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Abstract 

Traditional super-resolution reconstruction algorithm based on sparse representation 

can present a good visual effect, but it is time-consuming and largely dependents on the 

training databases. A new image super-resolution algorithm based on self-similarity and 

compressive sensing is proposed. Firstly, the input low resolution image is rotated to 
increase the diversity of the training databases for self-similarity learning and the 

medium-frequency (MF) patches are exploited to predict more high-frequency (HF) 

details based on the self-similarity theory, instead of  using the low-frequency (LF) 
patches. In this way, we can obtain the initial high-resolution image and regard it as the 

only training sample database. Then, sparse reconstruction process is carried out by 

adopting the K-SVD dictionary learning combined with the compressive sensing (CS) 
theory. Finally, to preserve sharper edges, the non-local means and iterative back 

projection algorithm are applied to optimize the reconstructed high-resolution image. 

During the process of search and match in self-similarity reconstruction, the Fast Library 

for Approximate Nearest Neighbors (FLANN) is used to replace the Approximate Nearest 
Neighbors (ANN). Experimental results validate the effectiveness of this method and show 

that the proposed algorithm can perform better both visually and quantitatively. 

 
Keywords: super-resolution; self-similarity; patch rotation; K-SVD dictionary learning; 
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1. Introduction 

Increasing the image resolution or super-resolution (SR) aims to enlarge the target 
image, meanwhile preserving the image quality as much as possible. However, the natural 

image captured by the imaging devices is prone to be of low resolution due to many 

factors: blur, camera shake, inadequate lighting, noise, etc. Therefore, how to enhance the 

resolution effectively by SR has become a hot topic for several years. 
Super-resolution image reconstruction algorithms can be basically classified into three 

categories: the interpolation-based SR methods [1], the reconstruction-based SR methods 

[2-3] and example-based SR methods [4-13]. The interpolation-based SR methods are 
very simple and suitable for real-time applications, but they are of low reconstruction 

precision and poor restoration details. The image reconstruction-based SR methods apply 

a variety of prior knowledge to estimate the super-resolution image, which can obtain a 
sharper edge and reduce the zigzag effect than the interpolation-based SR methods. 

However, this method needs many reasonable prior assumptions and exists the 

registration problems between different image frames. Example-based SR approaches 

break the limitations existing in the traditional reconstruction-based algorithms. They 
learn the mapping relationship between the corresponding pre-processed low and high 

resolution training samples to recover the missed HF details, mainly including learning-

based approach [4], neighborhood embedding approach [5] and  sparse representation 
methods [6-18], etc. 
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Yang [6-8] proposed the super-resolution algorithm based on the sparse representation 

under the CS theory. In order to obtain more additional information and enable the 
different types of image patches to be sparsely represented in the same sparse dictionary, 

it needs a large number of training samples and inevitably results in a long training time 

for sparse dictionary. The obtained dictionary usually lacks of effectiveness in practical 

applications. Zeyde [10] modified the algorithm of Yang, in which training data is 
constructed by the patches taken from the difference between high-resolution patches and 

the interpolated version of low-resolution patches. Besides, the use of K-SVD [11] 

dictionary learning algorithm shortens the computational time and obtains a better 
reconstruction result. Glasner [19] introduced the image self-similarity theory, using only 

a low-resolution image to reconstruct the high-resolution image. Yang [14] made some 

improvements combined with sparse representation theory on the basis of Glasner’s work, 
which improves the reconstruction efficiency and quality. The reconstruction method in 

[17] modified the algorithm of Yang [6-8] with the CS theory, reducing the number of 

training dictionary but still using external several training images. Pan in [15-16]  and Zhu 

in [18] modified the method in [17] not relying on any external images, assuming that the 
low resolution patches can be considered as the compressed sensing version of high 

resolution patches under the framework of CS theory.  

