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Abstract 

Time-of-Flight (ToF) cameras have become a promising sensor in several applications 

as it can directly provide the depth measurements. However, there are two main 

drawbacks, one is the limited spatial resolution of currently available low-cost ToF 

sensors; the other is the noise and the edge distortion within the depth measurement. In 

order to address the shortcomings, a new depth map enhancement method is proposed by 

fusing a ToF sensor and a coupled 2D high resolution color sensor. In this paper, we 

incorporate the low resolution depth data with the edge and the gradient information of 

the high resolution intensity image into the improved second order total generalized 

variation (TGV) model. Also a parameter adaptive mechanism is designed for the 

regularization term. Through the optimization solution of the improved TGV model, the 

high resolution depth map is obtained while the edges and details are enhanced. To 

investigate the effectiveness of the proposed method, experiments on the public 

Middlebury datasets and the real sensor datasets are performed. Results show that the 

proposed method is effective and outperforms the compared methods. 

 

Keywords: depth map enhancement; total generalized variation; time-of-flight camera; 

super resolution 

 

1. Introduction 

Depth sensors are widely used in numerous scientific domains in recent years such as 

autonomous vehicles, human computer interaction, robotics et al [1-4]. The typical depth 

sensors include passive sensing (stereo vision) and active sensing (structured light, lidar, 

time-of-flight camera). The accuracy of the depth map affects the subsequent processing 

and affects the effects of applications especially some high-accuracy applications. Hence 

the demand for a high quality depth map is one of the active research areas in computer 

vision. 

Time-of-Flight (ToF) camera is a relatively new type of sensor, and it is a very 

promising sensor as its advantages include registered depth and intensity data at a high 

frame rate, compact design, low weight and reduced power consumption. However 

compared to other depth sensors, ToF cameras cannot be considered yet as a mature 

sensor. The disadvantages are obvious such as low resolution, motion artifacts, edge 

distortion, ambient light noise, et al., [1,5]. Despite its disadvantages, it is already 

showing great potential in many applications where fast 3D depth data is needed, such as 

pose estimation [6,7], obstacle avoidance [8,9] and others. 

To obtain the high quality depth map, some scholars have attempted to handle the 

drawbacks of the ToF cameras. However, up to now, the problem is still an open research 

area. To increase both the resolution and the quality, a new depth map enhancement 

method based on improved Total Generalized Variation (TGV) is proposed in the paper 

by using the sensor fusion. Assuming that the TOF camera and the coupled 2D monocular 
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camera are calibrated [10,11,12], we only focus on the data processing in this paper, and 

the calibration of the two sensors is beyond the scope of this article. 

In this paper, the accurate textural edge information of intensity data is incorporated 

into the high order regularization term to handle the depth distortion, which often exists in 

the object boundary of the ToF depth data. Besides, the parameters in the regularization 

term are set to the constant value in the most existing works, which is not appropriate and 

maybe lead to edge blurring and detail loss. So a parameters adaptive mechanism is 

designed in the paper. 

The main contribution of our approach is that by improving the TGV model with edge 

factor and adaptive parameters, not only the high resolution dense depth map can be 

obtained, but also the texture edge details can be well enhanced. Also, the parameters 

adaptive mechanism enhances the applicability of the approach. The experiments with 

publicly standard datasets and real images demonstrate the effectiveness of the proposed 

approach. Compared to state of the art methods, the proposed approach shows superior 

performance on the test datasets. 

The rest of the paper is organized in the following sequence. In Section 2 the related 

works in recent years are described in detail. The TGV based depth upsampling method is 

briefly explained, on which the proposed method is based. Improvement details of the 

proposed method are presented in Section 4. Experimental results are shown and 

discussed in Section 5. Finally, the work is concluded in Section 6. 

 

2. Related Works 

There are many post-processing approaches to increase the resolution and accuracy of 

the ToF camera depth measurements. In general, the existing approaches can be divided 

into two categories: (1) fusion of a ToF sensor and a color sensor; (2) fusion with multiple 

depth sensor. 

