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Abstract 

In this paper we present a speech enhancement algorithm which is developed by 

cascading the time and spectral domain speech enhancement algorithms. For time 

domain we have used Kalman filter and for spectral domain we have used “Improved 

Minima Controlled Recursive Averaging” algorithm presented by Israel Cohen. Both of 

these algorithms give better results in their respective domains. The cascaded algorithm 

presented in this paper is tested under various types of real world noises that are 

generally experienced by a mobile user. The performance of the cascaded algorithms is 

evaluated using three widely used speech quality objective parameters, the Signal-to-

Noise Ratio (SNR), Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ). 

The simulation is performed in MatLab signal processing tool box. Comparative study of 

experimental results proves that there is substantial improvement in SNR, Segmental SNR 

and PESQ of the enhanced speech. 
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1. Introduction 

Speech communication has been the prime and effective way of communication ever 

since the beginning of human creation. With the advent of mobile phones the possibility 

of communicating with nears and dears at any time and from any place have become a 

reality. The mobile users now expect smooth communication even at situations which are 

highly noisy. Some of these situations are, inside a room with exhaust fan on, inside a 

running car, at railway platform during announcement and train arrival/departure, party 

places, multiple people talking (multitalker babble), on road with heavy traffic etc. 

Researchers, in the past, have developed several algorithms to overcome this problem. 

Most of these algorithms are based on processing the speech signal either in spectral 

domain or in temporal domain [1]. So far no algorithm is able to improve the speech 

quality as well as the intelligibility for all types of stationary and non-stationary noises 

and under all sorts of SNR conditions [2]. In this paper we have explored a combination 

of spectral and temporal algorithms and have achieved comparatively better results under 

all sorts of noises and SNR environments. 
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1.1. Spectral Speech Enhancement Algorithms 

Boll [3] presented one of the first algorithms for speech enhancement using spectral 

subtraction. Drawback of this algorithm was that a negative residual noise called musical 

noise was introduced. Later on Berouti and others [4] tried to remove the musical noise to 

some extent but was not successful under low SNR conditions. The MMSE based 

algorithms presented by Ephraim and Malah [5]-[6] became backbone of all modern 

spectral domain speech enhancement algorithms. These algorithms too failed due to non 

availability of efficient method to estimate a-priori SNR, as needed by these algorithms. 

Wolf and Godsill [7] tried to resolve the issue of estimation of a-priori noise estimation 

problem by presenting computationally efficient algorithms. Israel Cohen [8] in his work, 

‘Improved Minima Controlled Recursive Averaging’, has suggested a better method for 

noise estimation, based on averaging past spectral power values using a time-varying 

frequency dependent smoothing parameter adjusted by signal presence probability. In this 

paper we have used the approach presented by Cohen for cascading with temporal domain 

algorithm. 

 

1.2. Temporal Speech Enhancement Algorithms 

In the temporal speech processing the corrupted speech signal is directly filtered using 

one of the time domain filters. Frazier and others [9] used comb filtering by exploiting the 

periodicity and pitch period of the voiced signal. Lim and Oppenheim [10]-[11] used 

Weiner filtering and linear predictive coding which is based on autoregressive model of 

speech. Kalman filter in speech enhancement was explored by various researchers such as 

Whipple and Basu [12], Sorqvist and others [13], Goh and others [14], Wu and others 

[15], Kybic [16] and Popescu and Zeljkovic [17]. Kalman filter, which has advantages 

over others, has been used in the present cascaded algorithm because it uses finite data 

sets and can adapt to both the stationary and non stationary speech signals and noises.  

