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Abstract 

Region of Interest (ROI) discovery is among the most common functions in Location-

based social networking services (LBSNS). While former researches mainly utilize the 

accurate location coordinates history, the Road-context-based Active Region Extraction 

Algorithm (RAREA) proposed in this paper explores the method to extract those regions 

with road contexts. Experimental results illustrate that by analyzing the characteristics of 

those road contexts, ROIs are able to be discovered with high efficiency. And our work 

shows that privacy protection and personalized services can be both achieved in LBSNS. 
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1. Introduction 

With the development of mobile positioning technology and the popularity of smart 

portable devices, temporal and spatial contextual information has been increasingly 

utilized to mine relevant data in recent years. For location-based social networking 

services(LBSNS) [1-3], both relations discovery and content delivery can benefit from 

the mined information. Moreover, the areas where user frequently takes activities could 

be discovered [4-6]. Location factors are able to play an important role in establishing 

new social relationships since the similarity of those active areas in each other's life can 

be used as a useful reference [7-9]. The closer location could give rise to a greater 

possibility of sharing a common topic and strong sense of identity. On the other hand, 

users’ preferences could be obtained as well. If the contents pushed by LBSNS are closer 

to the users’ preferences, they are more likely to cause the users’ attention so as to realize 

the relevant purposes [10-11]. 

At present, coordinates of longitude and latitude as well as the trajectories are two 

kinds of raw data widely used to mine users’ preferences in LBSNS. Coordinates are 

generally utilized in users’ "check-in" activities, namely the coordinates represent the 

position of the POIs visited by users, such as the restaurant, shopping mall, etc., [12-13]. 

Through the analysis of the characteristics of the POI objects, some preferences of the 

user could be obtained. The trajectory is another kind of movement model that has arisen 

in recent years [14-15]. It is a record of the moving object’s location in a certain time and 

space, and can be represented as a series of positional entities and time entities sequences. 

Compared with the analysis based on coordinates, the trajectory analysis can obtain more 

user information, including users’ important activity places, habits, behaviors and 

preferences, etc. 

The mining of both coordinates and trajectories requires accurate location and scene 

information. However, for LBSNS, it is inadvisable to display users’ precise locations or 

to acquire position data for a long period of time since it is likely to cause users’ privacy 

leakage resulting in unpredictable potential dangers. It has become the consensus of the 

academic field and the industrial circle in recent years that the non-precise location 
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information is utilized to protect the location privacy in the mobile environment. 

Furthermore, the acquisition of trajectory information requires recording the users’ 

location data for a long time so that the consumption of portable mobile device resources 

is large which may affect the normal proceeding of other works. And although the ability 

of mobile devices to access location data has been greatly enhanced, it is still subject to a 

number of objective factors. For instance, GPS can only be located outdoors. When users 

need to switch between different transports, GPS's positioning function will be 

significantly reduced. Therefore, the application of LBSNS needs not only to adjust the 

form of location information, but also to put forward relevant mining analysis methods. 

This paper mainly describes the method of data mining based on road network. The 

road context refers to the user’s exact location mapped on the road network. By changing 

the display granularity of the location information, the privacy is protected. This method 

has been applied to a number of mature LBSNSs. For example, when a user of Sina 

Weibo which is one of the biggest LBSNS in China wants to shares his location, the 

position information is displayed in the form of "XX Road, XX District, XX City, XX 

Province". Although the granularity of information is changed, data mining can also be 

carried out by utilizing the road and temporal contextual information. It is found that the 

vast majority of users usually act in limited geographic ranges. Based on this hypothesis, 

the Road-context-based Active Region Extraction Algorithm (RAREA) is proposed in 

this paper. The RAREA algorithm assumes that the users’ regions of interest are closely 

related to the road contexts they frequently move around. In the next section, the road 

context model will be introduced first. 

 

2. Road Context Model 

RAREA assumes that the vast majority of people's daily life is regular, and people's 

preferences are rarely changed in a certain period of time. Therefore, for the vast majority 

of people, the range of daily activities will be limited to a few relatively small regions. 

When they use the mobile social networking applications to share road context, there 

must be certain rules behind it. It is conductive to extracting the set of users’ active 

regions related to these road contexts to understand and discover the laws behind these 

phenomena. The data statistics in above section have indirectly verified the assumption. 

