
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.10, No. 2 (2017), pp.1-12 

http://dx.doi.org/10.14257/ijsip.2017.10.2.01 

 

 

ISSN: 2005-4254 IJSIP 

Copyright ⓒ 2017 SERSC 

GPU Implementation of Three-Stage Prediction with Adaptive 

Search Threshold for Hyperspectral Image Compression 
 

 

Changguo Li1,* and Yuke Yang2 

1 College of Fundamental Education, Sichuan Normal University, Chengdu 

610068, China 
2 Department of Laboratory and Equipment Management, Sichuan Normal 

University, Chengdu 610068, China 

E-mail: 389224879@qq.com 

Abstract 

For the huge size of hyperspectral images with hundreds of bands, compression is 

necessary to save storage space and transmission time. Three-stage prediction with 

adaptive search threshold (TSP-AST), which consists of third-order interband predictor, 

bi-directional pixel search, backward pixel search with adaptive search threshold, and 

entropy coding, has been proven to be an effective lossless compression method for 

hyperspectral images, but its computational complexity is very high which makes its 

application to time-critical scenarios quite limited. In order to improve the computational 

efficiency of the algorithm, a parallel implementation of the TSP-AST algorithm is 

presented using compute unified device architecture (CUDA) on graphics processing 

units (GPUs) by exploiting the data parallel characteristics of the three prediction stages. 

The GPU parallel implementation is compared with the serial and multicore 

implementations on CPUs. Experimental results based on real hyperspectral images 

reveal remarkable acceleration factors and real-time computing performance in our four-

GPU-based implementation of the TSP-AST compression scheme, while retaining exactly 

the same compression performance with regard to the serial and multicore versions of the 

compressor. 

 

Keywords: Graphics Processing Unit (GPU); Compute Unified Device Architecture 

(CUDA); hyperspectral images; lossless compression. 

 

1. Introduction 

The advancement of sensor technology produces remotely sensed data that have a large 

number of spectral bands [1]. Hyperspectral images (HSI) are widely used in a variety of 

fields, such as terrain classification, agricultural monitoring, and military surveillance. 

Fine spectral resolution can be a desired featured when it comes to detecting fingerprints 

in the spectral response of a scene. Such applications are enabled by the richness of data 

captured by hyperspectral sensors. A problem of handling such wealth of information 

naturally arises and calls for the use of compression methods. These methods may be 

divided into lossless and lossy compression techniques. Though the latter can achieve 

higher compression ratios than the former, it isn’t able to preserve the quality of original 

hyperspectral images. Therefore, there is a need to compress hyperspectral images 

adopting lossless methods. Moreover, high compression performance is important for 

saving storage space and transmission time. However, HSI compression is subject to 

important challenges, such as high dimensionality and insufficient compression 

performance in practice, which pose significant challenges to HSI compression. 

Among many techniques for HSI compression, lossless compression algorithms have 

received a lot of interest. Several lossless algorithms, such as JPEG 2000 [2], JPEG-LS 
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[3], LUT [4], and LAIS-LUT [5], have relatively low complexity and thus are suitable for 

onboard compression. Other lossless algorithms such as FL [6], C-DPCM [7], S-FMP [8], 

and C-DPCM-APL [9] are more time-consuming and are thus suitable for ground 

compression. Most of these techniques rely on the fact that a scene of hyperspectral 

images is a sequence of images that have two types of redundancies, namely: spatial 

redundancy and spectral redundancy. Spatial redundancy is the correlation among 

spatially adjacent pixels in the same spectral band. Spectral redundancy is the correlation 

among pixels that have the same spatial location but are in adjacent spectral bands. As a 

result, the spectral redundancy has been exploited in combination with the spatial 

redundancy during the compression procedure. 

Taking advantage of the spatial redundancy, the spectral redundancy and the 

calibration-induced redundancy in hyperspectral images, in [10], we proposed a novel 

three-stage prediction with adaptive search threshold (TSP-AST). It takes the third-order 

interband predictor, the bi-directional pixel search, and the backward pixel search with 

adaptive search threshold as its three predictors. As shown in [10], the compression 

performance of this method is comparable or superior to that exhibited by many other 

state-of-the-art techniques. However, its computational complexity was shown to be very 

high, thus limiting its application in time-critical scenarios. The reason is not only the 

extremely high dimensionality of hyperspectral images, but also that the first, the second 

and the third prediction stages adopted by this compressor carry out matrix operations, bi-

directional pixel search, and backward pixel search for each current pixel, respectively. 