Enlightened by the recently-proposed algorithms, an extended self-similarity SR 
method combined with the CS theory is proposed. In this paper, we don’t use the 

interpolated version of low-resolution input image as the training sample for sparse 

representation, but the initial high-resolution image reconstructed by the self-similarity 
based on MF and HF patches. The proposed algorithm takes full advantage of the 

additional information implied in the image itself. Experimental results indicate that the 

proposed algorithm can not only reduce the training time of sparse dictionary, also 

enhance the quality of the reconstructed image both quantitatively and visually. 
 

2. Self-similarity Reconstruction Based on MF and HF Patches 

Glasner in [19] made an experiment with a large number of natural images, drawing 

the conclusion that: natural images tend to contain repetitive visual contents, whether they 

are in the same scale or across different scales.  
Previous self-similarity SR reconstruction methods are almost all based on LF and HF, 

holding that there exists high correlation between LF and HF patches. However, the 

reference [20] has suggested that this assumption was content-specified and can’t hold 

water for the natural images with complex textures. And then, it further showed that MF 
and HF patches were more relevant and easier to predict the missed high-frequency 

details. 

The traditional example-based SR methods usually select a large number of training 
sample patches to guarantee the quality of the reconstructed image, which will increase 

the computational complexity undoubtedly. Besides, the predicted HF details are possibly 

not what we really need for the low resolution interpolated image. To solve these 
shortcomings, we rotate the low resolution input image to increase their diversities on the 

basis of multi-scale self-similarity. To ensure the diversities of training samples and not 

increase the computational complexity, the segmented patches are only rotated by 90
o
 and 

each patch is converted to a column vector. So the same content will have different 
expression forms. In this way, the obtained training sample patches are of diversity, which 

can more fully utilize the self-similarity between patches across the different scales. 

In order to obtain more connections between the MF and HF patches that are of high 
relevance, first at all, we use Gaussian low-pass filter and down-sampling operator on the 

low resolution input image I0, then generate the multi-scale down-sampled images I-1,......, 

I-n (n=2). The obtained Gaussian Pyramid  is composed by -n
th
 to 0

th
 layer (the largest 

scale layer, namely I0 ).  If we describe i
th 

layer as Ii, then it can be expressed as follows:  
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Where D represents the smoothing (by Gaussian low-pass filter) and down-sampling 

operator. Then the corresponding Ii can be decomposed into LF component Li and HF 

component Hi : 

( ( )            0i iL U D I n i   
                   (2) 

             0i i iH I L n i    
                   (3) 

Where U denotes the up-scale operator (by bicubic interpolation). The LF information 

in formula (2) can be further decomposed into LF and HF components. The LF 
component extracted from the Li can be called MF information, which is described below: 

( ( ) )               0i i iM L U D L n i    
                                     (4) 

After collecting the MF and HF information of the original input image I0 and its sub-

sampled images, we divide them into patches (5x5, overlapped by 3 pixels) and then 
obtain the MF and HF databases, which is shown in Figure 1.  

……

MF 

database

Gaussian 

pyramid Ii
Gaussian Low-pass

& Sub-sample

Low frequency 

pyramid Li

Bicubic

-

Gaussian Low-pass

& Sub-sample -

Medium frequency 

pyramid Mi

Cut into 

patches

……

HF

database

High frequency 

pyramid Hi

Cut into 

patches

Input image 

I0 

Bicubic

 

Figure 1. The Generation of the MF and HF Training Databases 

We enlarge the low resolution image to the targeted size by bicubic interpolation noted 
as LF and cut it into patches, as mentioned above.  Then, for each patch of LF, we use the 

band-pass filter to obtain the corresponding MF information of LF, in order to  search the 

most similar 9 MF patches by FLANN in the established MF database and find the 
corresponding HF patches in HF database. Finally,  the Gaussian weighted average is 

used for the 9 HF patches to generate the corresponding HF patch for low resolution patch 

LF, denoted as HF. So, the initial high-resolution image HR0  can be expressed as: 

0 F FHR L H 
                                             (5) 
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3. Super-resolution Reconstruction Based on CS Theory 
 

3.1. Basic Theory of Image Sparse Representation  

Sparse representation based on the over-complete dictionary is a very effective image 
representation model, which can use a few non-zero elements in sparse coefficients to 

approximately represent the image.  