 

2. Improved Minima Controlled Recursive Averaging (IMCRA) 

Algorithm 

One of the important aspects of an efficient speech enhancement algorithm is accurate 

estimation of noise signal and speech presence interval detection. In IMCRA the noise is 

estimated by averaging past spectral power values using a smoothing parameter which is 

controlled by the minimum values of the smoothing parameter adjusted by the speech 

presence probability in sub bands. The detection of speech presence is carried out in two 

stage iteration. In the first iteration speech presence periods are estimated roughly and in 

the second iteration stronger speech components are eliminated thus ensuring minimum 

tracking during speech presence [18]-[19]. Speech presence probability is controlled more 

in speech absence period and very less during speech presence periods. The working of 

the complete IMCRA algorithm is explained below: 

Let x(t) and d(t) represent pure speech and noise signals in time domain. Since noise is 

considered to be additive in nature, the resultant noise corrupted speech signal is 

represented by y(t) = x(t) + d(t). After sampling, it is represented as y(n) = x(n) + d(n), 

where n is the sampling instant. The noise mixed speech signal y(n) is divided into short 

time overlapping frames using a window function and then transformed into frequency 

domain using short time Fourier transform (STFT) [20]. In STFT form, y(n) is represented 

as Y(k, l) = X(k, l) + D(k, l), where k and l are the frequency bin and frame index 

respectively. The a posteriori and a priori SNRs are denoted by γ(k, l) [21] and ξ̃(k, l) 

[19] and are determined using equations (1) and (2) respectively. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 10, No. 5 (2017) 

 

 

Copyright © 2017 SERSC 47 

                                                        (1) 

Where |Y(k, l)|2 is the power spectrum of noisy speech and λd(k, l) is estimation of noise 

spectrum     

       (2) 

Where α is taken as the weighting factor that controls the trade-off between noise 

reduction and speech distortion [5], [22] and  is the conditional spectral gain function 

of the Log Spectral Amplitude estimator, when speech is definitely present and is 

determined with the help of the following expression. 

                                 (3) 

Where  

1st iteration smoothed power spectrum of the speech signal in frequency and time 

domain are denoted by Sf(k, l) and S(k, l) respectively and are obtained using following 

equations. 

                                       (4) 

                             (5) 

Where αs is the smoothing parameter whose value is typically set to 0.9 and b is the 

Henning window. 

Past minimum values Smin(k, l) of S(k, l) within a finite window length of D are stored 

separately. Rough estimation of the speech presence probability I(k, l) is found using 

following relation. 

                 (6) 

Where , and  . The values of γ0 and 

ζ0 are set to 4.6 and 1.67 respectively. 

2nd iteration smoothed power spectrum of the speech signal in frequency and time 

domain are denoted by S̃f(k, l) and S̃(k, l) respectively and are obtained using following 

equations. 

         (7) 

                                 (8) 

Minimum tracking of the smoothed power spectrum in the second iteration is stored as 

S̃min(k, l). Speech absence probability is denoted by q̂(k, l) and is estimated as below: 

        (9) 
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Where   , and , γ1 is the threshold, 

typically set to 3, Bmin represents the bias of a minimum noise estimate whose value 

depends on window length D and smoothing parameter αs. Typically the value of Bmin is 

set to 1.66. 

Final speech presence probability is denoted by p(k, l) and is estimated as below: 

                 (10) 

Finally, the recursive averaging of the noise spectrum is obtained using following 

expression. 

            (11) 

Where  is time varying frequency dependent 

smoothing parameter which is adjusted by the speech presence probability and β is the 

bias compensating parameter in the absence of speech and is typically set to 1.47. 

 

3. Kalman Filtering 

Kalman filter is one of the finest time domain filters that provide optimum recursive 

solution using least square method [16]. Kalman filter works on the principle of 

prediction and correction with feedback control. For noisy speech signal y(n) = x(n) + 

d(n), where x(n) and d(n) are clean speech and noise signals respectively, the prediction 

and correction equations of Kalman filter are represented as below. 

                               (12) 

                           (13) 

                           (14) 

                          (15) 

                                           (16) 

 

 

Figure 1. Working of Kalman Algorithm 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 10, No. 5 (2017) 

 

 

Copyright © 2017 SERSC 49 

Where A is mxm matrix that relates the present state with the previous state, Rw and Rv 

represent covariance matrices of the perturbation of the process and measure respectively, 

Re,n is the Kalman gain chosen such that it minimizes the covariance error of the next state. 