This results in a computational complexity that is even higher than the above-mentioned 

lossless algorithms. 

In recent years, co-processing on Graphic Processor Units (GPUs) has become a 

disruptive technology in high performance computing. Exploiting the ever increasing 

transistor count, a growing number of processor cores have been added to GPUs. 

Consequently, GPUs have hundreds of parallel processor cores for execution of tens of 

thousands of parallel threads. Compute Unified Device Architecture (CUDA) is an 

extension to the C programming language offering programming GPU’s directly [11]. In 

general, GPU has been able to offer two to three orders of magnitude speedup over CPU 

for various science and engineering applications, and therefore its exploding capability 

has attracted more and more scientists and engineers to use it as a cost-effective high-

performance computing platform. A framework for efficient implementation of GPU 

adaptations of image processing algorithms in remote sensing is described in [12]. A near-

real-time automatic target detection algorithm has been reported in [13]. To improve the 

execution performance of the weather research and forecasting (WRF) model, two 

different kinds of high-performance computing schemes: GPU-based Stony Brook 

University and GPU-based Goddard shortwave radiative, are given in [14] and [15]. A 

new multi-GPU implementation of the minimum volume simplex analysis algorithm for 

hyperspectral image unmixing is reported in [16]. By porting the calculation of composite 

kernels to GPUs, and performing intensive computations based on NVidia’s compute 

unified device architecture, an efficient parallel implementation of composite kernels in 

support vector machines for hyperspectral image classification, is described in [17]. 

Nevertheless, there are very few GPU implementations of hyperspectral image 

compression algorithms in the literature. In [18], [19], and [20], the GPU acceleration 

implementations of the linear prediction method using constant coefficients (LP-CC), the 

predictive partitioning vector quantization (PPVQ), and lossy compression for Exomars 

(LCE) are reported, respectively. In [21], for decreasing the high computing complexity, a 

parallel error-resilient entropy coding (EREC) on a GPU is given. 

In this paper, we propose a novel parallel TSP-AST method for hyperspectral image 

compression on GPUs. First, we analyze the CPU profile of the four stages of TSP-AST 

on running the AVIRIS images and find out that the three prediction stages take up 97 

percent of the CPU execution time. Then, we exploit the data parallel characteristics of 
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the three prediction stages and the advantages of utilizing GPU parallel computing 

principles to dramatically improve the computation speed of TSP-AST. The proposed 

parallel implementation properly exploits the GPU architecture at the low level and makes 

effective use of the computational power of both CPUs and GPUs synergetic fashion. The 

operations relevant to large data and intensive computations are executed on the GPUs, 

while the operations related with control are carried out on CPUs. The parallel 

implementation is executed using Nvidia’s compute unified device architecture (CUDA), 

and the results of the presented method are compared with serial and multicore CPU 

implementations. 

This paper is organized as follows. Section II describes the effective lossless 

compression using TSP-AST. Section III presents its parallel implementation on GPUs 

using CUDA. Section IV experimentally assesses the proposed method in terms of both 

compression performance and computing performance. Finally, Section V gives 

conclusions.  

 

2. Lossless Compression Using TSP-AST 

TSP-AST based on the spatial redundancy, the spectral redundancy and the calibration-

induced redundancy can obtain excellent compression performance [10]. Its prediction 

process in mathematical terms is described as follows. First, the third-order predictor 

(IP3) is adopted and has the following prediction formula: 

yxwv mmxmwmvnmkf  )()()(),,(̂   or  
0),,(̂ CCYnmkf n                      (1) 

where ),,(̂ nmkf is the prediction of the current pixel ),,( nmkf (kth band, mth row, and nth 

column). “x”, “w”, and “v” denote the pixels colocated with the current pixel in three previuos 

bands and “m” stands for the expectation value of a random variable.  and,, are the 

prediction coefficients. ],,[ xwvn mxmwmvY  , TC ],,[  , and 
ymC 0 . Prediction 

coefficients  and,,  can be derived by solving a Wiener-Hopf equation 
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Then the bi-directional pixel search (BDPS) as the second stage is applied. In this 

prediction process, a prediction of the current pixel ),,( nmkf  using all the causal pixels, 

which are in the previous, current and final bands, is made. Namely, two pixels which 

value equal to ),,1( nmkf   and ),,( nmkf final
 are searched in the previous and final 

bands, respectively. If equal valued pixels ),,1( 11 nmkf  , ),,( 11 nmkf final
 , ),,1( 22 nmkf  , 

