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Abstract 

In this paper, we propose a novel fingerprint learning algorithm for radiometric 
identification. There are many methods for fingerprint feature extraction which are based 

on the estimation of parameters of some post-modulator electronics, such as mixers, 

filters or amplifiers. However, the minute differences of different radio emitters are 
resulted from synthesis of many post-modulator electronics. The radio fingerprint features 

extracted with the proposed algorithm are discriminative representation of all the factors 

which contribute to the minuteness differences between different emitters. The proposed 
algorithm is based on characterizing the intraclass compactness and the interclass 

separability by preserving both local manifold structure and the global discriminant 

information of signal data set. The interclass separability is modeled by a penalty graph 
characterizing the distances between all interclass samples, where the intraclass 

compactness is modeled by an intrinsic graph characterizing the relationships of all 

intraclass samples. Since both class label information and graph embedding structure are 
considered, the proposed algorithm can obtain better performance in radiometric 

identification applications. Experiments on real data sets show the effectiveness of the 

proposed algorithm for tasks of radio emitter identification. The results indicate that the 
proposed algorithm can discriminate the emitters of inter-manufacturer with an 

identification accuracy of 96%, and can discriminate the emitters of intra-manufacturer 

with the best classification accuracy over 99% and the worst classification accuracy of 
78%. 

 

Keywords: Radio Emitter Identification, Fingerprint Learning, Marginal Fisher 
Analysis 

 

1. Introduction 

The security of wireless communication system has been widely studied in recent 

years. Since the intruder may duplicate the secure tokens or passwords, the inherent 
physical layer characteristics of the radio emitters have been exploited to improve the 

security mechanism [1-2]. There are minute differences between different radio emitters 

because of imperfect manufacturing processes. Therefore, it is possible to identify 
different radio emitters by extracting a unique radio fingerprint from the received signals. 

Radiometric identification technique has been reported to extract the radio frequency (RF) 
fingerprint features from signals. The extracted RF fingerprint features can be used to 

support the applications of wireless communication security, intrusion detection and 

authentication [3-4].  
The signals emitted from radio emitters not only include the modulated signal section 

but also include the unintended modulation section which results from many idiosyncratic 
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hardware properties. The modulated signal section is the period of data transmission such 

as preamble and payload, while the unintended modulation section is not related to data 
transmission. In most cases, unintentional emissions can be observed in the duration of 

transient signal because the power level usually increases gradually during the period of 

emitter power-on. The amplitude and phase profiles of transient signal are different 
between different radio emitters because of the idiosyncratic characteristics of power 

amplifiers, filters and frequency synthesizers. It has been shown that the RF fingerprint 

features extracted from transient signals for radiometric identification can obtain good 
classification performance [5-6]. The accuracy of the detection and separation of the turn-

on transients is crucial to the overall identification performance. The Bayesian ramp 
detector, variance trajectory detector and correlation detector have been reported for the 

detection of the start instants of transients [7-9]. The RF fingerprint features are generated 

from instantaneous amplitude, phase, and frequency responses of transient signal [10]. 
Extraction of the features can be conducted in time domain, spectral domain, and 

transform domain [11]. However, the discriminatory performance of transient analysis is 

not always good when the emitters are the same model [12-13]. The underlying reason is 
that the detection of the exact turn-on time instant of transient is difficult because of the 

unstable profiles of transient [9]. Another reason which makes transient analysis 

impractical may be that it requires high-end receiver to offer high oversampling rate [14]. 
The work presented by Danev and Capkun has shown that low equal error rates (EER) 

can be achieved with a high-end receiver [15].  

The steady-state signal is defined as the signal section truncated from the end of the 
transient signal forwards for duration of several symbols. The methods that extract RF 

fingerprint features from steady-state signal are also called as modulation-based 

approaches [16-17]. In contrast with the case of transient analyses, the modulation-based 
approaches just require low-end receiver. Recently, Brik et al. have developed a method 

called Passive Radiometric Device Identification System (PARADIS) to extract the RF 

fingerprints from steady-state signal [18]. The PARADIS method extracts six fingerprint 
features from IEEE 802.11 frames to discriminate 138 emitters with a high accuracy. 