C is nxm matrix that relates the present state with the measure Yn. The complete algorithm 

is described with the help of block diagram in Figure1. 

 

4. Proposed Cascading of IMCRA and Kalman Filtering 

It has already been established that time domain and frequency domain speech 

enhancement algorithms alone do not provide complete enhancement of the noisy speech 

which can improve speech quality as well as speech intelligibility under all types of noise 

environments and SNR conditions. In this paper we propose an algorithm which is 

cascading of IMCRA and Kalman filtering. We have tried two way cascading, i.e. 

IMCRA-Kalman and Kalman-IMCRA. In both the algorithms we have achieved better 

results than the individual IMCRA and Kalman algorithms. Figure 2 shows the block 

diagram representation of the cascading algorithms, where (a) represents first IMCRA 

followed by Kalman and (b) represents first Kalman followed by IMMCRA. 

 

 

Figure 2. Block Diagram Representation of Spectral and Time Domain 
Cascading Algorithms, (a) IMCRA-KALMA, (b) KALMAN-IMCRA 

5. Performance Evaluation 

Performance of all the algorithms is evaluated using MATLAB tool. The pure speech 

signals are taken from TIMIT database [23]. Four sentences, two from male and two from 

female speakers, as depicted in Table 1, have been used to simulate the algorithms. To 

present real time analysis, the noise signals, used in the analysis are real time noises 

recorded using a Nokia mobile phone under typical Indian noise environments as depicted 

in Table 2. The speech signal is sampled at the rate of 16 kHz which is mixed with noises 

at global SNRs of -5dB, 0dB, 5dB and 10dB. For IMCRA algorithm, the noise degraded 

speech signal is divided into overlapping samples of 32ms (512 samples) each using 

Hamming windows of 512 samples. Figure 3 (a) shows pure speech signal of sentence 

sp01, “the birch canoe slid on the smooth planks”. The speech sp01 degraded with 

multitalker babble noise ns01 at (-5) dB SNR is shown in Figure 3 (b). The speech sp01 

degraded with noise ns01 at -5dB SNR is enhanced using Kalman, IMCRA, Kalman-
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IMCRA cascaded and IMCRA-Kalman cascaded algorithms. The Kalman and IMCRA 

enhanced signals are shown in Figure 4 (a) and (b) respectively. The cascaded enhanced 

signals of Kalman-IMCRA and IMCRA-Kalman are shown in Figure 5 (a) and (b) 

respectively.  

Table 1. List of Pure Speech Sentences Used 

S. No. Speaker Sentence 

sp01 Male-X The birch canoe slid on the smooth planks 

sp02 Male-Y We find joy in the simplest things 

sp03 Female-X The friendly gang left the drug store 

sp04 Female-Y Let us all join as we sing the last chorus 

Table 2. Types of Noise Signals Used 

S. No. Type of Noise 

ns01 

 

 

Multitalker babble noise 

ns02 Railway platform train arrival 

ns03 Car inside with window closed 

ns04 Exhaust fan noise 

ns05 Street noise in running auto rickshaw 

 

The performance of the four algorithms used in this paper is measured using three 

widely used speech quality measures [24], Global SNR (SNRGlo), Segmental SNR 

(SNRSeg) and Perceptual Evaluation of Speech Quality (PESQ) which are defined by: 

                                 (17) 

                                 (18) 

                                   (19) 

Where L is the number of frames, a0 = 4.5, a1 = 0.1, and a2 = 0.0309, Dind is the average 

disturbance and Aind is the average asymmetrical disturbance [25]. For measuring the 

segmental SNR the frames with SNR values of less than -10dB and greater than 35dB are 

discarded. 
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Figure 3. Signal Representation, (a) Pure Speech Signal of Sentence sp01, 
(b) Speech, sp01, Mixed with Multitalker Babble Noise ns01at -5dB SNR 

 

Figure 4. Enhanced Signal Representation of Sentence sp01 Mixed with 
Noise ns01 at -5dB SNR (a) Kalman Enhanced Signal, (b) IMCRA Enhanced 

Signal 

 