The first class of methods often fuse a ToF camera and a coupled color camera in a 

hybrid multi-modal camera rig. It is a convenient strategy to overcome the drawbacks of 

ToF camera by exploiting the advantages of each of the camera. The markov random field 

(MRF) model and simple linear iterative clustering are employed to generate high-quality 

depth map by optimizing global energy function [12]. Park et al., [13] combine the MRF 

and the nonlocal means filtering to upsample the depth maps. However, they are 

computationally intensive and thus not suitable in real-time system. Joint bilateral filter 

and its variations [14, 15] are often used to increase the spatial resolution. Garica et al., 

[14] proposed a novel unified multi-lateral filter. It can generate super resolution depth 

map and suppress the unwanted artifacts. Chan et al., [15] proposed a noise-aware filter 

for depth upsampling. It preserves the benefits of using the joint bilateral filter while 

preventing the artifacts. The advantage of these bilateral filtering methods is they can be 

performed quickly, however they can often smooth fine details and cause edge blurring. 

Different from the aforementioned methods, Ferstl et al., [16] formulated the depth image 

upsampling to a convex optimization by using the total generalized variation, but the edge 

inaccurate problem still exists. 

The second class of methods often fuse multiple depth measurements in temporal 

domain into one depth map or fuse the ToF depth measurement with other depth sensor. 

Lee [17] proposed a novel temporal interpolative filtering method for ToF depth video. 

This method is not suitable for dynamic scenes. Stereo is often employed [18,19] to fuse 

with the ToF sensor. Liu et al., [18] proposed a k-nearest neighborhood based integration 

method. Work by [19] proposed a reliable method by incorporating texture information, 

segmentation into a novel pseudo-two-layer model to improve the depth estimation. Work 

by [20] proposed a probabilistic method for fusing ToF data and stereo data based on 

mixed pixels measurement models. By using the complementary characteristics, these 

method show better results than the depth map by using the single sensor. However, the 
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passive stereo often fails within poorly textured regions, and these approaches are highly 

sensitive to the calibration effort. 

 

3. TGV based Depth Upsampling Method [16] 

This section briefly reviews the TGV based depth upsampling method in [16]. By 

using the combination of the low resolution ToF depth map LD
 and the high resolution 

intensity image HC
, the high resolution dense depth map HD

 is generated in a 

variational optimization framework by equation (1).  

 2argmin ( , ) ( )H S
u

D G u D TGV u 
                                          (1) 

Where 
( , )SG u D

 is the data term; 
2( )TGV u  is the second order TGV regularization 

term.  

The data term is defined as equation (2). 

 
2

( , )
H

S SG u D w u D dx


 
                               (2) 

Where 
2

H R 
, u  is the reconstructed depth map in the iterative computational 

procedure. SD
 is the high-resolution sparse depth image, which is mapped by the low-

resolution depth image LD
 according to the intrinsic and extrinsic parameters of the color 

sensor and the depth sensor. The value of the weighting factor w  is set to 
 0,1

,  which is 

zero at upmapped pixel points and between zero and one on the mapped pixel points. 

The second order TGV regularization term is defined as equation (3). The anisotropic 

diffusion tensor 

1

2T  is calculated by the equation (4) 

   
1

2 2
1 0( ) min

H H

TGV u T u v dx v dx
v

  
 

  
     

  
 

                          (3) 
1

2 exp( )
TT

HT C nn n n


     
                                                                     (4) 

Where 1  and 0  are the weighting factors.  n  is the normalized direction of the 

intensity image gradient, n

 is the normal vector of the gradient.   and   are set to 0.9 

and 0.85, which are the adjust factors to balance the magnitude and the sharpness of the 

tensor.  

The method is effective. However, it still has a few problems. The edge inaccurate 

problem still exists. The effect depends greatly on the weighting factors 1  and 0 , and 

the two values are constant for each pixel and adjusted by hand for the different input 

images. 

 

4. Proposed Method 

Motivated by the work [16], the proposed method designed an improved TGV model 

to generate the high resolution dense depth map HD
 by fusing the low-resolution depth 

image LD
 with the high-resolution intensity image HC

。A diagram of the proposed 

method is presented in Figure 1. 
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Figure 1. The Diagram of the Proposed Method 

4.1. Improved TGV Model 

In this paper, we design an improved TGV model. The improvements are reflected in 

two aspects. Firstly, an edge factor is introduced into the second order TGV regularization 

term. The edge factor is computed by the edge detection algorithm and given in Section 

4.1.1. Secondly, the parameters adaptive mechanism about the regularization term is 

designed, which establishes the weighting factors 1  and 0  adaptively and updates 

them in the iteration procedure. The details are given in Section 4.1.2. 