However, the signals are collected with a vector signal analyzer at distances of 15 meters 

from the antenna in their experiments. In another recent study, Scanlon et al. have applied 
the spectral averaging technique and feature subset selection technique to achieve the 

identification accuracy of 99.8% [16]. However, the method in [16] is evaluated under the 

condition that the transmitters and the receivers are located in an anechoic chamber. In 
fact, the receiver is usually as far as several kilometers to the transmitter in practice. In 

steady-state analyses, the RF fingerprint features are usually extracted from preamble 

section used for synchronization and Doppler offset removal in communication system.  
In contrast with the work of transient analysis and modulation-based approaches, Polak 

et al. have exploited the nonlinearities of power amplifier (PA) and digital-to-analog 

converter (DAC) to uniquely identify wireless emitters [21]. The nonlinearity of PA is 
represented with volterra series and the integral nonlinearity (INL) of the DAC is modeled 

with a Brownian Bridge random process.  

In most of the cases, it is necessary to reduce the amount of features. Dimensionality 
reduction technique is used to find the discriminant subspace by selecting the relevant 

information and reducing the redundant information. The extracted RF fingerprint 

features with many elements can be compressed to a low dimension vector containing the 
discriminant information. Recently, Padilla et al. have presented an identification method 

based on RF fingerprint feature reduction [22]. Their experimentations on Wi-Fi signals 

show the effectiveness of the identification algorithm using the reduction technique of 
Partial Least Squares regression (PLS). Principal Component Analysis (PCA) is another 

technique used to reduce the dimensionality of RF fingerprint features [23]. Besides, 

Linear Discriminant Analysis (LDA) can preserve discriminative information between 
different data sets, and Marginal Fisher Analysis (MFA) can discriminate different classes 
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by using the local manifold structure [24-25]. However, MFA improves the classification 

performance little because it doesn‟t consider the distances between the points which are 
not in a neighborhood. 

Unlike the previous state-of-art techniques, the RF fingerprint features extracted in this 

paper aren‟t based on the estimation of physical parameters. Published works usually 
concern on the features derived from some of post-modulator electronics (mixers, filters 

or amplifiers), while the minute differences of different radio emitters are resulted from 

synthesis of many post-modulator electronics. Inspired by this, we propose a radiometric 
identification technique extracting all discriminative features from regions of interest 

(ROI) signals. The proposed radiometric identification algorithm based on Global Graph 
Fisher Analysis (GGFA) considers the intraclass compactness and the interclass 

separability, simultaneously. The former is modeled by an intrinsic graph characterizing 

the relationships of all intraclass samples, while the latter is modeled by a penalty graph 
characterizing the distances between all inter-class samples. Since both class label 

information and graph embedding structure are considered, GGFA can obtain better 

performance in radiometric identification applications.  
The rest of this paper is organized as follows: Section II provides a background of 

radio fingerprint identification; Section III presents the proposed algorithm; Section IV 

analyzes the classification results; and Section V concludes the paper. 
 

2. Radio Fingerprint Identification 

Usually, wireless communication security systems use the radiometric identification 

technique to solve a close-set identification problem. A training procedure is conducted 

by the security system to collect signals and extract RF features from the legitimate 
emitters. Then, the RF features from an unknown emitter is extracted and compared with 

the stored features of legitimate emitters in the stage of testing. There are various 

algorithms used to classify the label of the unknown emitter. In the application of 
intrusion detection, the unknown emitter may be illegal and then it is an open-set 

identification problem. Radiometric identification consists of the steps of signal 

collection, data preprocessing, feature extraction and classification. The procedure of 
radiometric identification is shown in Figure 1. 

 

 

Figure 1. Procedure of Radiometric Identification 

 

2.1. Signal Collection & Detection 

Firstly, the signals are collected with a signal collection system. The RF range of this 

system is 20.0MHz to 6000.0MHz. The interest signal band is down-converted and 

digitized with a 12-bit analog-to-digital converter. The data should be preprocessed by 
Hilbert transform to obtain the complex-valued data format. During the period of data 

preprocessing, the exact turn-on time instant of radio emitter can be detected with 

Bayesian ramp detector or variance trajectory detector [7-8]. The transient section and 
steady-state signal section can be truncated as ROI signals.  
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2.2. Feature Extraction 

After the steps of signal collection and data preprocessing, RF fingerprint features can 
be extracted from ROI signals. Figure 2 shows the normalized amplitude of two bursts 

extracted from an emitter. There are lists of RF fingerprint features in the literatures. 

