
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.10, No. 2 (2017), pp.1-12

http://dx.doi.org/10.14257/ijsip.2017.10.2.01

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2017 SERSC

GPU Implementation of Three-Stage Prediction with Adaptive

Search Threshold for Hyperspectral Image Compression

Changguo Li1,* and Yuke Yang2

1 College of Fundamental Education, Sichuan Normal University, Chengdu

610068, China
2 Department of Laboratory and Equipment Management, Sichuan Normal

University, Chengdu 610068, China

E-mail: 389224879@qq.com

Abstract

For the huge size of hyperspectral images with hundreds of bands, compression is

necessary to save storage space and transmission time. Three-stage prediction with

adaptive search threshold (TSP-AST), which consists of third-order interband predictor,

bi-directional pixel search, backward pixel search with adaptive search threshold, and

entropy coding, has been proven to be an effective lossless compression method for

hyperspectral images, but its computational complexity is very high which makes its

application to time-critical scenarios quite limited. In order to improve the computational

efficiency of the algorithm, a parallel implementation of the TSP-AST algorithm is

presented using compute unified device architecture (CUDA) on graphics processing

units (GPUs) by exploiting the data parallel characteristics of the three prediction stages.

The GPU parallel implementation is compared with the serial and multicore

implementations on CPUs. Experimental results based on real hyperspectral images

reveal remarkable acceleration factors and real-time computing performance in our four-

GPU-based implementation of the TSP-AST compression scheme, while retaining exactly

the same compression performance with regard to the serial and multicore versions of the

compressor.

Keywords: Graphics Processing Unit (GPU); Compute Unified Device Architecture

(CUDA); hyperspectral images; lossless compression.

1. Introduction

The advancement of sensor technology produces remotely sensed data that have a large

number of spectral bands [1]. Hyperspectral images (HSI) are widely used in a variety of

fields, such as terrain classification, agricultural monitoring, and military surveillance.

Fine spectral resolution can be a desired featured when it comes to detecting fingerprints

in the spectral response of a scene. Such applications are enabled by the richness of data

captured by hyperspectral sensors. A problem of handling such wealth of information

naturally arises and calls for the use of compression methods. These methods may be

divided into lossless and lossy compression techniques. Though the latter can achieve

higher compression ratios than the former, it isn’t able to preserve the quality of original

hyperspectral images. Therefore, there is a need to compress hyperspectral images

adopting lossless methods. Moreover, high compression performance is important for

saving storage space and transmission time. However, HSI compression is subject to

important challenges, such as high dimensionality and insufficient compression

performance in practice, which pose significant challenges to HSI compression.

Among many techniques for HSI compression, lossless compression algorithms have

received a lot of interest. Several lossless algorithms, such as JPEG 2000 [2], JPEG-LS

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

2 Copyright ⓒ 2017 SERSC

[3], LUT [4], and LAIS-LUT [5], have relatively low complexity and thus are suitable for

onboard compression. Other lossless algorithms such as FL [6], C-DPCM [7], S-FMP [8],

and C-DPCM-APL [9] are more time-consuming and are thus suitable for ground

compression. Most of these techniques rely on the fact that a scene of hyperspectral

images is a sequence of images that have two types of redundancies, namely: spatial

redundancy and spectral redundancy. Spatial redundancy is the correlation among

spatially adjacent pixels in the same spectral band. Spectral redundancy is the correlation

among pixels that have the same spatial location but are in adjacent spectral bands. As a

result, the spectral redundancy has been exploited in combination with the spatial

redundancy during the compression procedure.

Taking advantage of the spatial redundancy, the spectral redundancy and the

calibration-induced redundancy in hyperspectral images, in [10], we proposed a novel

three-stage prediction with adaptive search threshold (TSP-AST). It takes the third-order

interband predictor, the bi-directional pixel search, and the backward pixel search with

adaptive search threshold as its three predictors. As shown in [10], the compression

performance of this method is comparable or superior to that exhibited by many other

state-of-the-art techniques. However, its computational complexity was shown to be very

high, thus limiting its application in time-critical scenarios. The reason is not only the

extremely high dimensionality of hyperspectral images, but also that the first, the second

and the third prediction stages adopted by this compressor carry out matrix operations, bi-

directional pixel search, and backward pixel search for each current pixel, respectively.

This results in a computational complexity that is even higher than the above-mentioned

lossless algorithms.

In recent years, co-processing on Graphic Processor Units (GPUs) has become a

disruptive technology in high performance computing. Exploiting the ever increasing

transistor count, a growing number of processor cores have been added to GPUs.

