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Abstract 

For the problem of how to high precision restructure source signals, when laser 

chaotic signal under the interference of a variety of noise intensities, this paper proposes 

a blind source separation algorithm based on phase space reconstructed chaotic stream 

signal. This algorithm firstly makes time delay reconstruction on phase space of 

separation signals, and then regards the separation matrix as parameter to be optimized, 

through constructing objective function in phase space to convert blind source separation 

to an optimization problem, using particle swarm optimization algorithm to solve the 

optimal separation matrix, and then the observation data is multiplied by optimal 

separation matrix to reconstruct the source signals. The experimental results show that 

the algorithm not only has the characteristics of rapid convergence and its accuracy is 

obviously superior to the existing independent component analysis method under various 

noise intensities. 

 

Keywords: Multi-feature; Blind source separation; Chaotic stream; Particle swarm 
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1. Introduction 

Compared with the traditional way of communication, laser chaotic communication has 

many advantages. Its sensitivity to the initial value and long-term unpredictability, laser 

chaotic signal is very suitable for secure communication application; the chaotic signal 

generated by using different chaotic attractors or different initial values and parameters of 

the same attractor can be thought to be unrelated, therefore, it is easy to generate a large 

number of mutually orthogonal chaotic signals, which makes the laser chaotic signal has 

extensive application prospect in multi-user communication [1].However, there are also 

some challenges may be faced in the application of chaotic technology in laser 

communication and signal processing, and other fields. For system existing interchannel 

interference, time-varying fading or hybrid multiuser carrier wave, blind source 

separation is a problem must be solved. Some researchers using the dynamic property of 

chaotic signal for blind source separation [2-4], this kind of method can only be applied 

under the condition of the source signal dynamic equation is known. Independent 

component analysis (ICA) method was also used to separate chaotic signal [5-7]. This 

method assumes each source single is mutual statistical and independent, and to separate 

mixed signal by using high order statistical properties. However, laser chaotic stream 

signal in essence is to determine the single, and possesses the characteristics of very 

sensitive to initial value and broadband spectrum, therefore it is difficult to conduct 

effectively blind source separation only by using statistical properties. This paper uses the 

theory of phase space reconstruction to depict the problem of blind source separation, puts 
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forward a new kind of blind source separation method of chaotic signal aimed at the 

above problems. 

 

2. Blind Source Separation Method of Chaotic Signal 

Blind source separation model of laser chaotic stream signal is shown in figure 1, n  

unrelated laser chaotic stream signal ( ), 1, ,js t j n  are observed by sensor after linear 

mixture. The signal ( )ix t  observed by the i th sensor is the linear mixture of each source 

single 
1

( ) ( )
n

i ij jj
x t a s t


 , and can be expressed in matrix form as： 

 ( ) ( ) ( )t t t x As n  ,  (1) 

Where,  
T

1( ) ( ), , ( )mt x t x tx  is the observation vector,  
T

1( ) ( ), , ( )nt s t s ts  is 

the source vector, the non-singular matrix A  constituted by ija is called hybrid matrix, 

 
T

1( ) ( ), , ( )mt n t n tn  is observation noise, here it is assumed as gaussian white noise. 

b
lin

d
 sep

a
ra

tio
n

 a
lg

o
rith

m

 

Figure 1. Blind Source Separation Model of Chaotic Stream Signal 

According to the observed mixed signal ( )tx , blind source separation algorithm is 

trying to get an estimate of the source signal: 

ˆ( ) ( ) ( )t t t s Bx BAs                              (2) 

The matrix B  is called as separation matrix. Obviously, if we do not consider the 

observation noise and BA = I , I  is the unit matrix, then the source signal will be 

perfectly reconstructed. However, due to blind source separation has the problem of 

inherent fuzziness[8], if the separation matrix satisfying the following equation can be 

obtained, then it can consider that the mixed signal is successfully separated: 

 BA ΛP  ,   (3) 

Where, Λ  is random n -order nonsingular diagonal matrix, P  is random n -order 

permutation matrix. 