PCA, LDA and PLS can be used to reduce the dimensionality of the extracted RF 
fingerprint features [22-23]. In contrast with the published works, the low-dimensional RF 

fingerprint features are learned directly in this paper. A feature extractor which can 

directly extract effective and discriminative features from signal data is trained in the 
stage of training. In the stage of testing, the trained extractor is used to extract the RF 

fingerprint features from signals of an unknown emitter.  
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Figure 2. Normalized Amplitude Extracted from an Emitter (Two Burst Data) 

 

2.3. Classification 

There are many classifiers used to compare the stored features of training set and the 

features of an unknown emitter in the open literature. The performance of the classifier is 

usually depended on the features and the applications. It can be a simply measure of the 
Euclidean distance between the features or a complex machine learning algorithm. In 

[20], it compares the impact of k-nearest neighbours (KNN) and support vector machine 

(SVM) on the classification of different Wi-Fi devices. The results of experimentations 
show that it can achieve lower identification error rate by using SVM classifier. Besides, 

in [8] and [21], probabilistic neural networks (PNN) and generalized likelihood ratio test 

(GLRT) are also used to obtain good performance for radiometric identification, 
respectively. 

 

3. Proposed Method 
 

3.1. Problem Statement 

In this paper, the transient section and preamble section are truncated as ROI signals. 

The RF fingerprint features are extracted from the ROI signals because they theoretically 

should be the same for all emitters. Practically, there are minute differences in the 
transient section and preamble section because of imperfect manufacturing processes and 

tolerances design of analog components. Usually, the ROI signal is a vector with a high 

dimensionality. It should be compressed to a low dimensional vector, which can represent 
the discriminant information effectively. 

Assume we have a training data set 
 1, , CX X X

, 
   , , 1i i1 inx x i C  X

, C  is 

the number of emitter class and n  is the number of training samples from each class, ijx
 

is the 
thj

 training sample from class i , 
 1 ,1M

ijx i C j n    
. Given a testing 
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sample from an unknown emitter, we predict the class label of the emitter by comparing 

its features with the features of training data. The classifier used in this paper is the SVM 
classifier. Similar to dimensionality reduction, the training samples should be projected to 

a low-dimensional space to extract the discriminative features: 
Ty x W                                                                  (1) 

where the superscript T  denotes the transpose. x  is a training sample and y  is its 

feature vector. The dimension of x  is M , while the dimension of y  is m , m M . The 

feature extractor W  should be trained during the training period with known training 

samples and associating class labels. There are many published works solving the 
supervised learning problem similar to (1) in feature selection and feature reduction. 

 

3.2. Previous Works 

In the graph embedding framework, a graph 
 ,G  X S

 is constructed to represent the 

relationships of data in X  [25]. Each data is mapped to a vertex in the graph. The 

relationships of all data pairs are characterized by a similarity matrix S . The geometry 

structure of the data set in high-dimensional space should be preserved in a low-

dimensional space by the projection matrix W . The optimization problem for the 

projection matrix W  is [24-25]: 

 

2
* = argmin

T T
a

T T

i j ij

i j

x - x S
 


Tr W XDX W I

W W W

                                    (2) 

After some algebraic formulations, it can be written as: 

 
  * = argmin

T T
a

T
T T

Tr W XDX W I

W Tr W XL W X

                                    (3) 

L = D-S                                                              (4) 

where aI  is a unit matrix, S  is the similarity matrix with elements of ijS
, D  is a 

diagonal matrix with 1

n

ii ij

j

D S



, and L  is the corresponding Laplacian matrix. 

The LDA algorithm and MFA algorithm can be reformulated in this framework with 

different graphs and embedding types [25]. 