),,( 22 nmkf final  , …, ),,1( tt nmkf  , ),,( ttfinal nmkf   ( NMt 1 , where M is the number of 

the rows, N is the number of the columns) are found. The decision among one of the 
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possible prediction values ),,( 11 nmkf  , ),,( 11 nmkf  , ),,( 22 nmkf  , ),,( 22 nmkf  , …, 

),,( tt nmkf  , ),,( tt nmkf   is based on the closeness of the values to the prediction 

reference value 
refP , where the prediction obtained from the first stage prediction is 

treated as the prediction reference 
refP . Otherwise, the estimated pixel value is equal to 

the prediction reference value 
refP . The whole search is performed in the reverse scanning 

order. Naturally, these guarantee that the final prediction value is rarely more than the 

prediction reference value 
refP . 

In the third stage, the prediction obtained from the second stage is used to replace the 

prediction reference 
refP . The causal pixels in the current band are searched, and the one 

with a pixel value that is closest to 
refP  is selected as the final prediction. In this 

algorithm, the adaptive search thresholds are used as the upper bound in searching for the 

optimal threshold value for each band. The adaptive search threshold of band k is defined 

as 
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where ),,(̂ tskf  is the prediction of pixel ),,( tskf  obtained from previous prediction 

stage, and Kk 2 (K is the total number of bands). After prediction, the difference 

between the predicted and original values is computed. The difference is entropy-coded 

using an adaptive arithmetic coder (AAC). To sum up, the serial implementation of TSP-

AST (referred to hereinafter as TSP-AST-S) can be summarized in Algorithm 1. 

 

Algorithm 1. Serial Algorithm of TSP-AST (TSP-AST-S) 

 
Input: HSI images NMKR  , number of bands K, width of image M, and height of image N, pixel sample 

NMKRnmkf ),,( ; 
Initialization: Set k=2, m=1, n=1, initialize the number of lines in search range L, the min_error, the starting 
point in a line sp, the error value Perr, the set of prediction error NMKE  : L=10, min_error=65536, sp=0, 
Perr=0, Enmke  ),,( , and e(k,m,n)=0; 
Do: 

Do: 
Do: 

Step 1. Calculate the stage-1 prediction value of  the current pixel: 
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Step 2. Search for the set of the nearest neighbor L in the previous and the final bands, set 
L={ ),,1( 11 nmkf  ,…, ),,( ttfinal nmkf  }, give the set L’ where corresponding pixels have the same spatial 
position in current band, L ={ ),,( 11 nmkf  ,…, ),,( tt nmkf  }, and make the prediction: 
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Step 3. In the search range, the one with a pixel value that is closest to 
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final prediction: 
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Step 3.1. For v=m:max{(m-L),0}, 
Step 3.1.1. If v=m, sp=n-1; 
Step 3.1.2. Else sp=M-1; 
Step 3.1.3. For h=sp:1, 

                          Compute the error value: 

)),,(( referr PhvkfabsP  ; 

Step 3.1.3.1. If errorPerr min_ ,  

errPerror min_ ; 

Step 3.1.3.2. If 
kTerror min_ , 

                 return (f(k,v,h)); 
Step 3.1.4. return (f(k,v,h)); 

Step 3.2. ),,(),,(̂ hvkfnmkf  ; 
Step 4. Calculate the difference between the predicted and original values: 

),,(̂),,(),,( nmkfnmkfnmke  ; 

Step 5. n=n+1; 
While Nn  ; 
Step 6. m=m+1; 

While Mm  ; 
Step 7. k=k+1; 

While Kk   
Step 8. the prediction error is entropy-coded using AAC;  
Output: the compressed bit-stream of NMKR  . 
End 

 

 

3. GPU Implementation 

Although the solution of TSP-AST can effectively compress hyperspectral images, it is 

quite expensive in computational terms. The theoretical analysis indicates that the 

calculation of the three-order interband prediction and the loop iterative solution for 