Consequently, GPUs have hundreds of parallel processor cores for execution of tens of

thousands of parallel threads. Compute Unified Device Architecture (CUDA) is an

extension to the C programming language offering programming GPU’s directly [11]. In

general, GPU has been able to offer two to three orders of magnitude speedup over CPU

for various science and engineering applications, and therefore its exploding capability

has attracted more and more scientists and engineers to use it as a cost-effective high-

performance computing platform. A framework for efficient implementation of GPU

adaptations of image processing algorithms in remote sensing is described in [12]. A near-

real-time automatic target detection algorithm has been reported in [13]. To improve the

execution performance of the weather research and forecasting (WRF) model, two

different kinds of high-performance computing schemes: GPU-based Stony Brook

University and GPU-based Goddard shortwave radiative, are given in [14] and [15]. A

new multi-GPU implementation of the minimum volume simplex analysis algorithm for

hyperspectral image unmixing is reported in [16]. By porting the calculation of composite

kernels to GPUs, and performing intensive computations based on NVidia’s compute

unified device architecture, an efficient parallel implementation of composite kernels in

support vector machines for hyperspectral image classification, is described in [17].

Nevertheless, there are very few GPU implementations of hyperspectral image

compression algorithms in the literature. In [18], [19], and [20], the GPU acceleration

implementations of the linear prediction method using constant coefficients (LP-CC), the

predictive partitioning vector quantization (PPVQ), and lossy compression for Exomars

(LCE) are reported, respectively. In [21], for decreasing the high computing complexity, a

parallel error-resilient entropy coding (EREC) on a GPU is given.

In this paper, we propose a novel parallel TSP-AST method for hyperspectral image

compression on GPUs. First, we analyze the CPU profile of the four stages of TSP-AST

on running the AVIRIS images and find out that the three prediction stages take up 97

percent of the CPU execution time. Then, we exploit the data parallel characteristics of

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

Copyright ⓒ 2017 SERSC 3

the three prediction stages and the advantages of utilizing GPU parallel computing

principles to dramatically improve the computation speed of TSP-AST. The proposed

parallel implementation properly exploits the GPU architecture at the low level and makes

effective use of the computational power of both CPUs and GPUs synergetic fashion. The

operations relevant to large data and intensive computations are executed on the GPUs,

while the operations related with control are carried out on CPUs. The parallel

implementation is executed using Nvidia’s compute unified device architecture (CUDA),

and the results of the presented method are compared with serial and multicore CPU

implementations.

This paper is organized as follows. Section II describes the effective lossless

compression using TSP-AST. Section III presents its parallel implementation on GPUs

using CUDA. Section IV experimentally assesses the proposed method in terms of both

compression performance and computing performance. Finally, Section V gives

conclusions.

2. Lossless Compression Using TSP-AST

TSP-AST based on the spatial redundancy, the spectral redundancy and the calibration-

induced redundancy can obtain excellent compression performance [10]. Its prediction

process in mathematical terms is described as follows. First, the third-order predictor

(IP3) is adopted and has the following prediction formula:

yxwv mmxmwmvnmkf )()()(),,(̂  or
0),,(̂ CCYnmkf n  (1)

where),,(̂ nmkf is the prediction of the current pixel),,(nmkf (kth band, mth row, and nth

column). “x”, “w”, and “v” denote the pixels colocated with the current pixel in three previuos

bands and “m” stands for the expectation value of a random variable.  and,, are the

prediction coefficients.],,[xwvn mxmwmvY  , TC],,[ , and
ymC 0 . Prediction

coefficients  and,, can be derived by solving a Wiener-Hopf equation



















































yx

yw

yv

x

xw

xv

xw

w

wv

xv

wv

v































2

2

2

 or AC=B (2)

where



















2

2

2

x

xw

xv

xw

w

wv

xv

wv

v

A


















 and T

yxywyvB],,[ , the statistical parameters can be approximated as

(let W=32)

))((
1

}{

2

1 1

2

2

222

  




W

i

W

i ii

xx

xxW
W

mxE
 (3)

)(
1

}{

1 1 12     




W

i

W

i

W

i iiii

ywwy

ywywW
W

mmwyE
 (4)

Then the bi-directional pixel search (BDPS) as the second stage is applied. In this

prediction process, a prediction of the current pixel),,(nmkf using all the causal pixels,

which are in the previous, current and final bands, is made. Namely, two pixels which

value equal to),,1(nmkf  and),,(nmkf final
 are searched in the previous and final

bands, respectively. If equal valued pixels),,1(11 nmkf  ,),,(11 nmkf final
 ,),,1(22 nmkf  ,

),,(22 nmkf final  , …,),,1(tt nmkf  ,),,(ttfinal nmkf  (NMt 1 , where M is the number of

the rows, N is the number of the columns) are found. The decision among one of the

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

4 Copyright ⓒ 2017 SERSC

possible prediction values),,(11 nmkf  ,),,(11 nmkf  ,),,(22 nmkf  ,),,(22 nmkf  , …,

),,(tt nmkf  ,),,(tt nmkf  is based on the closeness of the values to the prediction

reference value
refP , where the prediction obtained from the first stage prediction is

treated as the prediction reference
refP . Otherwise, the estimated pixel value is equal to

the prediction reference value
refP . The whole search is performed in the reverse scanning

order. Naturally, these guarantee that the final prediction value is rarely more than the

prediction reference value
refP .