According to the sparse representation theory, suppose an image patch y (  x  )n n  has 

been converted into a column vector 
 ny R , then it can be represented as a sparse linear 

combination of atoms from an over-complete dictionary 
  ( )n x LD R n L  : 

y D
                                                             (6) 

Where 1 2[ , ..... ]T L

L R    
denotes the sparse representation of the patch y and  

most of the elements of it are zero. Solving the equation above is ill-posed and exists 

infinite solutions. In order to minimize the number of non-zero elements in sparse 

representation vector  , the equation above can be transformed as : 

0|| ||   . .   y=min s t D 
                                         (7) 

Unfortunately, due to the non-convexity of L0 norm, to solve the formula (7) is a highly 

discrete problem. Besides, to find the most sparse coefficients of  from the over-

complete dictionary is a typical NP-hard problem. Therefore, we have to choose the sub-
optimal approximation algorithm to replace it. As early as 1999, a study researched by 

Chen [22] found that the sparse solutions of L0 norm can be converted into ones of L1 

norm when the signals are sparse enough. Hence, the formula (7) can be transformed into 
a combinatorial optimization problem as: 

1 2|| ||   . .   ||y ||   min s t D   
                                 (8) 

Where  is the allowed root mean-square reconstruction error. From the formula above, 

it is noticeable that the selection of the sparse dictionary D plays a crucial role for the 

unique solution of formula (8). In this paper, we choose the K-SVD [11] method to 

substitute the Feature-Sign Search (FSS) method of Yang [6-8] to improve the efficiency 
and  quality of training dictionary. 

 

3.2. Self-similarity Super-Resolution Reconstruction Under CS Theory 

Compressive sensing theory suggests that the low-resolution image patches can be 

considered as the compressed sampling version of the high-resolution image patches. In 

mild conditions, the low-resolution image patches can be recovered correctly to high-

resolution image patches by the sparse representation theory. Besides, the low-resolution 
and high-resolution image patches can be approximately assumed to be of the same sparse 

coefficients. Due to the existence of high similarity between the low-resolution and high-

resolution patches, we use initial high-resolution image HR0 as the training image for CS 
reconstruction. 

In this paper, supposing the size of low-resolution patch to be reconstructed  is NxN and 

its corresponding column vector Ilow is N
2
x1. We can approximately hold that the low-

resolution image can be obtained from the initial high-resolution image HR0, for HR0  
contains lots of similar image patches and can be regarded as the corrupted version of the 

high-resolution image to be reconstructed. So, while the magnification factor is K, the size 

of corresponding high-resolution patch is KNxKN and it can be converted into column 
vector Ihigh of size K

2
N

2
 x1. Then, the relationship between the Ilow and Ihigh  can be 

described as below: 

low highI BS I 
                                                  (9) 
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Where B denotes the Gaussian low-pass filter and S is the image down-sampling 

operator. From the formula (6) in the sparse representation theory,  Ilow  and Ihigh  can be 
represented linearly by over-complete dictionaries. That is: 

low low highI D BS D   
                                             (10) 

In the formula above, Dhigh is trained from corresponding initial high-resolution image 

HR0 by the K-SVD dictionary learning method.  

According to the formula (8), the formula (10) can be modified into the following 
combinatorial optimization problem: 

0 || ||  . .  low high lowmin s t I BS D D    
                                (11) 

Using the equivalent replacement method, the relationship between Dlow and Dhigh can 

be quickly described as:  

low highD D BS
                                                 (12) 

Once the Dlow is obtained, we can exploit the Orthogonal Matching Pursuit (OMP) to 

solve the sparse coefficients  . Then, the high-resolution image patch to be reconstructed 

can be expressed as follows: 

high highI D 
                                                     (13) 

After reconstructing the each high-resolution patch, we merge all the patches by pixel 

weighted method to generate the high-resolution image. 

 

3.3. Optimization Process 

In order to further improve the resolution of the reconstructed image, the non-local 

similarity [24] and the iterative back projection algorithm [25] are used to optimize the 
reconstruction results.   