),,(̂ nmkf  in Step 1 and Step 3 of Algorithm 1, respectively, are the most time consuming 

parts, as the former involves heavy computations with matrices, the latter includes the 

backward pixel search is carried out for each pixel in its local neighborhood. Here, we 

take the AVIRIS Cuprite hyperspectral dataset (details of the dataset will be given in 

Section 4) as an example to experimentally analyze computational bottlenecks of 

Algorithm 1. Figure 1 shows the percentage of total CPU time consumed by the different 

steps of Algorithm 1. Since the calculation of three-order interband prediction and the 

backward pixel search with adaptive search threshold take 25.68% and 65.85%, 

respectively, the key for optimizing Algorithm 1 is accelerating the calculation of three-

order interband prediction and the backward pixel search with adaptive search threshold. 

 

Figure 1. Percentage of Total CUP Time Consumed by Different Steps when 
Processing the AVIRIS Cuprite 

Meanwhile, because of involving search, the bi-directional pixel search (namely the 

Step 2 of Algorithm 1) also leads to high computational overhead of the TSP-AST 

algorithm. In order to decrease the computational complexity, two LUTs for each of the 
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previous and final spectral bands are utilized and updated to speed up the search [10], 

which features lower computation times at the expense of extra memory usage for LUTs. 

Although the search processing is optimized, the bi-directional pixel search still takes 

more than 5% of the total execution time of Algorithm 1. In view of this, accelerating the 

Step 2 of Algorithm 1has become another key for optimizing Algorithm 1 not using 

LUTs. 

Taking into consideration that the GPU is specifically optimized for computational and 

memory-intensive problems, while the CUP devotes more resources to caching or control 

flow operations, we assign the calculations related with matrix operations and pixel search 

on the GPU. At the same time, we allocate part of the computations operating on small 

data to the CPU. Furthermore, because of the quite expensive cost of input/output (I/O) 

communication between the host (CPU) and the device (GPU), we minimize the data 

transfers between the host and the device in our implementation. Namely, the data is 

stored in the local GPU memory as much as possible, and the storage space for 

intermediate variables of the iterative process is allocated in advance. According to 

CUDA programming paradigms, when executing a function (or kernel) on the device 

(GPU), one has to allocate memory on it, transfer data from the host to the GPU, and 

finally transfer data back to the CPU, freeing the device memory. The kernel can be either 

manually defined or implemented by an optimized routine, like those offered by libraries 

such as CUBLAS [22] and CULA [23]. However, the latter usually achieves better 

performance than the former for matrix multiplication [24]. Thus, CULA is chosen to 

realize the main matrix operations in this paper. 

With the aforementioned issues in mind, a parallel implementation of TSP-AST (TSP-

AST-P) has been developed, as illustrated in Figure 2. In the following, we describe the 

most relevant steps of the parallelization and architecture related optimizations conducted 

in the development of the TSP-AST-P algorithm. 

Input pixel sample and HIS images

Parameters initialization

Copy data from host to device

Prepare matrix A, vectors B 
and Yn

p_kernel

Calculate A-1 culaDgetrf
culaDgetri

culaDeviceDgemv
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0),,(̂ CCYnmkf n 

Search the nearest 
neighbor sets L and 

set_kernel
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Copy E from device to host

Use AAC to code the prediction 
error E

Output: the compressed bit-
stream of R

F

T

 

Figure 2. GPU Implementation of TSP-AST for Hyperspectral Compression 

For step 1 in Algorithm 1, computation of C is most time consuming. To reduce the 

amount of calculation in the loop process as much as possible, the solution of C is 

decomposed into three steps. One is to prepare the matrix A, the vectors B and Yn, in 

which A, B and Yn are both stored on GPU global memory, and the temporary variables 

are stored on shared memory to minimize the latency of global memory access. A kernel 

function named p_kernel is defined to implement the preparation for A, B and Yn on 