 

3. Theory Analysis of Blind Source Separation based on Phase Space 
Reconstruction 

Phase space reconstruction is widely used in analysis of laser chaotic sequence, such as 

prediction, diagnosis, and the calculation of Lyapunov index of laser chaotic signal, etc. 

Literature [9], by using phase space reconstruction, defined index to measure the stream 

pattern growth rate of phase space of chaotic sequence - growth index. This section will 

use the growth index to depict blind source separation problem of chaotic signal. 
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Assumed that a chaotic sequence ( )x t  generated by dimension Ad  chaotic attractor, to 

estimate the state vector of its phase space by using phase space reconstruction with delay 

of 1: 

 T( ) [ ( ), ( 1), , ( 1)] 1, , 1t x t x t x t d t      ς ，  ,  (4) 

Where, d  represents delay reconstructed embedded dimension, 1   is the number of 

state vector obtained from observation sequence. When 2 Ad d  and are integers, ( )tς  

can smoothly reconstruct the chaotic attractor. In blind source separation problem, 

dimension Ad  of each source chaotic stream signal generally cannot be known in 

advance, for better restore the properties of chaotic attractor, d  should be taken as large 

as possible, when the observation sequence length is N , for example, you can take 

d N   .In phase space, the distance between ( 1)t ς and (1)ς is defined as follows: 

 
2

( ) ( 1) (1)V t t  ς ς ς  ,  (5) 

Where, || ||  is the norm of 2l . Different laser chaotic signal has different growth rate 

in steam pattern of phase space, it can be described by defining the growth index: 

 2

( ( ))
( )

( ( ))

D V t
P

E V t
 

ς

ς

ς , 1, ,t   ,  (6) 

Where, ( )D  represents variance, ( )E  represents mathematical expectation,   is a 

control parameter, and when there is no noise, 5   to decrease the computation burden 

of ( )P ς , observation noise is 100   when it should not be neglected. 

Literature [9] proved that, when observation sequence of reconstructed ( )tς  has zero-

mean, ( )P ς  has the following properties: 

Property 1 scale invariance, that is ( ) ( ), 0P P k k   ς ς . 

Property 2 1 1 2 2 1 2 1 2( ) max( ( ), ( )), , 0P k k P P k k    ς + ς ς ς , where 1ς  and 2ς  are 

two irrelevant random sequences. 

1 1 2 2( ) ( )k t k tς + ς 。Assumed that we have irrelevant observation sequence 1( )x t  and 

2( )x t , to carry on phase space reconstruction with time delay of 1 on it to obtain state 

vector 1( )tς 和 2( ) 1, , 1t t  ς ， , respectively, therefore, the state vector of 

sequence 1 1 2 2( ) ( )k x t k x t a+  reconstruction is 1 1 2 2( ) ( )k t k tς + ς Combined with the 

property 2 of ( )P ς two can get the following conclusion: irrelevant time sequence 

produced by two different dynamic systems, the growth index of its linear combination is 

always less than one of the two sequence time with a larger growth index; any one 

sequence of n  irrelevant sequences is irrelevant to the linear combination of the rest 

1n  sequences, so the growth index of a linear combination of n  irrelevant sequences is 

always less than one of these sequences with a largest growth index. This can inspire us 

that, we can convert the blind source separation problem containing n  mixed signals into 

an optimization problem with orthogonal constraint: 

 
T

ˆ ˆ,1 , 1
ˆ ˆmax{ ( ) , , ( )} ( ( ) ( ))

n n
s s n

R

P P subject to E t t 






  
B

ς ς s s I
 ,  (7) 

Where, B  is separation matrix, ˆ,( )s iP ς  is the growth index of reconstructed i -

channel source single ˆ ( )is t , constraint condition Tˆ ˆ( ( ) ( ))E t t s s I  ensures the obtained 

each channel separation signal ˆ ( )is t  is orthogonal with solution space of other solved 

separation signal ˆ ( ),js t j i . 
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4. Blind Source Separation Algorithm Process 

The property 1 of growth index in previous section only set up on zero mean, therefore, 

it shall do mean value removal of observation signal first: 

 ( ) ( ) ( ( )), 1, ,i i ix t x t E x t i n    ,  (8) 

Property 2 of growth index further requires the signal sequence is irrelevant with each 

other, which can be realized by pre-whitening observation signal. Assumed that 

autocorrelation matrix of ( )tx  characteristic decomposition T T( ( ) ( ))E t t x x QΣQ , 

where, Q  is orthogonal matrix, Σ  is diagonal matrix, then -1/2 TW = Σ Q is called as 

whitening matrix, after linear conversion ( ) ( )%t tx Wx , each component of ( )tx  is 

irrelevant with each other. 