 

3.3.1. Local Constraint Algorithm 

The core of the local constraint [24] is based on image patches to search similarity 
patches for each image patch. Once the similar patches are found, we can use the different 

weighted values to obtain the final patch, which relates the global similarity of image 

together and can make the final reconstructed image sharper and more precise. 
For each image patch (5x5), we search from central pixel of each patch by the preset 

threshold value to calculate the Euclidean distance between the similar patches, which can 

be expressed below: 

|| ||k k

i i id x x threshold  
                                          (14) 

Where threshold represents the preset distance threshold, xi is the each patch to be 

locally constrained, 
k

ix
 is the similar patches to be searched. In this experiment, we select 

eight most similar image patches for each patch, obtaining the final image patch by linear 

weighting, which is presented as follows: 

1

( 8)
M

k k

i i i

k

x w x M


 
                                       (15) 

exp( / ) /k

i i kw d h c 
                                           (16) 

1

exp( / )
M

k

k i

k

c d h

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                                           (17) 
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Where iw
is the weight coefficient and the kc

represents weight normalization factor. 
h controls the descending speed of weight value as the Euclidean distance increases. 

 

3.3.2. Iterative Back Projection Algorithm 

To ensure that the final reconstructed high resolution image can be consistent with the 

input low resolution image, we adopt the iterative back projection (IBP) to optimize the 

reconstructed image globally, which can effectively reduce the diffusion of errors. IBP 
algorithm can be illustrated as follows: 

1 (( ) )t t tX X Y DX GuassLowFilter 
   

                              (18) 

Where Xt+1 represents the  (t+1)
th  

iteration result of high-resolution image, Y is the 

given input low-resolution image,  is the interpolation operation and D is the down-
sample operation and GuassLowFilter represents the Gaussian low-pass filter. 

 

3.4. The Procedure of Super-resolution based on CS theory and Self-similarity 

Now, we summarize the whole proposed algorithm mentioned above as follows and the 

general process as well as the flowchart of our proposed algorithm is illustrated in Figure 

2. 
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Figure 2. The General Process of the Proposed Algorithm 

(1) Load the low-resolution input image I0 ,rotate it and down-sample,then divide them 
into overlapped patches, generating the MF and HF training databases. 

(2) Use the MF training patches to predict the missed HF information based on the 

principle of self-similarity, then obtain the initial high-resolution image HR0. 

(3) Divide the initial high-resolution image HR0 into patches and exploit the K-SVD 
algorithm to implement the dictionary training, obtaining the high-resolution 

dictionary Dhigh. 

(4) Generate the low-resolution dictionary Dlow  according to the formula (12) by the 
CS theory. 

(1) Divide the low-resolution image into patches and use OMP for low-resolution 

dictionary Dlow to obtain the each sparse coefficient   for each low-resolution 

image patch.  

(2) Multiply the each sparse coefficient   by  Dhigh  to obtain the corresponding high-

resolution image patch according to the formula (13). 
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(3) Merge all the high-resolution image patches into high-resolution image, then 

optimize it by performing non-local means and iterative back projection algorithm. 
 

4. Experiment Analysis and Results 

Here, we conduct the SR experiment on eight low-resolution testing images (128x128) 

with the magnification factor 2 and 4 in Figure 3. These images cover many contents 

including humans, animals, and plants, which can validate the university of our proposed 

algorithm. 
 

     

(a) Butterfly            (b) Hat                 (c) Leaves               (d) Parrots         (e) Woman 

   

(d) Chest            (e) Baby                 (f) Flower 

Figure 3. Low Resolution Testing Images 

In this experiment, we set the upscale factor to 2 and 4, the patch size respectively to be 

2x2 overlapped by 1 pixel and 4x4 overlapped by 2 pixels, FLANN nearest neighbor 

search of similar patches number to be 9, number of pyramid layer is 2 and iterations 

number of IBP iterative back projection algorithm to be 20. Furthermore, in the local 
constraint algorithm we set distance threshold as 0.5 and h as 10. For color image super 

resolution reconstruction, because human vision is more sensitive to the luminance 

information than chrominance information, color images are converted from RGB to YIQ 
and the algorithm is applied to only Y Component. Then the  rest of I, Q components are 

interpolated using in-built bicubic interpolation function in MATLAB.  