In the third stage, the prediction obtained from the second stage is used to replace the

prediction reference
refP . The causal pixels in the current band are searched, and the one

with a pixel value that is closest to
refP is selected as the final prediction. In this

algorithm, the adaptive search thresholds are used as the upper bound in searching for the

optimal threshold value for each band. The adaptive search threshold of band k is defined

as

MN

tskftskf

T

M

s

N

t

 



 1 1
k

),,(),,(̂
 (5)

where),,(̂ tskf is the prediction of pixel),,(tskf obtained from previous prediction

stage, and Kk 2 (K is the total number of bands). After prediction, the difference

between the predicted and original values is computed. The difference is entropy-coded

using an adaptive arithmetic coder (AAC). To sum up, the serial implementation of TSP-

AST (referred to hereinafter as TSP-AST-S) can be summarized in Algorithm 1.

Algorithm 1. Serial Algorithm of TSP-AST (TSP-AST-S)

Input: HSI images NMKR  , number of bands K, width of image M, and height of image N, pixel sample

NMKRnmkf ),,(;
Initialization: Set k=2, m=1, n=1, initialize the number of lines in search range L, the min_error, the starting
point in a line sp, the error value Perr, the set of prediction error NMKE  : L=10, min_error=65536, sp=0,
Perr=0, Enmke ),,(, and e(k,m,n)=0;
Do:

Do:
Do:

Step 1. Calculate the stage-1 prediction value of the current pixel:

))((
1 2

1 1

2

2

2   


W

i

W

i iix xxW
W

 ,

)(
1

1 1 12     


W

i

W

i

W

i iiiiwy ywywW
W

 ,



















































yx

yw

yv

x

xw

xv

xw

w

wv

xv

wv

v































2

2

2

,

yxwv mmxmwmvnmkf )()()(),,(̂  ;

Step 2. Search for the set of the nearest neighbor L in the previous and the final bands, set
L={),,1(11 nmkf  ,…,),,(ttfinal nmkf  }, give the set L’ where corresponding pixels have the same spatial
position in current band, L ={),,(11 nmkf  ,…,),,(tt nmkf  }, and make the prediction:

|})),,({|minarg(),(
''

1

''
1

,...,

,...,
ref

nny
mmx

Pyxkfqp

t

t







,

),,(),,(̂ qpkfnmkf  , then update),,(̂ nmkfPref  ;

Step 3. In the search range, the one with a pixel value that is closest to
refP is selected as the

final prediction:

MN

tskftskf

T

M

s

N

t

 



 1 1
k

),,(),,(̂
;

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

Copyright ⓒ 2017 SERSC 5

Step 3.1. For v=m:max{(m-L),0},
Step 3.1.1. If v=m, sp=n-1;
Step 3.1.2. Else sp=M-1;
Step 3.1.3. For h=sp:1,

 Compute the error value:

)),,((referr PhvkfabsP  ;

Step 3.1.3.1. If errorPerr min_ ,

errPerror min_ ;

Step 3.1.3.2. If
kTerror min_ ,

 return (f(k,v,h));
Step 3.1.4. return (f(k,v,h));

Step 3.2.),,(),,(̂ hvkfnmkf  ;
Step 4. Calculate the difference between the predicted and original values:

),,(̂),,(),,(nmkfnmkfnmke  ;

Step 5. n=n+1;
While Nn  ;
Step 6. m=m+1;

While Mm  ;
Step 7. k=k+1;

While Kk 
Step 8. the prediction error is entropy-coded using AAC;
Output: the compressed bit-stream of NMKR  .
End

3. GPU Implementation

Although the solution of TSP-AST can effectively compress hyperspectral images, it is

quite expensive in computational terms. The theoretical analysis indicates that the

calculation of the three-order interband prediction and the loop iterative solution for

),,(̂ nmkf in Step 1 and Step 3 of Algorithm 1, respectively, are the most time consuming

parts, as the former involves heavy computations with matrices, the latter includes the

backward pixel search is carried out for each pixel in its local neighborhood. Here, we

take the AVIRIS Cuprite hyperspectral dataset (details of the dataset will be given in

Section 4) as an example to experimentally analyze computational bottlenecks of

Algorithm 1. Figure 1 shows the percentage of total CPU time consumed by the different

steps of Algorithm 1. Since the calculation of three-order interband prediction and the

backward pixel search with adaptive search threshold take 25.68% and 65.85%,

respectively, the key for optimizing Algorithm 1 is accelerating the calculation of three-

order interband prediction and the backward pixel search with adaptive search threshold.