The improved TGV model is composed of the data term and the regularization term. 

The data term forces the result to be consistency to the input depth measurements. The 

data term 
( , )SG u D

 is defined in the equation (2). To obtain a high-resolution depth 

image by the low-resolution depth image is an ill-posed problem, the data term can 

constrain the deviation between the input depth image and the reconstructed depth image, 

but it cannot get the optimal solution. In order to get the high resolution dense depth map, 

the regularization term 
2( )TGV u is defined by the internal relations between the intensity 

image and depth image of the same scene. The second order regularization term is 

sufficient for depth data regularization since most objects can be well approximated by 

piecewise affine surfaces. So the new regularization term 
2( )TGV u  is defined as the 

equation (5). 

         
1

2 2
1 0( ) min

H H

TGV u x g x T u v dx x v dx
v

  
 

  
     

  
 

           (5) 

Where 
 1 x

and 
 0 x

 are the adaptive parameters. 
 g x

 is the edge factor. The 

symbol x  represents each pixel point. The details are given in the following parts of this 

section. 

 

4.1.1. Edge Factor 

Assuming that the edges in the intensity image usually correspond to the 

discontinuities of the depth map, the edge factor 
( )g x

 is computed by the intensity image 

and it is introduced to the regularization term to handle the depth distortion.  

Firstly, we compute the edge of the high-resolution intensity image HC
 by using the 

multi-scale wavelet edge detection algorithm [21]. The three-order B-spline wavelet is 

adopted in this paper. 

We represent the high-resolution intensity image HC
 as 

( , )f i j
. i  and 

j
are the pixel 

coordinates in horizontal and vertical directions. 
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By using 2-D smoothing function 
 ,i j

 to filter the image in different scales and 

calculate the first derivative, the wavelet transform has two components in the horizontal 

and vertical directions for any 2-D function 
( , )f i j

. 

 
 

   

   

1

2
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,
, ,
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f i j i j
WT f i j i

s
WT f i j

f i j i j
j





 
     

  
                                                                            (6) 

In equation (6), s  is the scale. 
 1 ,sWT f i j

 and  
 2 ,sWT f i j

 respectively reflect the 

gradients in horizontal and vertical directions. 

So the magnitude and the phase are given for each scale by the equation (7) and the 

equation (8). 

     
2 2

1 2, , ,s s sM f i j WT f i j WT f i j 
                                                                    (7) 

 
 
 

2

1

,
, arctan

,

s

s

s

WT f i j
A f i j

WT f i j

 
  

                                                                                     (8) 

We detect the local maximum value points of the magnitude of the wavelet along the 

gradient direction and the edge points of the image are obtained by adaptive threshold 

[21]. 

Secondly, we define the corresponding magnitude image as the equation (9). And we 

define the edge factor 
( )g x

 as the equation (10). 

   
   , int

,
0

sM f i j x edge po
m x m i j

others

 
  

                                                       (9) 

 
 

1

1
g x

m x


 
                                                                                                (10) 

Where the compensation factor   is designed and its value is set to 20 as an empirical 

value. 

The value of 
 m x

 at the edge is larger than its corresponding value at the flat area. 

With the aid of the  g x
, the diffusion of the tensor can be suppressed effectively when 

the value of 
 g x

 is small at the edge. Then the details of the reconstructed depth map is 

better maintained, especially edges. By using the high resolution intensity data, we 

incorporate the gradient and edge information into the second order regularization term. 

The edge of the reconstructed high resolution dense depth map can be obtained 

accurately. 

 

4.1.2. Adaptive Parameters 

The weighting factors 1  and 0  are critical for the regularization term of the model. 

It is not appropriate by setting a constant for all the pixels. In order to improve the effect 

of the L1 minimization, a theoretical proof is presented for reweighting the factors in [22]. 

Based on the idea, we design a new parameters adaptive mechanism for the improved 

TGV model, where the weights are computed for each pixel and updated in each iteration. 