A. LDA 

LDA tries to find those vectors that discriminate different classes by preserving the 

global geometric structure. The intraclass scatter matrix wS
 is minimized and the 

interclass scatter matrix bS
 is maximized at the same time. The matrix wS

 and bS
 are 

given as [25]: 
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where C  is the number of class, ijx
 is the 

thj
 training sample in class i , 0  is the total 

mean of all samples, 0i  is the mean of samples in class i . There are 1

C

i

i

m



 zeros in ie

 

and 
  1i j e

 if 
j i

, im
 is the number of samples in class i . 
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The goal is to maximize the ratio: 

W
arg min

T

w

LDA T

b

Tr S

Tr S

  


  

W W
W

W W
                                                     (7) 

The data should be of a Gaussian distribution in LDA. However, it is often not satisfied 
in real-world problems. 

B. MFA 

Based on the graph embedding framework, MFA applies a penalty graph to model the 
interclass separability and an intrinsic graph to model the intraclass compactness [24]. 

The intraclass scatter matrix w MFAS  and the interclass scatter matrix b MFAS  are given as 
[24]: 
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       2 21, , ,

0,

k i k jP

ij

if i j P or i j P
S

else

   
 
                                  (11) 

where 
 1kN i

 is a set of the k1 nearest neighbors of ix
, which are from the same class, 

 2k iP 
 denotes a set of k2 nearest data pairs 

 i jx ,x
, which are from different classes, i  

is the label of ix
. 

I
S  and 

P
S  are similarity matrix with elements of 

I

ijS
 and

P

ijS
 

respectively, 
I

D  and 
P

D  are corresponding diagonal matrix. The optimal projection 

matrix MFAW
 can be computed as: 

 

 W
arg min

T I I T

MFA T P P T

Tr

Tr

 
 


 
 

W X D - S X W
W

W X D - S X W
                                        (12) 

 

3.3. Proposed GGFA 

The penalty graph constructed in MFA only punishes the connections between 
marginal points which are k nearest interclass pairs. However, it ignores the relationships 

of other vertex pairs even if they are from different classes. So the penalty graph in MFA 

can‟t ensure the separability of interclass vertex pairs which are not in a neighborhood. 
This will lead to a poor generalization performance in classification tasks. Meanwhile, the 

intrinsic graph in MFA also only concentrates on the connections of intraclass vertex pairs 

which are in a neighborhood. However, there is a lack of the information of other 
intraclass vertex pairs if they are not in a neighborhood. This also may deteriorate the 

performance of MFA.  

Motivated by the graph embedding framework, we propose a supervised feature 
learning algorithm based on preserving the local manifold structure and the global 

information. The proposed algorithm constructs a new penalty graph characterizing the 

distances between all interclass vertex pairs, and constructs a new intrinsic graph 
characterizing the relationships of all intraclass vertex pairs. 
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The original data samples can be mapped to a low-dimensional space by the projection 

matrix as in (1). The embedding of vertex ijx
 is the lower dimension vector ijy

, 

 1 ,1m

ijy i C j n    
, m M .The feature set is 

 1, , CY Y Y
, where 

 , ,i i1 iny yY
. For each data sample ix , we find its nearest neighbors and let 

 iN x
 be 

the set of its nearest neighbors. There are two subsets in
 iN x

, 
 b iN x

 and 
 w iN x

. Let 

 l x
 be the class label of x . Specifically, 

        b i j j i j iN x x l x l x ,x N x  
                                      (13) 

        w i j i j j iN x = x l x = l x ,x N x
                                      (14) 

We construct two graphs: intrinsic graph 
 , SI IG  X

 and penalty graph
 , SP PG  X

. 

X  is the training data set for both graphs. SI  and SP  are similarity matrixes of the 

intrinsic graph and the penalty graph, respectively. The elements of similarity matrix are 
distance measurements of vertex pairs in graphs.  

For the penalty graph, we explore a new similarity matrix to characterize the interclass 

separability. Let interN  be the set of interclass vertex pairs. According to the distances 

between the vertexes, it consists of two subsets, inter nN   and inter fN  . The interclass vertex 

pairs in set inter nN   are marginal points. 
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The optimal projection W  should be computed as  

 

2

P,

1 1 1 1
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arg max
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P P P L D S
                                                              (18) 

,P P ij

j

SD

                                                        (19) 

where PL
 is the Laplacian matrix of PG

, and PD
 is the corresponding diagonal matrix. 