GPU. It launches a block with the same size of A, in which every thread calculates one 

element of A (i.e., 2

1 1 1
/))(( WywywW

W

i

W

i

W

i iiiiwy     
 ). Then, matrix inversion of A is 

calculated. This operation is realized using functions culaDgetrf and culaDgetri, which are 
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included in the high-efficient GPU accelerated linear algebra libraries of CULA. Finally, 

function culaDeviceDgemv in CULA is invoked to compute A-1B on the GPU. It takes 

full advantage of registers and shared memories of the GPU to achieve high efficiency in 

the multiplication of matrix and vector. After that, the remaining calculations of ),,(̂ nmkf  

and 
refP  are implemented by a kernel function f1_kernel, in which ),,(̂ nmkf  and 

refP  are 

allocated on GPU global memory, while the matrix-vector multiplication operation is 

realized via CULA function cluaDeviceDgemv. By these designs, the third-order 

interband prediction processes are reconstituted to maximize the parallel optimization. 

For step 2 in Algorithm 1, the procedure searches for the nearest neighbor using all the 

causal pixels in the current, previous, and final bands. The main operation is related with 

pixel search in one causal neighbor, which can be efficiently performed by kernel 

functions set_kernel and f2_kernel. The former conducts the mapping between thread and 

pixel on GPU, and each thread is responsible for the pixel search related to one pixel. 

According to the size of the causal neighbor, we start a p1×q1 thread grid on the GPU. The 

THREAD_SIZE and BLOCK_SIZE variables, respectively denoting the number of 

processing threads and processing blocks, are set to 32×32 and ((p1+32-1)/32)×((q1+32-

1)/32), in light of the computing capabilities of NVidia Kepler GTX690 and Tesla C2075 

(details of the platforms will be given in Section 4). 

For step 3, since adaptive search thresholds of hyperspectral image are also applicable 

to other images [10], we only compute these once for hyperspectral image, i.e., Cuprite 

(details of hyperspectral images will be given in Section 4). So these thresholds can be 

calculated in advance and be allocated on GPU global memory. The kernel function 

t_kernel in Fig. 2 is defined to compute these thresholds. After that, the remaining 

operation is search the final prediction. Since there are no dependencies among the pixels 

that inside the causal neighbor of the current pixel when this operation is carried out, this 

operation is ideally suited for GPU implementation. For the purpose of efficient 

parallelization, a kernel function called f3_kernel is implemented to perform the rest 

operations of step 3 in Algorithm 1, where a grid is created according to the size of pixel 

search scope, and each thread implements the pixel search of each element. Finally, the 

results are copied from device (GPU) to the host (CPU) for analyzing the loop termination 

condition and subsequent operations.  

To sum up, we provide a detailed step-by-step algorithm description of the parallel 

hyperspectral compression algorithm based on TSP-AST on GPUs in Algorithm 2. 

 

Algorithm 2. Parallel Hyperspectral Compression Algorithm Based on TSP-AST on GPU 

(TSP-AST-P) 

 

Input: HSI images NMKR  , number of bands K, width of image M, and height of image N, pixel sample 
NMKRnmkf ),,( ; 

Initialization: Set k=2, m=1, n=1, initialize the number of lines in search range L, the min_error, the starting 

point in a line sp, the error value Perr, the set of prediction error NMKE  : L=10, min_error=65536, sp=0, 

Perr=0, Enmke  ),,( , and e(k,m,n)=0; 

Step 1. Copy data from host to device 

Do: 

Do: 

Do: 

Step 2. Calculate the first stage prediction on GPU 

                  Invoke kernel function p_kernel to prepare maxtrix A, vectors B and Yn 

                           Invoke culaDgetrf, culaDgetri and culaDeviceDgemv to compute C=A-1B 

                  Invoke culaDeviceDgemv and f1_kernel to calculate 
0),,(̂ CCYnmkf n   and 

),,(̂ nmkfPref   

Step 3. Calculate the second stage prediction on GPU 

                     Invoke set_kernel to search the nearest neighbor sets L and L   
                   Invoke  f2_kernel to compute 
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Step 5. n=n+1 

While Nn   

Step 6. m=m+1 

While Mm   

Step 7. k=k+1 

While Kk   

Step 8. Copy E from device to host 

Step 9. Code the E using AAC on CPU 

Output: the compressed bit-stream of NMKR  . 

End 

 

 

4. Experimental Results 

The experimental platform used in our tests is a heterogeneous processor consisting of 

two CPUs and four GPUs. The hardware specifications and computing capabilities of the 

considered platforms are listed in Table 1. While, the tests were performed using the 64-

bit Microsoft Windows 7 operating system. The version of OpenMP and CUDA are 2.0 

and 6.0, respectively. 