By Cayley conversion, any n -order orthogonal matrix can be decomposed into a series 

of the product of the rotation matrixes, and contains parameter vector 

1 ( 1)/2{ , , }n n  θ  of ( 1) / 2n n  parameters to express [20]. This method can reduce 

the parameter to be optimized from 2n  to 2( ) / 2n n , the convergence speed and 

robustness of the algorithm is improved significantly. Subsequent sections of this part 

adopt the following forms of parameterization to express 2 and 3-order orthogonal matrix: 

 
1 1

2 2

1 1

cos sin

sin cos

 

 


 
  
 

B  ,  (9) 

2 2 3 3

3 3 1 1 3 3

1 1 2 2

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

   

   

   



      
     

 
     
          

B  ,  (10) 

Where, parameter vector [0,2 ]i  . Using this parameter expression, can convert (7) 

into an unconstrained optimization problem： 

 ,1 , 1

[0,2 ]

max{ ( ) , , ( )} , 1, , ( 1) / 2
i

y y nP P i n n 

 





   ς ς
 ,  (11) 

For an unconstrained optimization problem, particle swarm optimization algorithm 

[10] is a very effective method. The parameter vector 1 ( 1)/2{ , , }n n  θ  is regarded as 

the particle position, the objective function (11) is regarded as fitness function, can use 

particle swarm optimization algorithm to estimate the optimal separation matrix optB , so 

as to reconstruct each channel source signal. The whole algorithm process is shown in 

figure 2: 

1. Mean-value removal of observation signal ( )tx ; 

2. Pre-whitening of observation signal ( )tx  to obtain ( )tx ； 

3. Using the random number uniform distributed on [0, 2 ]  to initialize the 

initial position of each particle; 

4. For each particle, according to the (9), (10) to calculate separation matrix B, 

and calculate separation signals by (2), carry on phase space reconstruction 

according to (4) and calculate the fitness function value according to (5) to (7); 

5. Using the particle swarm algorithm to optimize (11), until the termination 

condition is met, record the optimal particle positionθopt； 
6. To calculate separation matrix Bopt according to (9) and (10), and output 

reconstructed source signal ( )ty =Bopt ( )tx . 

Figure 2. Blind Source Separation Algorithm Flow Chart 
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5. Simulation Experiment 

This section will evaluate the performance of blind source separation algorithm 

through Matlab simulation experiment. Source signal generates mixed signal by (1), 

elements of mixed matrix A is generated independently and randomly by uniform 

distribution of [1, 1] in each simulation. The accuracy of blind source separation 

algorithm will be measured through performance index (PI): 
2 2

2 2
1 1 1 1

1

( 1) max max

n n n n
ij ij

i j j ik ik k kj

g g
PI

n n g g   

   
    
   
   

     ,  (12) 

Where, G BWA , the smaller of PI  the better, when G  satisfies (3), PI  gets the 

minimal value 0. 

Four source signals used in simulation experiments, are generated respectively by 

Rossler attractor (13), Lorentz attractor (14), Duffing attractor (15) and Mackey-Glass 

attractor (16), the first three signals are generated through the integration of the fourth 

order runge kutta method, integral step length are 0.05, 0.05, 0.01, respectively, the length 

of the signal is 2000N  , as shown in figure 3. The four signals are divided into two 

groups, are used to test the blind source separation effects of three-channel mixed signals 

and two-channel mixed signal, as shown in Table 1. 
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Figure 3. Source Signal Waveform 
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Table 1. Test Signal Grouping 

source signal of group 1 Rossler、Lorentz、Duffing 

source signal of group 2 Mackey-Glass、Duffing 

 