Defining: 

   

   
P,

exp ( ) ,

exp ( ) ,

i j i j inter n

ij

i j i j inter f

x ,x x ,x N
S

x ,x x ,x N





  
 



Dis

Dis
                                     (20) 

2

( )i j i jx ,x x - xDis
                                                  (21) 

Since
Ty x w

, according to (17) and (20), the interclass marginal vertex pairs, i.e. 

 ,i j inter nN x x
,  should be mapped far apart. It means the closer these original marginal 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 10, No. 4 (2017) 

 

 

70  Copyright © 2017 SERSC 

samples are, the farer the mapped points are. Meanwhile, the interclass vertex pairs in set 

inter fN   should also be mapped far apart. This is an important characteristic of the penalty 
graph, and it is different from that in MFA. It can be seen from (20) that the punishments 

in GGFA include both the relationships of marginal points in inter nN   and the interclass 

vertex pairs in inter fN  .  

Similarly, for the intrinsic graph, the optimal projection W  should be computed as: 

 

2

I,

1 1 1

arg min

arg min

C n n
T T

pi pj ij

p i j
j i

T T T T

I I

x x S
  



 

 


W

W

W W W

W XD X W W XS X W
                                    (22) 

,I I ij

j

D S

                                                             (23) 

We put a constraint on the mapped points to avoid a degraded solution: 

1T

Iy y D                                                                 (24) 
So (22) is equivalent to maximize the following function: 

 arg max

. .

T T

I

T T

Is t





W
W W XS X W

W XD X W I                                              (25) 
We define: 

   

   
I,

exp 1 ( ) ,

exp ( ) ,

i j i j intra n

ij

i j i j intra f

x ,x x ,x N

x ,x x ,x N





  
 

 

Dis
S

Dis
                                     (26) 

where 
( )i jx ,xDis

 is defined as in (21). Let intraN
 be the set of intraclass vertex pairs. 

This set can be divided into two subsets, intra nN   and intra fN  . 

 
 
 

i w j

intra n i j

j w i

x N x
N x ,x

or x N x


  
  

                                                  (27) 

 

   

 
 

j i

intra f i j i w j

j w i

l x l x

N x ,x and x N x

and x N x



 
 
 

  
 

                                                  (28) 

It can be seen from (26) that we model the intraclass compactness with a new intrinsic 
graph which is different from that in MFA. In the proposed GGFA, the original intraclass 

vertex pairs in set intra nN   should be mapped close, and the intraclass vertex pairs in set 

intra fN   also should be mapped close.  

GGFA not only considers the local manifold structure but also uses the global 

information. GGFA maximizes the interclass separability and minimizes the intraclass 
compactness at the same time. The combination of the optimal projection in (17) and (25) 

leads to: 

   arg max 1

. .

W
W W X L S X W

W XD X W I

T T

GGFA P I

T T

Is t

   

                             (29) 
By some algebraic formulations, it reduces to find the maximum eigenvalue solution to 

the generalized eigenvalue problem: 

  1X L S X W XD X W
T T

P I GGFA I GGFA    
                            (30) 
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 0 1  
 is a tradeoff parameter used for controlling the weight of interclass 

separability. 
 

3.4. Radiometric Identification with GGFA 

There are two stages for radiometric identification with the proposed GGFA. Firstly, in 
the stage of training, the signals of radio emitters should be collected and preprocessed, 

and the feature extractor should be trained using the training data set. The features of 

training samples can be extracted with the feature extractor and be stored. The SVM 
classifier should also be trained with these features. Then, in the stage of testing, the 

features of an unknown emitter can be extracted, and be compared with the stored 

features. The SVM classifier predicts the class label of the unknown emitter. The 
procedure of radiometric identification with GGFA is illustrated in Figure 3. The 

procedure can be implemented as follows: 

 

Algorithm: GGFA for radiometric identification 

Training Stage 

Step 1: Collect signals of the known emitters and truncate the transient section and 
preamble section as ROI signals; 

Step 2: Preprocess the ROI signals and calculate the normalized instantaneous amplitude, 

instantaneous phase to construct the training set X ; 

Step 3: Construct the penalty graph
 , SP PG  X

 and intrinsic graph 
 , SI IG  X

, 

according  to (20) and (26) respectively;  