We evaluate the compression performance and computing performance of TSP-AST-

P using the standard hyperspectral images, which acquired by the AVIRIS sensor in 1997. 

AVIRIS was devised by the JPL (jet propulsion laboratory) of NASA (National 

Aeronautics and Space Administration, USA), and it covers the 0.41-2.5 um spectrum 

range in 10 nm bands. This instrument contains four spectrometers that are flown at a 20 

km altitude with a 17 m spatial resolution. The four scenes are Cuprite, Jasper Ridge, 

Lunar Lake, and Moffett Field, which are widely used for compression testing and the 

evaluation of hyperspectral images. The radiance data of the above four scenes were 

represented in 16 bits; each image has 512 lines, 224 bands, and 614 pixels/line. 

Table 1. Hardware Specifications and Computing Capabilities of the 
Considered Platforms 

Specification Platform 1 Platform 2 

CPU 

Processor number Intel Core i7-4790K Intel Xeon E5-2620 v2 

Processor base frequency 4.0 GHz 2.1 GHz 

Number of cores 4 24 (2 CPUs) 

Main memory 16 GB 32 GB 

GPU 

Model GTX 690 Tesla K20C 

Frequency of CUDA cores 915 MHz 0.71 GHz 

Number of CUDA cores 3072 (2 GPUs) 9984 (4 GPUs) 

Floating-point performance 5.6 Tflops 4.68 Tflops 

Dedicated memory 4 GB 20 GB 

Memory interface 512 bit 1280 bit 

Memory bandwidth 384 GB/s 832 GB/s 

CUDA compute capability 3.0 3.5 

In order to demonstrate the performance improvements between the parallel 

implementations on multicore CPU platforms and our considered GPU platforms, a 

multicore implementation of TSP-AST (TSP-AST-M) has been developed using OpenMP 
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Application Program Interface (API) [25], which is adopted to explicitly address 

multithreaded and shared-memory parallelism. Two different platforms are used to 

perform the tests (see Table 1). The corresponding serial version (TSP-AST-S) is carried 

out on one core of the CPUs, and the multicore version (TSP-AST-M) is executed on all 

the cores of the CPUs. All the versions of the TSP-AST algorithm were implemented 

using the C++ programming language. 

First of all, we test the compression performance of the three implementations. The 

compression results are quantitatively shown in Table 2. The results indicate that the 

proposed TSP-AST-S, TSP-AST-M, and TSP-AST-P obtain exactly the same 

compression performance in terms of bits per pixel (BPP). Here, it is worth mentioning 

that the serial (TSP-AST-S) and the parallel GPU (TSP-AST-P) versions obtain exactly 

the same compression results. The two versions can be, therefore, considered exactly 

equivalent in terms of  BPP and only different in terms of computing performance. In the 

following part, we analyze the computing performance of the two versions by particularly 

focusing on the improvements of TSP-AST-P with regards to TSP-AST-S. 

Table 2. Compression Results (in Bits per Pixel) for the Complete AVIRIS 
Images 

Image TSP-AST-S TSP-AST-M TSP-AST-P 

Cuprite 

Jasper Ridge 

Lunar Lake 

Moffett Field 

3.68 

4.01 

3.71 

4.02 

3.68 

4.01 

3.71 

4.02 

3.68 

4.01 

3.71 

4.02 

Average 3.86 3.86 3.86 

Figure 3 and Figure 4 show the speedup profiles of TSP-AST using 1 GPU on both 

platforms. For the platform 1, using 1 GPU we have a Step 1 speedup of 37×, a Step 2 

speedup of 48×, a Step 3 speedup of 53×, and a total speedup of 45×. Accordingly, a Step 

1 speedup of 43×, a Step 2 speedup of 55×, a Step 3 speedup of 61×, and a total speedup 

of 52× can be obtained on platform 2. Figure 5 and Figure 6 show the speedup profiles of 

TSP-AST using 2 GPUs and 4 GPUs on the 4 AVIRIS images, respectively. The average 

compression time of TSP-AST-P corresponds to 17 s and 4 s. The fact that using 2 GPUs 

and 4 GPUs does not have a total speedup near 2 and 4 respectively can be attributed to 

the reason that each GPU is not assigned a job of equal workload. Nevertheless, when 

there are more than one GPU available, a general trend can be seen that using more GPUs 

does give higher speedup for TSP-AST. 