Figure 1. Percentage of Total CUP Time Consumed by Different Steps when
Processing the AVIRIS Cuprite

Meanwhile, because of involving search, the bi-directional pixel search (namely the

Step 2 of Algorithm 1) also leads to high computational overhead of the TSP-AST

algorithm. In order to decrease the computational complexity, two LUTs for each of the

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

6 Copyright ⓒ 2017 SERSC

previous and final spectral bands are utilized and updated to speed up the search [10],

which features lower computation times at the expense of extra memory usage for LUTs.

Although the search processing is optimized, the bi-directional pixel search still takes

more than 5% of the total execution time of Algorithm 1. In view of this, accelerating the

Step 2 of Algorithm 1has become another key for optimizing Algorithm 1 not using

LUTs.

Taking into consideration that the GPU is specifically optimized for computational and

memory-intensive problems, while the CUP devotes more resources to caching or control

flow operations, we assign the calculations related with matrix operations and pixel search

on the GPU. At the same time, we allocate part of the computations operating on small

data to the CPU. Furthermore, because of the quite expensive cost of input/output (I/O)

communication between the host (CPU) and the device (GPU), we minimize the data

transfers between the host and the device in our implementation. Namely, the data is

stored in the local GPU memory as much as possible, and the storage space for

intermediate variables of the iterative process is allocated in advance. According to

CUDA programming paradigms, when executing a function (or kernel) on the device

(GPU), one has to allocate memory on it, transfer data from the host to the GPU, and

finally transfer data back to the CPU, freeing the device memory. The kernel can be either

manually defined or implemented by an optimized routine, like those offered by libraries

such as CUBLAS [22] and CULA [23]. However, the latter usually achieves better

performance than the former for matrix multiplication [24]. Thus, CULA is chosen to

realize the main matrix operations in this paper.

With the aforementioned issues in mind, a parallel implementation of TSP-AST (TSP-

AST-P) has been developed, as illustrated in Figure 2. In the following, we describe the

most relevant steps of the parallelization and architecture related optimizations conducted

in the development of the TSP-AST-P algorithm.

Input pixel sample and HIS images

Parameters initialization

Copy data from host to device

Prepare matrix A, vectors B
and Yn

p_kernel

Calculate A-1 culaDgetrf
culaDgetri

culaDeviceDgemv
f1_kernel

0),,(̂ CCYnmkf n 

Search the nearest
neighbor sets L and

set_kernel

f2_kernel

CPU

GPU

L
|})),,({|minarg(),(

''
1

''
1

,...,

,...,
ref

nny
mmx

Pyxkfqp

t

t







C=A-1B culaDeviceDgemv

),,(),,(̂ qpkfnmkf 

),,(̂ nmkfPref 

Search the final prediction
f(k,v,h), f3_kernel

t_kernel
MN

tskftskf

T

M

s

N

t
 
 



 1 1
k

),,(),,(̂

),,(̂ nmkfPref 

),,(),,(̂ hvkfnmkf 
),,(̂),,(),,(nmkfnmkfnmke 

Nn Mm 
Kk 

Copy E from device to host

Use AAC to code the prediction
error E

Output: the compressed bit-
stream of R

F

T

Figure 2. GPU Implementation of TSP-AST for Hyperspectral Compression

For step 1 in Algorithm 1, computation of C is most time consuming. To reduce the

amount of calculation in the loop process as much as possible, the solution of C is

decomposed into three steps. One is to prepare the matrix A, the vectors B and Yn, in

which A, B and Yn are both stored on GPU global memory, and the temporary variables

are stored on shared memory to minimize the latency of global memory access. A kernel

function named p_kernel is defined to implement the preparation for A, B and Yn on

GPU. It launches a block with the same size of A, in which every thread calculates one

element of A (i.e., 2

1 1 1
/))((WywywW

W

i

W

i

W

i iiiiwy     
). Then, matrix inversion of A is

calculated. This operation is realized using functions culaDgetrf and culaDgetri, which are

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

Copyright ⓒ 2017 SERSC 7

included in the high-efficient GPU accelerated linear algebra libraries of CULA. Finally,

function culaDeviceDgemv in CULA is invoked to compute A-1B on the GPU. It takes

full advantage of registers and shared memories of the GPU to achieve high efficiency in

the multiplication of matrix and vector. After that, the remaining calculations of),,(̂ nmkf

and
refP are implemented by a kernel function f1_kernel, in which),,(̂ nmkf and

refP are

allocated on GPU global memory, while the matrix-vector multiplication operation is

realized via CULA function cluaDeviceDgemv. By these designs, the third-order

interband prediction processes are reconstituted to maximize the parallel optimization.

