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Abstract 

Due to limited resolution factor, triangle meshes extracted from medical CT images 

often contain staircase artifacts. In order to remove staircase artifacts during mesh 

generation and obtain a smooth model from medical images, a novel removing staircase 

artifacts method is presented. Firstly, we extract contours by using image segmentation 

and convert a stack of contours into point clouds. Estimating the normals of point clouds 

and discard outliers by a weighted covariance analysis, and then remove noise by 

bilateral filtering. Denoising points are fitted by the quadric error function, and then 

construct triangle meshes by adaptive spherical cover. The resulting triangle meshes are 

evaluated regarding surface smoothness, volume preservation, geometric accuracy. The 

experimental results show that the proposed approach can create a smooth, high- quality 

surface model from medical images. 
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1. Introduction 

In medical imaging such as CT scans, producing anisotropic data in which the 

slice resolution in the z direction is commonly lower than the imaging resolution in 

the x-y plane is possible. In other words, in-plane resolution is only accurate to the 

pixel, whereas slices can be apart by more than one pixel. A common problem is the 

appearance of staircase artifacts when triangle meshes from medical images are 

generated. Usually, medical surface meshes are generated through the marching 

cubes (MC) algorithm [1] (see Figure 1, in which anisotropic voxel size is 

0.352×0.352×0.5 mm). Staircase artifacts affect 3D printing and finite element (FE) 

simulation. In such applications, smooth, high-quality triangle meshes are essential. 

Staircase artifacts can be removed after mesh generation (by mesh smoothing) or 

during mesh generation (by surface reconstruction). These two methods are 

described as follows. (1) By mesh smoothing: a variety of mesh smoothing methods 

have been proposed to improve smoothness. Smoothing methods only allow to 

reduce staircase artifacts after mesh generation (e.g., Laplacian smoothing [2], 

Taubin smoothing [3] and Mean Curvature Flow [4]). These methods can remove 

staircase artifacts, but often cause loss of features and volume shrinkage. Recently, 

feature-preserving smoothing [5-8] was proposed, these methods can remove the 

noise while retaining original features. However, staircase artifacts are retained as 

features when using these feature-preserving smoothing methods. Thus, Moench et 

al., [9] proposed context-aware mesh smoothing, which can be adaptively smoothed 

the artifact areas and preserve features in non-artifact areas, but this method was 

generated many low-quality meshes. Constrained Elastic Surface Nets (CESN) 

smoothing method [10] reduced staircase artifacts partly but retaining some 

features, and some obvious staircase may still remain on the surface. (2) By surface 
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reconstruction: Implicit surface reconstruction is an active research field in Digital 

Geometry Processing (DGP). The following methods can generate surface meshes 

from point clouds directly. Hoppe et al., [11] proposed an implicit reconstruction 

approach, which produced surface meshes from point clouds by using a signed 

distance function. Levin [12] and Alexa et al., [13] approximated point clouds with 

polynomials by moving least squares (MLS). The Multi-level partition of unity 

implicit was presented by Ohtake et al., [14]. Bade et al., [15] reconstructed 

vascular surface models by using the MPU method based on point clouds from 

binary segmentation masks. Zhao et al., [16] constructed surface models from point 

clouds by level set method [17].  

These methods can generate smooth surface, but the staircase artifacts are not 

entirely removed. Ohtake et al., [18] proposed an integrating approach to meshing 

point clouds. This method is based on the Garland-Heckbert [19] local quadric error 

minimization strategy. High-quality meshes can be created from points directly by 

means of adaptive spherical cover. However, noise and outliers produce a failed 

surface reconstruction in Ref. [18]. 

 

  

 

 

 

 

 
(b) 

 

 

 

 

 

 
(a)                                                                     (c) 

Figure 1. (a) Medical CT Image Slices of the First Cervical Vertebrae (C1 for 
Short). (b)Surface Rendering By the Marching Cubes Algorithm. (C) Mean 

Curvature Visualization 

In order to remove staircase artifacts during mesh generation, we have introduced 

the adaptive spherical cover method into biomedical engineering and modified this 

method in our work. Our method improves the anti-noise ability and localization 

accuracy based on the implicit approach.  

