS)-based algorithm [7] to demonstrate the 

choiceness performance. In the following simulations, a 7-element symmetric uniform 

liner array with element spacing 1/ 4d   is considered. The root-mean-square error 

(RMSE) that indicates the performance of the proposed algorithm is obtained by 400 

independent Monte Carlo simulations. 

In the first experiments, we compared the RMSE of the DOA and range estimation 
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versus SNR, whose curves are plotted in Figure 1. Two sources located at 

{
1 113 , 2r    } and {

2 221 ,r   } are considered. The number of snapshots is 

fixed at 600, while the SNR is    varied from -5 dB to 13 dB in steps of 2dB. From the 

simulation results, we observed that the estimation performance of the algorithm proposed 

is better than the compared methods. Algorithm [7] has the worst DOA estimation 

accuracy because of it has half aperture loss. The proposed algorithm has the same array 

aperture with the algorithm[5], whereas the algorithm [5] estimates the DOA parameters 

of sources by means of MUSIC spectral search, the proposed algorithm uses the sparse 

signal reconstruction, which can promote better DOA and range estimation. In addition, it 

is obvious that the RMSE decreases monotonically with the number of SNR. As for the 

range estimation, the proposed algorithm is still superior to algorithm [5] and algorithm 

[7], which is mainly a result of the propagation error from the previous DOA estimation 

stage. 
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Figure 1. The RMSE of Azimuth DOA Estimation and Range Estimation 
versus SNR 

In the second experiment, we compared the RMSE of the DOA and range estimation 

versus snapshot, whose curves are plotted in Figure 2. The simulation condition is similar 

to the first experiment except that the SNR is fixed at 7 dB, and the snapshot number is 

varied from 100 to 1300 in 200 steps. We can see that the RMSE of the DOA and range 

decrease monotonically as the snapshot number increases. This is due to the fact that a 

larger sampling number will produce better estimation of the cumulant matrices and the 

covariance matrices for stationary data. In addition, it is obvious that the performance of 

the proposed algorithm is the best, and the performance of the method in [7] is the worst 

one. This is because the algorithm [7] suffer a half aperture loss, the algorithm proposed 

and the algorithm [7] constructed the cumulant matrices to alleviate the aperture loss. 
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Figure 2. The RMSE of Azimuth DOA Estimation and Range Estimation 
versus Snapshot 

In the third experiment, we examine the resolution ability of the proposed algorithm 

and the algorithm in [5] and [7]. The resolution probability is the ratio between the 

number of successful estimation and the number of total trials. when ˆ| | 2k k    , 

estimation is considered to be successful[14], where ˆ
k  is the estimation value, 

k  is 

the real value,   is the angle-interval of two sources. We will do experiments for two 

closely space sources including two scenarios: (1) two far-field sources located at 

{
1 116 ,r   } and {

2 220,r  }, the angle-interval is 4 ; (2) two near-field 

sources located at {
1 114 , 2r   } and {

2 210 , 3r   }, the angle-interval is 4 . 

The resolution probabilities versus SNR for N =700 snapshots are provided in Figure 3. 

The results show that the proposed algorithm has better resolution ability than the 

compared method. The algorithm [7] has the worst resolution ability because it suffer a 

half aperture loss, while the proposed algorithm and algorithm [5] avoid the aperture loss. 

In addition, the proposed algorithm estimate the DOAs of all sources by using weighted 

1- norm algorithm, compared with the subspace technique which used in [5], it can 

promotes the resolution ability. 
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Figure 3. Resolution Probability versus SNR for Closing Spaced Sources 

In the last simulation, the computational cost required by the proposed algorithm is 

compared with the algorithm [5] and algorithm [7]. The number of sensors 2 1M   is 

set to 7. Further we define 0.1  , 0.01r   , 2K  . Figure4 shows the 

computational complexity of these algorithms as a function of the number of snapshots. It 

can be seen clearly from Figure 4 that the computational complexity of the proposed 

method is much lower than that of [5]. Note that the main complexity of the method 

addressed in [7] is in calculating the array covariance matrix and its eigenvalue 

decomposition, which is lower than the proposed algorithm. However, the proposed 

algorithm has better estimation accuracy, it can be regard as a good compromise between 

the estimation accuracy and the computational complexity. 

 

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

6

Snapshot number

C
o
m

p
u
ta

ti
o
n
a
l 
c
o
m

p
le

x
it
y

 

 

Computational complexity of Ref.[5]

Computational complexity of Ref.[7]

Computational complexity of proposed method

 

Figure 4. Computational Complexity of These Three Methods versus 
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6. Conclusion 

In this paper, we proposed a new mixed sources localization method using sparse 

representation of the cumulant matrix. Two special cumulant matrix are constructed, the 

first one only contains the DOAs, the second one contains both DOAs and the range 

parameters. And then, we construct two overcomplete bases to reconstruct the 

fourth-order cumulant matrix to estimate the two parameters separately. When the sparse 

representation model is solved by using weighted 1- norm algorithm, it's unnecessary to 

select the regularization parameter which balances reconstruction residual with the 

sparsity of solution. Moreover, the proposed algorithm avoids parameter match and 

two-dimensional search. The simulation results demonstrate the higher estimation 

accuracy and resolution probability than the compared method. 

Although the algorithm proposed has good performance, it still has some limitations. 

First, in order to reduce the computation complexity, we implement the SVD on the 

constructed cumulant matrix, thus it must have a priori knowledge of the number of 

source. Second, base on the virtual cross-correlation computer(VC3) theory [15], the 

estimation accuracy increases as the number of virtual sensors increases, the proposed 

algorithm only avoid aperture loss. To put the proposed algorithm into further applications, 

several steps of the future work can be done as follows: 

1. To avoid having a priori knowledge of the number of sources, we can use reweighted 

1- norm minimisation for sparse signal recovery without implementing the SVD on the 

constructed cumulant matrix.  

2. To extend the array aperture, we can use the sparse uniform linear array or co-prime 

array instead of uniform linear array. 
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