To validate the effectiveness of our algorithm, the proposed algorithm is compared 
with some present algorithms: bicubic interpolation, sparse representation of Yang [8] and 

compressive sensing of Pan [15]. For each test, the quantitative measures named PSNR 

and SSIM were applied to evaluate the quality of the reconstructed image. Figure 4 shows 

the reconstruction results of “leaves” and “chest” image magnified by factor 2. Figure 5 
shows the “baby” image magnified by factor 4 (narrowed into half for the sake of 

comparisons and display). The comparisons of evaluations quality for reconstructed 

images are listed in Table 1.  
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Figure 4. Comparisons of SR Result (x2) for “Leaves” and “Chest” Input 
Image from Left to Right: the Bicubic, Yang [8], Pan [15] and Our Proposed 

Method 

    

(a) Bicubic              (b) Yang [8]             (c) Pan [15]           (d) Our Algorithm 

Figure 5. Comparisons of SR Result (x4) for Baby Input Image  
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Table 1. Image SR Performance Comparisons of PSNR (Left) and SSIM 
(Right) 

` Upscale 

factor  

Bicubic Yang[8] Pan [15] Proposed 

 

butterfly 

2 26.268/0.916 29.303/0.941 29.435/0.953 29.546/0.960 

4 24.534/0.821 25.403/0.849 25.324/0.843 25.474/0.847 

 

hat 

2 30.089/0.871 32.480/0.895 32.628/0.914 32.758/0.922 

4 27.244/0.866 28.325/0.872 28.342/0.875 28.422/0.879 

 

leaves 

2 25.254/0.923 27.435/0.932 27.483/0.938 27.644/0.951 

4 23.246/0.867 24.325/0.872 24.364/0.876 24.442/0.881 

 

parrots 

2 30.132/0.930 32.347/0.956 32.336/0.950 32.435/0.961 

4 28.134/0.854 29.245/0.864 29.231.0.861 29.331/0.865 

 

woman 

2 31.371/0.874 33.424/0.931 33.512/0.943 33.632/0.952 

4 28.533/0.832 29.732/0.843 29.641/0.841 29.742/0.851 

 

chest 

2 41.321/0.960 43.157/0.971 43.215/0.976 43.464/0.981 

4 39.173/0.884 40.426/0.896 40.452/0.901 40.663/0.924 

 

baby 

2 30.243/0.878 32.183/0.894 31.894/0.883 32.021/0.908 

4 28.375/0.865 29.486/0.884 29.464/0.881 29.532/0.887 

 

flower 

2 27.658/0.853 30.247/0.891 30.432/0.902 30.421/0.896 

4 25.543/0.862 26.523/0.878 26.854/0.883 26.823/0.879 

 

5. Conclusions 

In this paper, we presents a single image super-resolution reconstruction algorithm 

under the self-similarity and compressive sensing theory. Our proposed method omits the 

traditional external training database, avoiding the high dependency on the training 
database and the long-time training process. In order to predict more high-frequency 

details that low-resolution image need, we first rotate the low-resolution image by 90o, 

then use the medium-frequency patches to estimate the high-frequency patches. During the 

search and match process, the FLANN search method has been used to take place of the 
original ANN search strategy, which can improve the search speed. While obtaining the 

initial high-resolution image and dividing it into patches, we exploit them to generate the 

high-resolution dictionary by K-SVD, then perform the reconstruction process under the 
frame of compressive sensing theory. Experimental results show that the obtained training 

dictionary by our proposed algorithm is better, for it takes full advantage of the additional 

information implied in the image itself. When compared to other algorithms, our proposed 

algorithm shows the better performance, both in terms of objective metrics and subjective 
visual results.  
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