For step 2 in Algorithm 1, the procedure searches for the nearest neighbor using all the

causal pixels in the current, previous, and final bands. The main operation is related with

pixel search in one causal neighbor, which can be efficiently performed by kernel

functions set_kernel and f2_kernel. The former conducts the mapping between thread and

pixel on GPU, and each thread is responsible for the pixel search related to one pixel.

According to the size of the causal neighbor, we start a p1×q1 thread grid on the GPU. The

THREAD_SIZE and BLOCK_SIZE variables, respectively denoting the number of

processing threads and processing blocks, are set to 32×32 and ((p1+32-1)/32)×((q1+32-

1)/32), in light of the computing capabilities of NVidia Kepler GTX690 and Tesla C2075

(details of the platforms will be given in Section 4).

For step 3, since adaptive search thresholds of hyperspectral image are also applicable

to other images [10], we only compute these once for hyperspectral image, i.e., Cuprite

(details of hyperspectral images will be given in Section 4). So these thresholds can be

calculated in advance and be allocated on GPU global memory. The kernel function

t_kernel in Fig. 2 is defined to compute these thresholds. After that, the remaining

operation is search the final prediction. Since there are no dependencies among the pixels

that inside the causal neighbor of the current pixel when this operation is carried out, this

operation is ideally suited for GPU implementation. For the purpose of efficient

parallelization, a kernel function called f3_kernel is implemented to perform the rest

operations of step 3 in Algorithm 1, where a grid is created according to the size of pixel

search scope, and each thread implements the pixel search of each element. Finally, the

results are copied from device (GPU) to the host (CPU) for analyzing the loop termination

condition and subsequent operations.

To sum up, we provide a detailed step-by-step algorithm description of the parallel

hyperspectral compression algorithm based on TSP-AST on GPUs in Algorithm 2.

Algorithm 2. Parallel Hyperspectral Compression Algorithm Based on TSP-AST on GPU

(TSP-AST-P)

Input: HSI images NMKR  , number of bands K, width of image M, and height of image N, pixel sample
NMKRnmkf ),,(;

Initialization: Set k=2, m=1, n=1, initialize the number of lines in search range L, the min_error, the starting

point in a line sp, the error value Perr, the set of prediction error NMKE  : L=10, min_error=65536, sp=0,

Perr=0, Enmke ),,(, and e(k,m,n)=0;

Step 1. Copy data from host to device

Do:

Do:

Do:

Step 2. Calculate the first stage prediction on GPU

 Invoke kernel function p_kernel to prepare maxtrix A, vectors B and Yn

 Invoke culaDgetrf, culaDgetri and culaDeviceDgemv to compute C=A-1B

 Invoke culaDeviceDgemv and f1_kernel to calculate
0),,(̂ CCYnmkf n  and

),,(̂ nmkfPref 

Step 3. Calculate the second stage prediction on GPU

 Invoke set_kernel to search the nearest neighbor sets L and L 
 Invoke f2_kernel to compute

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

8 Copyright ⓒ 2017 SERSC

|})),,({|minarg(),(

''
1

''
1

,...,

,...,
ref

nny
mmx

Pyxkfqp

t

t







,

),,(),,(̂ qpkfnmkf  , and),,(̂ nmkfPref 

Step 4. Calculate the final prediction on GPU

 Invoke t_kernel to compute

MN

tskftskf

T

M

s

N

t

 



 1 1
k

),,(),,(̂

 Invoke f3_kernel to compute),,(),,(̂ hvkfnmkf  and),,(̂),,(),,(nmkfnmkfnmke 

Step 5. n=n+1

While Nn 

Step 6. m=m+1

While Mm 

Step 7. k=k+1

While Kk 

Step 8. Copy E from device to host

Step 9. Code the E using AAC on CPU

Output: the compressed bit-stream of NMKR  .

End

4. Experimental Results

The experimental platform used in our tests is a heterogeneous processor consisting of

two CPUs and four GPUs. The hardware specifications and computing capabilities of the

considered platforms are listed in Table 1. While, the tests were performed using the 64-

bit Microsoft Windows 7 operating system. The version of OpenMP and CUDA are 2.0

and 6.0, respectively.

We evaluate the compression performance and computing performance of TSP-AST-

P using the standard hyperspectral images, which acquired by the AVIRIS sensor in 1997.