We compute the weighting factors as the equation (11). 
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Where k  is the iteration number.   is set to 0.1 in order to provide stability and the 

solution of the L1 minimization problem [22] is proved to be reasonably robust to the 

choice of  . 

 

4.2. Optimization Solution 

According to the above equations (1),(2),(5),(10),(11), the objective function of the 

proposed method is defined as the equation (12) by the combination of the data term and 

the regularization term. 

 
1

2
2

1 0
,

min ( )
H H H

S
u v

g T u v dx v dx w u D dx 
  

  
      

  
  

                       (12) 

The primal-dual energy minimization scheme [23] is adopted to solve the optimization 

problem. By using the Legendre-Fenchel transform, the equation (12) can be reformed as 

the equation (13). 

   
2 ,

1
2

2
1 0 , ,

,,
,

min max , ,
MN MN i j

H

i j i j S
p P q Qu R v R

i j

g T u v p v q w u D 
  



  
      

  


    (13) 

Where p  and q  are the dual variables, and they are defined as the equation (14) and 

(15). 

 2

,: 1, ,H i j HP p R p i j     
                                                                  (14) 

 4

,: 1, ,H i j HQ q R q i j     
                                                                  (15) 

The primal and dual variables are iteratively optimized for the individual pixels. For 

each iteration, the weighting factors  1 x
 and  0 x

 are updated by the equation (11). 

Then the variables are calculated by the equation (16). 
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Where 

   , ,

, ,

, ,

,
max(1, ) max(1, )

i j i j

p i j q i j

i j i j

p q
proj p proj q

p q
 

. 
, , ,p q u v   

 are 

set to the default values in [23].   is updated in every iteration and computed as given in 

[23] in order to achieve a fast convergence. 
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4.3. The Step of the Proposed Method 

The initial iteration values are set as 
0 0 0 00, , , , 0Sk u D v p q  

. The termination 

criterion for iteration is that the number of iteration is over the given maximum number or 

the difference of the variable u  in adjacent iteration is less than the given threshold tol . 

In this paper, the maximum iteration number is set to 1000 and the threshold tol  is set to 

0.1. When the iteration is terminated, the final high resolution dense depth map HD
 is 

obtained. 

The main steps of the proposed method are presented in Table 1. 

Table 1. The Main Steps of the Proposed Algorithm 

Steps Algorithm implementation 

Step 1 Input: 

High resolution intensity image HC
  and low resolution depth map LD

 . 

Step 2 
Mapping LD

 to high resolution sparse depth image SD
 based on the result of 

the camera calibration process. 

Step 3 Parameters Initialization: 
0 0 0 00, , , , 0Sk u D v p q    

Computing the anisotropic diffusion tensor 

1

2T  by the equation (4). 

Computing the edge factor 
( )g x

 by the equation (10). 

Computer the weighting factors 

1 1

1 0, 
 by the equation (11). 

Step 4 Define the objective function as the equation (12). 

While (1) 

    Compute and Update the variables by the equation (16); 

    If 

1k ku u tol  
 or k  reach to the maximum limit, break; 

    Else 1k k  . 

    Computer the weighting factors 1 0,k k 
by the equation (11); 

end 

Step 5 Output: 

the result HD . 

 

5. Experimental Results and Analysis 
 

5.1. Setup 

In order to test the proposed method, we have performed several quantitative and 

qualitative evaluations in this section. The public Middlebury datasets [24], which include 

the test images and the truth values, is adopted and the results are given in Section 5.2. 

Another test datasets of the real scene, which is provided in [25], is also adopted and the 

results are given in Section 5.3. 

We have compared the state-of-the-art methods with the proposed method on the test 

datasets, including Bilinear interpolation algorithm, Ferstl’s algorithm[16], Yang’s 

algorithm[25], Park’s algorithm[13]. These methods are implemented with the author’s 

original codes, and these parameters are set to the default values. 

The performance evaluation RMSE (Root Mean Square Error) is computed as in 

equation (17). The smaller the RMSE value, the better the effect of the reconstructed 

depth map. 
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2

1

1
( )

M N

i ii
RMSE x y

M N




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


                                                                                (17) 

Where M N represents the number of pixels in rows and columns, ix
is the pixel 

value of the result of the specific depth map enhancement method, iy
 is the corresponding 

true value. 