Figure 5. Cascaded Enhanced Signal Representation of Sentence Sp01 
Mixed with Noise ns01 at -5dB SNR, (a) IMCRA-Kalman Enhanced Signal, (b) 

Kalman-IMCRA Enhanced Signal 
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6. Results and Conclusion 

Table 3 shows the average of each performance measures of four speech signals sp01 

to sp04 degraded with five different noises ns01 to ns05 at -5dB, 0dB, 5dB and 10dB 

SNRGlo values, processed using four different algorithms. The table clearly indicates that 

SNRGlo and SNRSeg parameters of the enhanced speech have been improved using 

cascaded algorithms. For low SNR conditions of -5dB and 0dB, IMCRA-Kalman 

performs better whereas for higher SNR conditions of 5dB and 10dB, Kalman-IMCRA 

performs better. PESQ is better for IMCRA-Kalman algorithm under all types of SNR 

conditions except for -5dB SNR for which it is marginally less than Kalman algorithm.  

Table 3. Average SNRGlo, SNRSeg and PESQ Measures of Four Speech 
Signals Degraded with Five Types of Noises ns01 to ns05 
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-5dB SNR 

SNRGlo -5.359 4.503 0.794 4.561 4.943 

SNRSeg -6.893 1.098 -3.374 1.180 1.280 

PESQ 1.478 2.024 1.593 1.948 1.990 

0dB SNR 

SNRGlo -0.358 6.994 5.078 7.061 7.151 

SNRSeg -4.568 2.293 -1.010 2.373 2.507 

PESQ 1.797 2.215 1.986 2.129 2.289 

5dB SNR 

SNRGlo 4.640 10.049 9.376 10.132 9.020 

SNRSeg -1.744 4.003 1.717 4.090 3.865 

PESQ 2.064 2.466 2.342 2.384 2.597 

10dB SNR 

SNRGlo 9.640 13.658 13.608 13.759 10.252 

SNRSeg 1.387 6.237 4.707 6.332 5.114 

PESQ 2.374 2.759 2.689 2.696 2.871 

 

Figure 6 shows graphical representation of average Global SNR, Segmental SNR and 

PESQ of four sentences degraded with all five types of noises processed using Kalman 

and IMCRA alone and cascaded algorithms. Figure 7 (a) represents the spectrograms of 

pure speech signal sp01 and Figure 7 (b) represents the noisy speech signal sp01 mixed 

with noise ns01 at -5dB SNR. The spectrograms of Kalman enhanced, IMCRA enhanced, 

Kalman-IMCRA cascaded enhanced and IMCRA-Kalman cascaded enhanced signals of 

speech sp01 mixed with noise ns01 at -5dB SNR are represented in Figure 8 (a) to (d) 

respectively.  

From the comparative analysis of objective parameters as given in Table 3 and the 

comparative view of spectrograms as shown in Figure 7 and 8, it is concluded that 

degraded speech enhanced using cascaded algorithms provide better speech quality and 

intelligence than individual frequency domain algorithm the IMCRA and time domain 

algorithm the Kalman filter under all types of noise environments. Out of the two 

cascaded algorithms, the IMCRA-Kalman algorithm is superior. 
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Figure 6. Graphical Representation of Comparative Performance of Different 
Algorithms, Taking Average of all the Four Sentences Mixed with all the 
Five Types of Noises Separately, (a) Global SNR (SNRGlo), (b) Segmental 

SNR (SNRSeg), (c) Perceptual Evaluation of Speech Quality (PESQ) 
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Figure 7. Spectrogram Representation of Unprocessed Speech Signal (a) 
Pure Speech Signal sp01, (b) Noisy Speech Signal sp01 Mixed with Noise 

ns01 at -5dB SNR 

 

Figure 8. Spectrogram Representation of Processed Speech Signal sp01 
Mixed with Noise ns01 at -5dB SNR (a) Kalman Enhanced, (b) IMCRA 

Enhanced, (c) Kalman-IMCRA Enhanced (d), IMCRA-Kalman Enhanced 
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