AVIRIS was devised by the JPL (jet propulsion laboratory) of NASA (National

Aeronautics and Space Administration, USA), and it covers the 0.41-2.5 um spectrum

range in 10 nm bands. This instrument contains four spectrometers that are flown at a 20

km altitude with a 17 m spatial resolution. The four scenes are Cuprite, Jasper Ridge,

Lunar Lake, and Moffett Field, which are widely used for compression testing and the

evaluation of hyperspectral images. The radiance data of the above four scenes were

represented in 16 bits; each image has 512 lines, 224 bands, and 614 pixels/line.

Table 1. Hardware Specifications and Computing Capabilities of the
Considered Platforms

Specification Platform 1 Platform 2

CPU

Processor number Intel Core i7-4790K Intel Xeon E5-2620 v2

Processor base frequency 4.0 GHz 2.1 GHz

Number of cores 4 24 (2 CPUs)

Main memory 16 GB 32 GB

GPU

Model GTX 690 Tesla K20C

Frequency of CUDA cores 915 MHz 0.71 GHz

Number of CUDA cores 3072 (2 GPUs) 9984 (4 GPUs)

Floating-point performance 5.6 Tflops 4.68 Tflops

Dedicated memory 4 GB 20 GB

Memory interface 512 bit 1280 bit

Memory bandwidth 384 GB/s 832 GB/s

CUDA compute capability 3.0 3.5

In order to demonstrate the performance improvements between the parallel

implementations on multicore CPU platforms and our considered GPU platforms, a

multicore implementation of TSP-AST (TSP-AST-M) has been developed using OpenMP

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

Copyright ⓒ 2017 SERSC 9

Application Program Interface (API) [25], which is adopted to explicitly address

multithreaded and shared-memory parallelism. Two different platforms are used to

perform the tests (see Table 1). The corresponding serial version (TSP-AST-S) is carried

out on one core of the CPUs, and the multicore version (TSP-AST-M) is executed on all

the cores of the CPUs. All the versions of the TSP-AST algorithm were implemented

using the C++ programming language.

First of all, we test the compression performance of the three implementations. The

compression results are quantitatively shown in Table 2. The results indicate that the

proposed TSP-AST-S, TSP-AST-M, and TSP-AST-P obtain exactly the same

compression performance in terms of bits per pixel (BPP). Here, it is worth mentioning

that the serial (TSP-AST-S) and the parallel GPU (TSP-AST-P) versions obtain exactly

the same compression results. The two versions can be, therefore, considered exactly

equivalent in terms of BPP and only different in terms of computing performance. In the

following part, we analyze the computing performance of the two versions by particularly

focusing on the improvements of TSP-AST-P with regards to TSP-AST-S.

Table 2. Compression Results (in Bits per Pixel) for the Complete AVIRIS
Images

Image TSP-AST-S TSP-AST-M TSP-AST-P

Cuprite

Jasper Ridge

Lunar Lake

Moffett Field

3.68

4.01

3.71

4.02

3.68

4.01

3.71

4.02

3.68

4.01

3.71

4.02

Average 3.86 3.86 3.86

Figure 3 and Figure 4 show the speedup profiles of TSP-AST using 1 GPU on both

platforms. For the platform 1, using 1 GPU we have a Step 1 speedup of 37×, a Step 2

speedup of 48×, a Step 3 speedup of 53×, and a total speedup of 45×. Accordingly, a Step

1 speedup of 43×, a Step 2 speedup of 55×, a Step 3 speedup of 61×, and a total speedup

of 52× can be obtained on platform 2. Figure 5 and Figure 6 show the speedup profiles of

TSP-AST using 2 GPUs and 4 GPUs on the 4 AVIRIS images, respectively. The average

compression time of TSP-AST-P corresponds to 17 s and 4 s. The fact that using 2 GPUs

and 4 GPUs does not have a total speedup near 2 and 4 respectively can be attributed to

the reason that each GPU is not assigned a job of equal workload. Nevertheless, when

there are more than one GPU available, a general trend can be seen that using more GPUs

does give higher speedup for TSP-AST.

Figure 3. The Speedup Profile of

TSP-AST Using 1 GPU on Platform 1

Figure 4. The Speedup Profile of

TSP-AST Using 1 GPU on Platform 2

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

10 Copyright ⓒ 2017 SERSC

Table 3 reports the obtained results in terms of computation times and speedups

measured after comparing the parallel implementations of TSP-AST (TSP-AST-M and

TSP-AST-P) with the equivalent serial version for the four considered hyperspectral

images. The TSP-AST-P achieved significant speedups, with regard to the serial version

TSP-AST-S and also with regard to TSP-AST-M, on both platforms. The data transfers

between host and device were obtained after profiling the implementation using the

CUDA visual profiler tool distributed by Nvidia [26]. In all cases, less than 34 percent of

the total solver time is consumed by data transfers. Taking into consideration that the

AVIRIS scanning rate is 12 Hz [27], more satellite hyperspectral sensors such as

Hyperion feature 220 Hz cross-line scanning rates. This means that a hyperspectral sensor

data like the AVIRIS Cuprite scene could be collected in about 5s. Therefore, in the case

of using the platform 2, TSP-AST-P can compress the image faster than the data being

acquired, thus achieving real-time computing performance.