 

5.2. Evaluation on the Middlebury Stereo Datasets 

We choose the Middlebury Stereo Datasets to test the effectiveness of the method. 

Since the truth values are available, the quantitative and qualitative experiments are 

conducted. 

The resolution of the original high-resolution color image and the depth map is 

1390 1110. The low resolution depth map is generated by downsampling the original 

depth map. The downsampling factors is set to 2, 4, 6, 8 separately. The resolution of the 

results is the same as the resolution of the original color image. 

Two examples about the visual comparison for these methods are given in Figure 2 and 

Figure 3. The Moebius dataset is tested and results are presented in Figure 2. Figure 2(a) 

is the high resolution image, and Figure 2(b) is the low resolution depth map, the 

downsampling factor is 8. It is enlarged to facilitate the observation. Figure 2(c), 2(d), 

2(e), 2(f), 2(g) are successively the results and the local enlarged images of the Bilinear 

interpolation algorithm, Yang’s algorithm, Park’s algorithm, Ferstl’s algorithm, and our 

method. The local images are labeled with white rectangle in the corresponding source 

images. 

Also, the books dataset is tested and results are presented in Figure 3. Figure 3(a) is the 

high resolution image, and Figure 3(b) is the low resolution depth map, the downsampling 

factor is 8. It is enlarged to facilitate the observation. Figure 2(c), 2(d), 2(e), 2(f), 2(g) are 

successively the results and the local enlarged images of the Bilinear interpolation 

algorithm, Yang’s algorithm, Park’s algorithm, Ferstl’s algorithm, and our method. The 

local images are labeled with white rectangle in the corresponding source images. 

 

  
(a) High-resolution image                           (b) Low-resolution depth image 

  
(c) bilinear interpolation algorithm 
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(d) Yang’s algorithm[25] 

  
(e)  Park’s algorithm[13] 

  
(f) Ferstl’s algorithm[16] 

  
(g) our method 

Figure 2. Visual Comparison of the Moebius Example in Middlebury 
Datasets 

  
(a) High-resolution image                             (b) Low-resolution depth image 
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(c) bilinear interpolation algorithm 

  
(d) Yang’s algorithm[25] 

  
(e)  Park’s algorithm[13] 

  
(f) Ferstl’s algorithm[16] 

  
(g) our method 

Figure 3. Visual Comparison of the Books Example in Middlebury Datasets 
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It is need to address that the high resolution image in the datasets is color image, so it is 

converted to the corresponding intensity image for evaluation. In Figure 2 and Figure 3 

we present the color image for display. 

As can be seen from the Figure 2, bilinear interpolation algorithm is less effective than 

the others, the results of Yang’s algorithm and Park’s algorithm are slightly blurred. 

Ferstl’s algorithm can effectively suppress noise, but our method can not only suppress 

noise, but also highlight the edges, such as the contour of the objects is more clarity and 

accurate. 

As can be seen from the Figure 3, the effect of the bilinear interpolation algorithm is 

the worst, the results of Yang’s algorithm and Park’s algorithm are slightly blurred. 

Ferstl’s algorithm and our method can get better results, and more edges are preserved by 

our method, which can be seen in the edges of a stack of books. 

The RMSE values with different downsampling factors (2, 4, 8, 16) are 

computed. The quantitative results are shown in Table 2. The RMSE values about Yang’s 

algorithm, Park’s algorithm are computed and given by [16]. 

Table 2. Comparison of the RMSE 

Method 
Moebius Books 

x2 x4 x8 x16 x2 x4 x8 x16 

Bilinear 4.20 4.56 4.87 5.43 3.95 4.31 4.71 5.38 

Yang’s algorithm[25] 1.92 2.42 2.98 4.40 1.87 2.38 2.88 4.27 

Park’s algorithm[13] 1.96 2.51 3.22 4.48 1.95 2.61 3.31 4.85 

Ferstl’s algorithm[16] 1.47 2.03 2.58 3.50 1.52 2.21 2.47 3.54 

Our method 1.42 1.97 2.49 3.38 1.43 2.05 2.34 3.26 

 

From the quantitative evaluation in Table 2, we can see that the RMSE value obtained 

by the proposed method is smaller than the other methods. It shows that the proposed 

method is more effective and it is consistent with the visual effect in Figure 2 and Figure 

3. Also, it can be seen that the larger the downsampling factor, the larger the RMSE 

value. The phenomenon is consistent for each methods and it is easy to understand. 