Step 4: Solve the generalized eigenvalue problem of (30) to train the feature extractor W ; 

Step 5: Extract the features of all training samples with W  using (1) and store these 
features; 

Step 6: Train the SVM classifier with the stored features; 

Testing Stage 
Step 7: Collect signals of the unknown emitter and truncate the transient section and 

preamble section as ROI signal; 

Step 8: Preprocess the ROI signal to get the testing sample ux
;  

Step 9: Extract feature of the testing sample uy
 with the extractor W  according  to (1); 

Step 10: Predict the class label of the unknown emitter with the trained SVM by 

comparing the distance of uy
 and the stored features. 
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Figure 3. The Procedure of Radiometric Identification with GGFA  

 

4. Experiments Results 
 

4.1. The Performance of Radiometric Identification with GGFA 

The performances of inter-manufacturer classification and intra-manufacturer 

classification are evaluated in this subsection. The evaluation is conducted with signals 
captured in the real-world environment. 

A. Evaluation setup 

The Automatic Identification System (AIS) signals emitted from ships are collected by 
an antenna located near a port in China. The center frequency of AIS burst signal is 

161.975MHz or 162.025MHz. The data bits are modulated with Gaussian Minimum Shift 

Keying (GMSK) of the bandwidth of 25 kHz, and the data rate is 9600 bits per second. 
Burst signals from six AIS emitters are measured by a signal analyzer to construct the 

data set. These six emitters are from three manufacturers because two emitters from each 

group have successive Maritime Mobile Service Identify (MMSI) numbers, and are 
located on sister ferry boats. The first emitter and the second emitter are from the same 

manufacturer. The third emitter and the fifth emitter are from another manufacturer. The 

fourth emitter and the sixth emitter are from the third manufacturer, as illustrated in Table 
1. There are 140 data samples in each class, which result in a data set of 840 data samples. 

To conduct the experiment, we use the one-leave-out strategy to split the data set into 

training set and testing set. The signal-to-noise ratio (SNR) for all data samples is about 
18 dB. The learned feature extractor is used to extract the features of testing data samples, 

and predict their class label. The parameter 


 is selected as 0.1. 
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Table 1. Emitters from 3 Manufacturers 

 Emitter1 Emitter2 Emitter3 Emitter4 Emitter5 Emitter6 

Manufacturer1 + +     

Manufacturer2   +  +  
Manufacturer3    +  + 

 

B. Features extracted with GGFA  

The features of these six AIS emitters are extracted from their ROI signals. Figure 4 

gives the view of two features extracted with GGFA. The results show that the proposed 
GGFA is useful for identification of different emitters. It can be seen from Figure 4 that 

the features of six emitters which are from three manufacturers are separated into several 

blocks. This reveals that GGFA can be used to discriminate emitters from different 
manufacturers. It can also be observed that there may be overlaps of features between 

different emitters. The reason is that these emitters are from the same manufacturer. The 

task that discriminates emitters from the same manufacturer is more difficult, because the 
RF fingerprint features of these emitters are highly similar. However, the overlaps will 

disappear when more dimensional features are added. 
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Figure 4. View of the First Feature and the Third Feature  

C. The performance of inter-manufacturer classification 

When we conduct the evaluation of the performance of inter-manufacturer 
classification, the training set is constructed by selecting data samples from three emitters, 

one emitter per manufacturer. This will produce eight cases, as illustrated in Table 2. The 

evaluation is conducted according to the procedure of radiometric identification with 
GGFA. The one-leave-out strategy is used to train the feature extractor and test the class 

label of an „unknown‟ testing sample. It is shown in Figure 5 that the accuracy of inter-

manufacturer classification is very high. The correct classification rate (CCR) is almost 
over 96% in each case. It can be seen from Figure 5 that the GGFA is useful to 

discriminate emitters from different manufacturers. 