    

 

 

Figure 3. The Speedup Profile of 

TSP-AST Using 1 GPU on Platform 1 

Figure 4. The Speedup Profile of 

TSP-AST Using 1 GPU on Platform 2 
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Table 3 reports the obtained results in terms of computation times and speedups 

measured after comparing the parallel implementations of TSP-AST (TSP-AST-M and 

TSP-AST-P) with the equivalent serial version for the four considered hyperspectral 

images. The TSP-AST-P achieved significant speedups, with regard to the serial version 

TSP-AST-S and also with regard to TSP-AST-M, on both platforms. The data transfers 

between host and device were obtained after profiling the implementation using the 

CUDA visual profiler tool distributed by Nvidia [26]. In all cases, less than 34 percent of 

the total solver time is consumed by data transfers. Taking into consideration that the 

AVIRIS scanning rate is 12 Hz [27], more satellite hyperspectral sensors such as 

Hyperion feature 220 Hz cross-line scanning rates. This means that a hyperspectral sensor 

data like the AVIRIS Cuprite scene could be collected in about 5s. Therefore, in the case 

of using the platform 2, TSP-AST-P can compress the image faster than the data being 

acquired, thus achieving real-time computing performance. 

Table 3. Execution Time of the Serial (TSP-AST-S), Multicores (TSP-AST-
M), and GPU (TSP-AST-P) Implementations 

 

Platform 1 Cuprite Jasper Ridge Lunar Lake Moffett Field 

Times 

(sec) 

TSP-AST-S 1357.41 1370.76 1406.63 1361.95 

TSP-AST-M 637.32 640.54 651.21 639.47 

TSP-

AST-P 

Total 16.96 17.11 17.54 17.01 

IO(Host to 
Device) 

0.9356 

(5.52%) 

0.9364 

(5.47%) 

0.9361 

(5.34%) 

0.9397 

(5.52%) 

IO(Device to 
Host) 

0.4068 

(2.40%) 

0.4075 

(2.38%) 

0.4072 

(2.32%) 

0.4098 

(2.41%) 

Speed 
Up(X) 

TSP-AST-M/TSP-AST-P 37.58 37.44 37.13 37.59 

TSP-AST-S/TSP-AST-P 80.04 80.11 80.20 80.07 

Platform 2 Cuprite Jasper Ridge Lunar Lake Moffett Field 

 TSP-AST-S 1351.32 1364.19 1394.86 1358.64 

TSP-AST-M 259.37 263.84 275.73 261.78 

TSP-
AST-P 

Total 3.73 3.78 3.82 3.75 

IO(Host to 
Device) 

0.9071 

(24.32%) 

0.9178 

24.28%) 

0.9298 

(24.34%) 

0.9154 

(24.41%) 

IO(Device to 
Host) 

0.3526 
(9.45%) 

0.3597 
(9.52%) 

0.3503 
(9.17%) 

0.3497 
(9.33%) 

Speed 

Up(X) 

TSP-AST-M/TSP-AST-P 69.54 69.80 72.18 69.81 

TSP-AST-S/TSP-AST-P 362.28 360.90 365.15 362.30 

 

5. Conclusion 

While the three-stage prediction with adaptive search threshold method (TSP-AST) 

achieves excellent compression performance, it is relatively slow due to several matrix 

operations, bi-directional pixel search, and backward pixel search with adaptive search 

Figure 5. The Speedup Profile of 

TSP-AST Using 2 GPU on Platform 1 

Figure 6. The Speedup Profile of 

TSP-AST Using 4 GPU on Platform 2 
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threshold. All these operations must be performed on each pixel that to be predicted. In 

this paper, a new parallel implementation of the TSP-AST algorithm for hyperspectral 

image compression has been presented using the CUDA. Experimental results show the 

effectiveness of the proposed GPU implementation, not only in terms of compression 

performance but also in terms of computing performance. The implementation achieved 

significant speedups compared to the serial and multicore versions, which are 

encouraging to provide this effective and efficient compression solution for hyperspectral 

compression in real time. 
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