5.1. Simulation Results of Blind Source Separation of Chaotic Stream Signal at No 

Noise 

For the three-channel source signal in group 1, to carry on four blind source separation 

experiments with the method proposed in this paper, performance index PI  changes with 

the change of iterative steps as shown in figure 4. With the increase of iteration steps, PI  

decreases rapidly, and in all experiments, algorithm can be convergence through dozens 

of iterations. Table 2 shows the experimental results after 100 times of Monte Carlo 

Simulations on two groups of source signal, it can be seen that, both for the separation of 

three-channel mixed signals in group 1 or two-channel mixed signal in group 2, the 

separation accuracy of the proposed algorithm is better than fast independent component 

analysis (FastICA)[6]. 
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Figure 4. The Convergence Condition of the Algorithm at No Noise 

Table 2. The Blind Source Separation Performance at No Noise 

Separation method 
test signal 

Group 1 Group 2 

Proposed algorithm 0.0082 0.0056 

FastICA 0.0728 0.0172 

 

5.2. Blind Source Separation Simulation Results of Laser Chaotic Stream Signal 

under Noise Environment 

This section will evaluate the blind source separation performance of algorithm to 

noise contaminated mixed signal, it is assumed that the observation noise is the zero mean 

gaussian white noise. Let the observation noise changes from 20dB to 50dB, take a test 

point at the interval of 5dB, repeat 100 times of Monte Carlo simulation on each test 

point, and results as shown in figure 5. 
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proposed algorithm

FastICA

proposed algorithm

FastICA

 

Figure 5. The Performance of Blind Source Separation Algorithm under 

Different Noise Intensities 

 

5.3 Comparison between the Proposed Algorithm and other Dictionary Learning 

Algorithms 

The experiment in this section mainly includes a comparison between the 

proposed algorithm in this paper and traditional dictionary learning a lgorithms K-

SVD and RLS-DLA in terms of de-noising effect. 100 particles were selected for 

PSO used in this paper. 100 iterations were given. 

The wave form of the selected signal to be observed is Fig. 6(a); upon provision 

of noise, the signal-noise ratio is 10dB, with the wave form shown in Fig. 6(b). De-

noising is achieved with three algorithms, with the results as follows: 
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(a) Wave form of signal without noise 
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(b) Wave form of signal with noise 
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(c) Signal reconstructed by the proposed algorithm 
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(d) Signal reconstructed by K-SVD algorithm 
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(e) Signal reconstructed by RLS-DLA algorithm 

Figure 6. Comparison between Reconstructed Signals 

From point A, we learned that the proposed algorithm provided better results in 

terms of detail processing as PSO was used for sparse solving following which the 

sparse vector was obtained, which facilitated the recovery of the signal’s detail 

features. 
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5.4 Application of the Proposed Algorithm to Radar Echo Signal 

For the experiment on de-noising effect of electromagnetic signal using the 

proposed algorithm, the point target echo signal of LMP (linear frequency 

modulation) radar was selected for de-noising. The results were shown in Fig. 7. 

Upon calculation of the de-noised signal-noise ratio, the result was SNR=25.121dB, 

MSE=0.0126. It showed that the proposed algorithm de-noised radar signal in a 

better way. This is an effective de-noising solution. 
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Figure 7. De-noising Experiment of Radar Echo Signal 

6. Conclusion 

This paper depicts the blind source separation using the theory of phase space 

reconstruction, and proposes a new blind source separation algorithm for laser chaotic 

stream signal. The algorithm constructs the objective function in the phase space of 

separation signal, to convert the blind source separation of chaotic stream signal into an 

unconstrained optimization problem, and be solved through the particle swarm 

optimization algorithm. At the same time, it adopts parametric representation of 

orthogonal matrix on separation matrix, effectively reduces the dimension of the 

optimization problem, therefore, the algorithm can be quickly converged. Simulation 

results show that the algorithm not only has the characteristics of rapid convergence, and 

its accuracy under various SNR is obviously better than that of FastICA algorithm. 
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