Table 2. Cases of Inter-Manufacturer Classification 

case Emitter1 Emitter2 Emitter3 Emitter4 Emitter5 Emitter6 

a +  +   + 
b +  + +   
c +   + +  
d +    + + 
e  + + +   
f  + +   + 
g  +  + +  
h  +   + + 
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Figure 5. The Accuracy Results with Three Inter-Manufacturer Emitters  

D. The performance of intra-manufacturer classification 
It reveals in the previous subsection that it is difficult to discriminate emitters from the 

same manufacturer. In order to verify this, we evaluate the classification performance of 

emitters from the same manufacturer. In this case, data samples are from two emitters of 
the same manufacturer. The accuracy result of the intra-manufacturer classification is 

shown in Figure 6. It is noticed that the CCR may be reduced when the similarity of the 

features of emitters from the same manufacturer is very high. The worst classification 
performance is achieved, when the emitters are from the second manufacturer (the third 

emitter and the fifth emitter). The corresponding CCR is only 78%. However, it is shown 

in Figure 6 that the CCR also may be very high, even if the emitters are from the same 
manufacturer. For example, the corresponding CCR is over 99%, when the emitters are 

from the third manufacturer (the fourth emitter and the sixth emitter). It reveals that the 

proposed method can achieve the best classification accuracy with emitters which have 
the most unique features, and achieve the worst classification accuracy with emitters 

which have the most similar features. It can be concluded that the discrimination ability of 

intra-manufacturer emitters depends on that the emitters are from which manufacturer. 
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Figure 6. The Accuracy Results with Two Intra-Manufacturer Emitters  

E. Parameter discussion 

In this subsection, the effect of selection of parameter   (beta) on CCR versus the 
number of neighbors is investigated. Data samples are from all six emitters in this case 

and the CCR is calculated as all average correct classification rate. The result is shown in 

Figure 7. It is noticed that the CCR is reduced when beta varies from 1 to 0. The 
underlying reason is that the interclass separability modeled by the penalty graph is more 

important for the classification task. 
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Figure 7. Accuracy Results Considering the Selection of Weight Parameter 

 

4.2. Comparison of Competitive Methods  

In this subsection, the comparison of the proposed method and other competitive 
methods is conducted with signals captured in the real-world environment. Burst signals 

relayed by a satellite transparent transponder from five return channel satellite terminals 

(RCST) are collected with a signal analyzer. The received satellite signals include the 
distortions of the satellite transponder and the receiver. However, these distortions are 

nearly the same for all data samples. The signals are with QPSK modulation and the 

transmission rate is 5 Mbps. A total of 500 bursts are captured per transmitter and 
digitized by a 12-bit ADC. The SNR (C/N0) is about 30 dB as measured using 

spectrometer. The data are preprocessed and added with AWGN. The one-leave-out 

strategy is also used to conduct the comparison. Data samples from all five emitters are 
used to construct the training set. The classification is conducted with all methods at each 

SNR. 
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Figure 8. Comparison Results of Different Methods with CCR 

Figure 8 shows the comparison results of the proposed method (with 0.1  ), Brik‟s 
method [18], Klein‟s method [6], and MFA [24]. It is noticed that the CCRs are over 93% 

at 20SNR   dB, when the evaluations are conducted with the proposed method, MFA and 

Brik‟s method. This level of performance is useful for some applications. However, it can 

be seen from Figure 8 that the proposed method outperforms other methods, when the 

SNR varies from 5 dB to 30 dB. Klein‟s method solely uses the instantaneous amplitude 
responses, Brik‟s method concentrates on six modulation error metrics independently, 

MFA ignores the global information of all samples. The proposed GGFA uses the 

maximum penalty graph to model the interclass separability which is more important for 
classification, and uses the minimum intrinsic graph to model the intraclass compactness 

at the same time. 

 

5. Conclusion 

We propose a novel radio fingerprint learning algorithm based on characterizing the 

intraclass compactness and the interclass separability. The interclass separability is 

modeled by a penalty graph, where not only the connections between the interclass 
marginal points are calculated, but also the relationships of other interclass vertex pairs 

are characterized. Meanwhile, the intraclass compactness is modeled by an intrinsic 

graph, where the relationships of all intraclass vertex pairs are considered. Since both 
local manifold structure and global discriminant information of the signal data set are 

considered, the proposed algorithm is suitable for radiometric identification. The 

extracted features are the discriminative representation of all the factors, which contribute 
to the minute differences between different radio emitters. From the experiment results on 

real data sets, we can conclude that the proposed algorithm can discriminate different 

emitters, and improve the classification accuracy of radiometric identification. 
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