Table 3. Execution Time of the Serial (TSP-AST-S), Multicores (TSP-AST-
M), and GPU (TSP-AST-P) Implementations

Platform 1 Cuprite Jasper Ridge Lunar Lake Moffett Field

Times

(sec)

TSP-AST-S 1357.41 1370.76 1406.63 1361.95

TSP-AST-M 637.32 640.54 651.21 639.47

TSP-

AST-P

Total 16.96 17.11 17.54 17.01

IO(Host to
Device)

0.9356

(5.52%)

0.9364

(5.47%)

0.9361

(5.34%)

0.9397

(5.52%)

IO(Device to
Host)

0.4068

(2.40%)

0.4075

(2.38%)

0.4072

(2.32%)

0.4098

(2.41%)

Speed
Up(X)

TSP-AST-M/TSP-AST-P 37.58 37.44 37.13 37.59

TSP-AST-S/TSP-AST-P 80.04 80.11 80.20 80.07

Platform 2 Cuprite Jasper Ridge Lunar Lake Moffett Field

 TSP-AST-S 1351.32 1364.19 1394.86 1358.64

TSP-AST-M 259.37 263.84 275.73 261.78

TSP-
AST-P

Total 3.73 3.78 3.82 3.75

IO(Host to
Device)

0.9071

(24.32%)

0.9178

24.28%)

0.9298

(24.34%)

0.9154

(24.41%)

IO(Device to
Host)

0.3526
(9.45%)

0.3597
(9.52%)

0.3503
(9.17%)

0.3497
(9.33%)

Speed

Up(X)

TSP-AST-M/TSP-AST-P 69.54 69.80 72.18 69.81

TSP-AST-S/TSP-AST-P 362.28 360.90 365.15 362.30

5. Conclusion

While the three-stage prediction with adaptive search threshold method (TSP-AST)

achieves excellent compression performance, it is relatively slow due to several matrix

operations, bi-directional pixel search, and backward pixel search with adaptive search

Figure 5. The Speedup Profile of

TSP-AST Using 2 GPU on Platform 1

Figure 6. The Speedup Profile of

TSP-AST Using 4 GPU on Platform 2

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

Copyright ⓒ 2017 SERSC 11

threshold. All these operations must be performed on each pixel that to be predicted. In

this paper, a new parallel implementation of the TSP-AST algorithm for hyperspectral

image compression has been presented using the CUDA. Experimental results show the

effectiveness of the proposed GPU implementation, not only in terms of compression

performance but also in terms of computing performance. The implementation achieved

significant speedups compared to the serial and multicore versions, which are

encouraging to provide this effective and efficient compression solution for hyperspectral

compression in real time.

Acknowledgments

This work is supported by the Research Foundation of the Sichuan Department of

Education (15ZB0044), and the Research Foundation of Sichuan Normal University

(2015KYQD312).

References

[1] P. M. Mather, “Computer processing of remotely-sensed images,” 2nd ed. Chichester, U. K.: Wiley,

(1999).

[2] D. Taubman and M. Marcellin, “JPEG2000: Standard for interactive imaging,” Proc. IEEE, vol. 90,

(2002), pp. 1336–1357.

[3] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm:

Principles and standardization into JPEG-LS,” IEEE Trans. Image Process., vol. 9, no. 8, (2000), pp.

1309–1324, 2000.

[4] J. Mielikainen, “Lossless compression of hyperspectral images using lookup tables,” IEEE Signal

Process. Lett., vol. 13, no. 3, (2006), pp. 157–160.

[5] B. Huang and Y. Sriraja, “Lossless compression of hyperspectral imagery via lookup tables with

predictor selection,” in Proc. SPIE, vol. 6365, (2006), pp. 63650L-1–63650L-8.

[6] A. B. Kiely and M. A. Klimesh, “Exploiting calibration-induced artifacts in lossless compression of

hyperspectral imagery,” IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 8, (2009), pp. 2672–2678.

[7] J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral

images,” IEEE Trans. Geosci. Remote Sensing, vol. 41, no. 12, (2003), pp. 2943–2946.

[8] B. Aiazzi, L. Alparone, S. Baronti, and C. Lastri, “Crisp and fuzzy adaptive spectral predictions for

lossless and near- lossless compression of hyperspectral imagery,” IEEE Trans. Geosci. Remote Sensing

Lett., vol. 4, no. 4, (2007), pp. 532–536.