 

1.1. Approach Overview 

An overview of our presented approach to triangle mesh reconstruction is 

illustrated in Figure 2. The input data derive from medical CT image slices. The 

process begins with a stack of contours processed by image segmentation (see 

Section 2.1). We convert a stack of contours into a set of point clouds in a three -

dimensional space (see Section 2.2). We then construct a data structure of the CT 

point clouds and query the neighbors by means of the kd-tree. The k-nearest 

neighbors of medical CT point clouds are constructed and the normals are estimated 

by means of a weighted covariance analysis (see Section 2.3), and then reduce the 

noise from point clouds through bilateral filtering (see Section 2.4). Point clouds are 

fitted by using the quadric error function, and then construct triangle meshes by the 

adaptive spherical cover (see Section 2.5).  
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Figure 2. Overview of the Presented Mesh Generation Approach. A Stack of 
Closed Contours By Image Segmentation. Point Clouds Extract from a Set 
of Contours. Dividing Point Clouds By Kd-Tree, Estimate the Normals and 
Reduce the Noise. Constructing Triangle Meshes By the Modified Adaptive 

Spherical Cover 

2. Surface Reconstruction 
 

2.1. Contours Extraction of CT Images 

Medical images used in our study were segmented by an active contour without edges 

algorithm [20]. The algorithm has certain advantages: (1) it is robust against noise; (2) a 

closed contour curve by image segmentation under any conditions can be obtained. The 

main objective of the algorithm is to evolve an interface, which divides the image into 

two homogeneous regions. This is the solution to minimize the energy 

functional
1 2( , , )F c c C , defined by: 

2

1 2 1 1
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where C corresponds to the closed curve, ( , )u x y  corresponds to the image, 
1c  and 

2c are 

the average intensity of ( , )u x y  inside and outside of C, respectively. Additionally,  , 

0  , 1 , 2 0  are fixed parameters. In this paper, we set the parameters as: 

1 1  , 2 7  (bone) and 20.1 255   , 0  ， 0.01t V ( tV  is the time step), 120 

iterations. 

 

2.2. Point Clouds Extraction 

To construct bone meshes by means of implicit surface reconstruction, obtaining 

point clouds of bone images is firstly required. We extract bone contours from CT 

image sequences and set a single pixel of the precise contour in a 2D plane as x, y 

coordinates, based on the location in which the profile calculated the Z coordinate. 

Finally, we obtain 3D point coordinates and the contours translate into point clouds. 

Point clouds are only available for 3D coordinate information. No topological 

information exists and the point cloud of every point of differential geometry 

information (i.e., normal vector, curvature) can only be calculated through the 

neighbors of a point. Therefore, establishing topological relations in points is 
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necessary and we can easily query the k-nearest neighbors for each point. At 

present, three k-nearest neighbor queries are commonly used: octree, grid, and kd-

tree methods [21-22]. The first two methods are classified by a bounding box, and 

the third approach is to search for the nearest two points. In this study, we adopted 

the kd-tree method in order to construct the data structure of the CT point clouds 

and query the neighbors. 

 

2.3. Normal Estimation 

Point clouds frequently contain noise derived from scanning and transformation 

processes. CT point clouds that commonly exhibit artifacts of irregular sampling 

(e.g., noise and outliers) cause difficulties in estimating differential surface 

attribution. The classical normal estimation is principal component analysis (PCA) 

[11], which can be unreliable because of outliers and large-scale noise. We describe 

a novel normal estimation algorithm, which is not affected by unorganized outliers.  

CT point clouds 
3

1{ }n

i iP p R   with n unorganized points, where the k nearest 

neighbors of an arbitrary point pi is denoted by 1{ }k

j jp P  , 10k  , and p is the centroid of 

the neighbors 1{ }k

j jp P  . We use a weighted method [23] to estimate the most effective 

support for a plane and to eliminate the outliers.  