Besides, the results of [16] and our result are superior to the others. It is need to addressed 

that the effect is depended on the parameters of 1  and 0  , which are fixed by hand in 

[16] and which are adaptive in our method.  

 

5.3. Evaluation on the Datasets [25] 

Another datasets are given in [25] and the images are captured by a color sensor and 

coupled ToF depth sensor. The FLEA digital color camera is used and its resolution is 

640 640. The Canesta EP DevKit depth sensor is used to get the depth image and its 

resolution is 64 64. The resolution of the results is 640 640. 

 

  
(a) High-resolution image              (b) Low-resolution depth image 
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(c) bilinear interpolation algorithm     (d) Ferstl’s algorithm[16]        (e)  our method 

Figure 4. Visual Comparison of the Umbrella Example 

  
(a) High-resolution image             (b) Low-resolution depth image 

   
(c) bilinear interpolation algorithm       (d) Ferstl’s algorithm[16]                  (e)  our method 

Figure 5. Visual Comparison of the Chair Example 

We only present the visual comparison results because there is no truth value about the 

datasets. Two examples about Umbrella and Chair are presented in Figure 4 and Figure 5. 

Figure 4(a) is the high resolution image, and Figure 4(b) is the depth image, Figure 4(c), 

4(d), 4(e) are successively the results of the Bilinear interpolation algorithm, Ferstl’s 

algorithm, and our method. Also, Figure 5(a) is the high resolution image, and Figure 5(b) 

is the depth image, Figure 5(c), 5(d), 5(e) are successively the results of the Bilinear 

interpolation algorithm, Ferstl’s algorithm, and our method. 

As it can be seen from Figure 4, the effect of the bilinear interpolation algorithm is the 

worst. The edge is inaccurate. The proposed method can obtain the high resolution depth 

image with accurate edges, as the edges of the umbrella in Figure 4(e) is more clear and 

smooth than the others. 

The lack of the depth value is usually caused by the depth sensor. From the figure 5, 

we can see that the proposed method can cope with the holes in depth map and the 

consistency of depth value is better than the others. 

 

5.4. Discussion 

The experiments based on the two public datasets are conducted and the results are 

presented in Section 5.2 and 5.3. From the experiments, we can see that the proposed 

method can obtain a high resolution dense depth map with high quality. It can cope with 
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the common problems about low resolution, depth distortion, holes, and inaccurate edge. 

The reason is that the proposed method is designed and realized by incorporating the edge 

and gradient information of the high resolution intensity image into the Total Generalized 

Variation framework, and the weighting factors of the regularization term are adaptive for 

each pixel.  

In this paper, the B-spline wavelet edge detection algorithm is adopted to realize the 

process of edge detection. Obviously, other state-of-the-art edge detection algorithm is 

easy to incorporate into the proposed method by replacing the edge factor 
( )g x

. Besides, 

any type of the 2D high resolution mono/color image sensor with arbitrary resolution is 

applicable to the methods. The resolution of the depth map result depends on the 

resolution of the 2D image sensor. Another advantage of the method is the adaptive 

parameters of the regularization term, which can avoid adjusting the parameters manually 

and enhance the applicability in real scenes. 

However, the computational complexity is higher than the others. The mainly time-

consuming process is the optimization solution by iterations. It should be accelerated for 

real-time applications in the further study. 

 

6. Conclusions 

In the paper we propose a new depth map enhancement by fusing a ToF sensor and a 

coupled 2D high resolution color sensor. An improved total generalized variation model is 

presented to address the shortcomings of the ToF sensor such low resolution, noise, depth 

distortion. By using the accurate edge and gradient information of the high resolution 

intensity image and modifying the weighting factors adaptively, a high resolution and 

high quality depth map is obtained. We further provide the experimental results on the 

public datasets. The results show that the proposed method is effective and obtain better 

performance than the compared methods. As a future perspective, some accelerated 

strategies will be concerned for the real-time applications. 
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