[9] J. Mielikainen and B. Huang, “Lossless compression of hyperspectral images using clustered linear

prediction with adaptive prediction length,” IEEE Trans. Geosci. Remote Sensing Lett., vol. 9, no. 6,

(2012), pp. 1118–1121.

[10] C. G. Li, and K. Guo, “Lossless compression of hyperspectral images using three-stage prediction with

adaptive search threshold,” international journal of signal processing, image processing and pattern

recognition, vol. 7, no. 3, (2014), pp. 305-316.

[11] “Nvidia Cuda Programming Guide,” ver. 7.5, (2015).

[12] E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing: from multicore to GPU,” IEEE J.

Sel. Topics Appl. Earch Observ. Remote Sens., vol. 4, no. 3, (2011), pp. 643-652.

[13] S. Bernabe, S. Lopez, A. Plaza, and R. Sarmiento, “GPU implementation of an automatic target detection

and classification algorithm for hyperspectral image analysis,” IEEE Trans. Geosci. Remote Sens. Lett.,

vol. 10, no. 2, (2013), pp. 221-225.

[14] J. Mielikainen, B. Huang, H. –L. A. Huang, and M. D. Goldberg, “GPU implementation of stony brook

university 5-class cloud microphysics scheme in the WRF,” IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens., vol. 5, no. 2, (2012), pp. 625-632.

[15] J. Mielikainen, B. Huang, H. –L. A. Huang, and M. D. Goldberg, “GPU acceleration of the updated

goddard shortwave radiation scheme in the weather research and forecasting (WRF) model,” IEEE J. Sel.

Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, (2012), pp. 555-562.

[16] A. Agathos, L. Jun, D. Petcu, and A. Plaza, “Multi-GPU implementation of the minimum volume

simplex analysis algorithm for hyperspectral unmixing,” IEEE J. Sel. Topics Appl. Earch Observ.

Remote Sens., vol. 7, no. 6, (2014), pp. 2281-2296.

[17] Z. B. Wu, J. F. Liu, A. Plaza, J. Li, and Z. H. Wei, “GPU implementation of composite kernels for

hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens. Lett., vol. 12, no. 9, (2015), pp.

1972-1977.

[18] J. Mielikainen, R. Honkanen, B. Huang, P. Toivanen, and C. Lee, “Constant coefficients linear

prediction for lossless compression of ultraspectral sounder data using a graphics processing unit,” J.

Appl. Remote Sens., vol. 4, no. 1, (2010), pp. 041774.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 10, No. 2 (2017)

12 Copyright ⓒ 2017 SERSC

[19] S. –C. Wei and B. Huang, “GPU acceleration of predictive partitioned vector quantization for

ultraspectral sounder data compression,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,

no. 3, (2011), pp. 677-682.

[20] L. Santos, E. Magli, R. Vitulli, J. F. Lopez, and R. Sarmiento, “Highly-parallel GPU architecture for

lossy hyperspectral image compression,” IEEE J. Sel. Topics Appl. Earch Observ. Remote Sens., vol. 6,

no. 2, (2013), pp. 670-681.

[21] Y. Dai, Y. Fang, D. He, and B. Huang, “Parallel design for error-resilient entropy coding algorithm on

GPU,” J. Parallel Distrib. Comput. vol. 73, (2013), pp. 411-419.

[22] NVIDIA Developer Zone. (2014). cuBLAS User Guide [Online]. Available:

http://docs.nvidia.com/cuda/cublas/index.html

[23] EM Photonics. (2014). CULA Programmer’s Guide [Online]. Available:

http://www.culatools.com/cula_dense_programmers_guide/

[24] Z. B. Wu, Q. C. Wang, A. Plaza, J. Li, J. J. Liu, and Z. H. Wei, “Parallel implementation of sparse

representation classifiers for hyperspectral imagery on GPUs”, IEEE J. Sel. Topics Appl. Earch Observ.

Remote Sens., vol. 8, no. 6, (2015), pp. 2912-2925.

[25] B. Chapman, G. Jost, and R. Pas, Using OpenMO: Portable shared memory parallel programming.

Cambridge, MA, USA: MIT Press, (2007).

[26] NVIDIA Developer Zone. Profiler User’s Guide [Online]. Available:

http://www.nvidia.com/cuda/profiler-users-guide/#axzz3K7S7Wk7G, (2014).

[27] X. Wu, B. Huang, A. Plaza, Y. Li, and C. Wu, “Real-time implementation of the pixel purity index

algorithm for endmenber identification on GPUs,” IEEE Geoscience and Remote Sensing Letters, vol. 11,

no. 5, (2013), pp. 955-959.

http://docs.nvidia.com/cuda/cublas/index.html
http://www.culatools.com/cula_dense_programmers_guide/