We compute a weighted covariance matrix for point pi is given by 

T

1
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j j j
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where 
2 2exp( / )j jg d   is the weight for point pj , If point pj is an isolated point, and 

jg =1. If point pj is an inlier point, then  is the mean distance from the point pi to all its 

neighbors pj, and dj is the distance from point pi to its neighbor pj.  

Consider the eigenvector problem 

C v v                                                                                                                            (3) 

where C is a symmetric and positive semidefinite, all eigenvalues   are real-valued and 

the eigenvectors v  form an orthogonal frame. The eigenvector that corresponds to the 

smallest eigenvalue is considered as the normal vector in of the point pi. 

 

2.4. Noise Removal 

Point clouds extracted from CT images often contain undesirable noise, which can be 

reduced by means of various filtering techniques, such as low-pass filtering and bilateral 

filtering. Fleishman et al., [6] have proposed a bilateral filtering method, which was 

modified the bilateral filtering from image denoising to mesh denoising and achieve 

satisfactory results. The bilateral filtering is also suitable for point clouds denoising. 

Furthermore, bilateral filtering can not disturb the original shape and structure. We 

calculate a new position of a point ip  by means of Equations (4) and (5). 
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2 2exp(= / 2 )c cW x x （ ）  

2 2exp(= )/ 2s sW x x （ ）  

where d is a signed distance, 
2 2exp(= / 2 )c cW x x （ ） is a spatial weighting function, 

2 2exp(= )/ 2s sW x x （ ） is a feature-preserving weighting function, 
i jp p  is the distance 

from a point ip  to a neighbor jp  ,   ,i j i  p p n is a vector product operator of both 

distance vector 
i jp p  and vector in  of the point ip  , is the standard deviation, and k 

is nearest neighbors of ip .We set 3c  and 2s  . 

Thus we obtain the following point update equation: 

i i ip p d '
n                                                                                                                      (5)  

where ip '
 is a new point after bilateral filtering, and in is a normal vector at a point ip .  

Finally, we get a new point clouds
3

1{ }l

i iP p R  ' '

（ l n ）after bilateral filtering. 

 

2.5. Spherical Cover 

After noise removal, we construct triangle meshes by linking the auxiliary points in the 

spheres [18]. This algorithm will generates m spheres centered at  1, , mc c c P  '
 and the 

radii of the spheres  1, , mr r r are chosen adaptively. We assign the weight iw to the 

point ip '
. The function ( , , )Q c r x  computes a weighted sum of the squared distances from 

point x to the tangent planes at 1{ }k

j jp P ' '

 within the spherical region jp c R '
, and 

qR T r  , where 
qT is a user specified parameter. 
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where ( )G   is a Gaussian-like function. If r is fixed, point xmin = xmin(r), the minimizer of 

( , , )Q c r x  is easily found by solving equations.  

min

1
( ) ( , , )E r Q c r x

L
                       ( ) errE r T                                                                 (7) 

where E(r) is an error function, L is the length of a main diagonal of the bounding box of 

the point clouds
3

1{ }l

i iP p R  ' '

, and errT  is an error control threshold.  

Once r is fixed, we determine whether the point minx  lies inside or outside of 

x c r  . If minx  is within this region, we use minx as the auxiliary point. Otherwise, we 
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use c as the auxiliary point. After the adaptive spherical cover, we can get triangle meshes 

by connecting auxiliary points together.  

 

3. Experimental Results and Discussion 
 

3.1. Comparison with Other Methods 

In this section, we discuss the results of our experiments with several algorithms. We 

evaluated our approach based on several datasets that include human C1 and Scapula. 

Medical CT image slices of C1, as shown in Figure 1a, with an anisotropic voxel size of 

0.352 mm×0.352 mm×0.5 mm, In other words, slice distance was 0.5 mm. The slice 

distance was considerably larger than the in-plane resolution of 0.352mm×0.352mm. The 

voxel size of the scapula was 0.352 mm×0.352 mm×1mm. These medical surface meshes 

were generated by using the marching cubes algorithm (see Figure 3). The MC triangle 

meshes as reference models for evaluation of geometric parameters changes in this paper, 

detailed parameters as shown in Table 1. We can see staircase artifacts on the C1 and 

scapula surface derived from marching cubes (see Figure 3). The resulting triangle 

meshes were compared with respect to surface smoothness, volume preservation and 

geometric accuracy. All of the results are displayed using mean curvature visualization 

(see the bottom of Figure 3, Figure 4, and Figure 5), which can improve the apparent 

smoothness of a model.  

    

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Extracted Surface Mesh Model from CT Images by Using Marching 
Cubes 

Comparisons with other methods are based on the removal of the staircase artifacts. 

The best results of the above methods are the maximum removal of the staircase artifacts. 

Fleishman’s method [6] is successful in preserving original features. After 2 iterations of 

the method, it is possible to get the best results. However, staircase artifacts would be 

preserved as the feature with this method, as shown in Figure 4a, and Figure 5a. For the 

C1 mesh model, after 6 iterations can remove part of staircase artifacts by Laplacian 

smoothing method. After 19 iterations, all staircase artifacts are removed, but the 

deformation of the mesh model is very serious. Thus, this method is not suitable for 

clinical application. From 6 to 19 iterations of this method can be conducted in 

experiments without damage to the original model structure. Eleven iterations achieve the 

best results, as shown in Figure 4b. Similarly, for the scapula mesh model, we can achieve 

the best results after 17 iterations (see Figure 5b). The main content of our approach is as 

follows: In a first step, a set of closed contours by image segmentation (for segmentation 

parameters: see Section 2.1). Then, we have translated closed contours into point clouds. 

After noise removal (with denoising parameters: c =3, s =2, and 3 iterations). We 

construct C1 and Scapula meshes by linking the auxiliary points in the spheres. For the 
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C1 data, we set to 51.0 10errT   and 3qT  . For the Scapula data, we set to 
51.0 10errT   and 2qT  , to account for the large slice distance. In Figure 4c and Figure 

5c, our approach can efficiently remove staircase artifacts, while preserving the original 

model structure accurately.  

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                               (b)                                                (c) 

Figure 4. Comparisons of Results on C1 Model. (a) Smoothing Reference 
Model By Fleishman’s Method.(b) Smoothing Reference Model By Laplacian 

Method. (c) Surface Mesh Reconstruction From Point Clouds By Our 
Approach 

 

 

 

 

 

 

 

 

 

 (a)                                             (b)                                                 (c) 

Figure 5. Comparison of Results of Scapula Model. (a) Smoothing 
Reference Model By Fleishman’s Method.(b) Smoothing Reference Model 
By Laplacian Method. (c) Surface Mesh Reconstruction from Point Clouds 

By Our Approach 

The Hausdorff distance is used to measure quantitatively the difference between the 

triangle meshes for each object. In our work, the Hausdorff distance is computed from the 

processed surface to the initial MC reference model. Three types of errors are calculated: 

maximum, mean and root mean square (RMS). The numerical results as presented in 

Table 2. It shows that the accuracy of our approach outperforms the other two methods. 

Table 2, also reveals that the Laplacian smoothing produces obvious volume shrinkage. 

Our algorithm can retain some level of volume. The error regarding distance changes can 

also be reduced by using our method with Laplacian smoothing or bilateral filtering 

algorithm. In general, our method achieved the smallest error compared to the other two 

smoothing methods. 
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Table 1. Characteristics of Initial MC Reference Model  

Model Triangles Vertices Bounding box 

(mm) 

Surface  

(mm
2
) 

Volume  

(mm
3
) 

C1 100222 50103 75.93×42.32×22.49 5104.57 9991.69 

Scapula 354728 177361 149.50×127.62×66.74 29688.83 59442.46 

Table 2. Results for the Comparison of Removing Staircase Artifacts 
Methods 

Model Method Bounding box 

(mm)
 

Surface 

 (mm
2
) 

Volume  

(mm
3
) 

Max 

error 

 (mm) 

Mean 

error 

(mm) 

RMS 

(mm) 

 

C1 

 

Fleishman’s 

approach 

75.84×42.20×22.49 4997.04 9968.63 0.229148 0.020191 0.02646

7 

Laplacian 75.52×41.92×22.21 4792.56 9795.60 0.429040 0.075004 0.098976 

Our 

approach 

 

75.91×42.27×22.53 

 

5053.23 

 

9999.92 

 

0.166270 

 

0.012789 

 

0.016649 

        

 

Scapula 

 

Fleishman’s 

approach 

149.49×127.43×66.60 28888.35 59295.07 0.452441 0.036528 0.048803 

Laplacian 149.13×126.78×66.20 28096.31 58431.19 0.746007 0.105434 0.146399 

Our 

approach 

 

149.57×127.60×66.75 

 

29309.90 

 

59464.30 

 

0.298204 

 

0.018302 

 

0.024012 

 

3.2. Mesh Quality 

Generating triangular meshes of high-quality is important to the quality of the volume 

tetrahedral mesh and the convergence of finite element analysis. In order to evaluate the 

triangular mesh quality, we compute the radius ratio of the triangles, which is defined as: 

2 in

circ

r

r
                                                                                                                                 (8) 

where inr  is the radius of the inscribed circle of the triangle， circr  is the radius of the 

circumscribed circle of the triangle, as shown in Figure 6. With this definition, the 

equilateral triangle has 1   and the flat triangle tends to infinitesimal. 

 
(a)                                                   (b) 

Figure 6. The Triangle Radius Ratio between the Inscribed and the 

Circumcircle. (a) Equilateral Triangle with inr r ， 2circr r ; (b) For a 

Triangle， 2 /in circr r  .  

The statistical distribution of mesh quality is shown from Figure 7, to Figure 10. 

Because of the triangular mesh density has achieved the voxel level by MC algorithm, the 
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number of meshes is very large (see Table 1). So that the colour of these wireframe 

models look like more black (see Figure 7, and Figure 9,). Besides, these meshes contain 

many narrow triangles. There are a few of meshes, which radius ratio is close to 1. 

Because of putting the triangle connecting three auxiliary points which instead of the all 

points of inside the convex hull by spherical cover method, we can get sparse and 

adaptive meshes. As mentioned above, C1 model has 27231 vertices and 54478 triangles 

by our approach, Scapula model has 31355 vertices and 62714 triangles. Even 

more important, there are most of meshes, which radius ratio is close to 1 by our approach 

(see Figure 8, and Figure 10). These statistical figures demonstrate that the proposed 

approach can create high-quality surface meshes from medical CT images. 

 

Figure 7. Mesh Quality Statistic of C1 Model by MC Algorithm 

 

Figure 8. Mesh Quality Statistic of C1 Model by Our Approach 
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Figure 9. Mesh Quality Statistic of Scapula Model by MC Algorithm 

 

Figure 10. Mesh Quality Statistic of Scapula Model by Our Approach 

4. Conclusion 

In this study, we presented a novel method that removes staircase artifacts and creates 

smooth surface meshes from medical images. This is a multi-stage process. First, we 

extract a stack of contours by means of image segmentation. The contours translate into 

point clouds. We then use a weighted covariance analysis to estimate normal at each point. 

A bilateral filtering is applied to remove noise from point clouds. Triangle meshes are 

then constructed using an improved adaptive spherical cover algorithm. Experimental 

results show that the proposed method can efficiently remove staircase artifacts and 

generate high-quality triangle meshes with reasonable accuracy. 
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