As a matter of fact, many unknown factors affect users when they sharing the road 

context. For example, users’ important activity locations are in the vicinity of these roads, 

locations attract the users are on the roads, or the users have to pass the roads when going 

to the destinations. Users share the road context for corresponding hidden reasons. 

Although it is unrealistic to find all hidden reasons and to make a quantitative analysis, 

appropriate analysis can be carried out in other aspects so as to find the answer. 

First of all, based on the road data, the importance levels of each road for users are 

obviously different. It is the first work to measure the importance level of the road context 

shared by users. Secondly, the roads with higher importance levels are more likely to 

generate links with potential active regions. It is also of great importance to measure the 

internal relation between the road context shared by users and their potential active 

regions. Only through the comprehensive analysis of the importance of road context and 

its intrinsic link with the potential active region can the set of users' active regions be 

extracted. 

 

2.1. Road Context Definiton 

Road context shared by users is corresponding to a path in a road network. The road 

context model is defined as follows: 

Definition 2.1. The road network =( )RN V,E,w  can be expressed as a directed 

weighted graph, where V is the set of all set, E is the set of edges between two points. The 
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weight function  :w E   is the length of edge, which is the Euclidean distance 

between two points. 

Definition 2.2. Road context ir  is a path in road network RN and a vertex sequence 

1 2{ , ,..., }nir v v v . The first vertex ir  of the sequence is the starting point of the road, and 

the last vertex is its terminal point. The intermediate point is the cross vertex between 

road ir  and other roads. Any two consecutive vertices form a section of road ir , which is 

denoted as 1( , )i iv ve  . The length of road ir  is ( )ilen r 
1

1

1

( ( , ))
n

i i

i

w e v v






 , namely the sum of 

the weights of the edges in the road position ir . 

 

2.2. Importance Level of Road Context 

The road context shared by users has a different level of importance, which is denoted 

as ( )iIL r . The level is mainly determined by the following three aspects: 

A. Road count weight ( ( )count iw r ) 

The larger counts of the road context shared by users indicate higher importance level 

of the road. Thus the corresponding count weights will be greater. Here, the weight of 

road counts is the count value of the road, namely ( )count iw r = ( )icount r . 

B. Road length weight ( ( )len iw r ) 

It is more difficult to estimate the impact of longer roads on users. On the contrary, it is 

relatively easy to judge the importance levels of shorter roads. Huqingping Highway is 

taken as an example. It passes through the Qingpu District of Shanghai, bordering on 

Yan’an Road Viaduct in the east, and to Pingwang Town in Jiangsu Province in the west. 

The overall length is over 40 km. If the road context shared by a user is Huqingping 

Highway, it is difficult to determine the importance level of each section. Therefore, it is 

conducive to improving the accuracy to appropriately reduce the weight of longer roads, 

and increase the weight of shorter roads. The weight of road length is the product of count 

weight and the weight ratio coefficient of road length α, namely ( ) ( )len count iiw r w r  . 

The ratio coefficient α of the weight of road length is divided into five categories, which 

is as shown in Table 1. 

Table 1. The Weight of Road Length 

Road length interval 

(Unit：km) 

Very short 

(0,2] 

Short 

(2,3] 

Ordinary 

(3,4] 

Long 

(4,5] 

Very long 

(5,∞) 

Weight ratio coefficient α 0.3 0.25 0.2 0.15 0.1 

C. Road type weight( ( )type iw r ) 

Similar to the weight of the road length, the weight of the road type, takes into account 

different road types. Its importance level to determine the active region will be different. 

In Table 2, the road is classified according to the Open Street Map [75]. Different types of 

roads are endowed with different weights. The weight of road type is the product of count 

weight and the ratio weight coefficient of road type, namely ( )= ( )type count iiw r w r  . 

Table 2. Road Type Weight 

Type Primary Secondary Tertiary Trunk Highway Residential 

Weight ratio 

coefficient β 

0.15 0.2 0.25 0.05 0.05 0.3 
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To sum up, the importance level of road context is equal to the sum of road count 

weight, road length weight and road type weight. It is defined as the following formula: 

( ) = ( )+ ( )+ ( )

(1 ) ( )

count len typei i i i

i

IL r w r w r w r

count r    
                                                                           (1) 

2.3. Influence Force of Road Context  

In order to measure the close degree of the intrinsic link between the road context and 

the potential active regions, the concept of influence force of road context is proposed. It 

is assumed that each piece of road context will have an influence force on any other 

location in the space around it. The sum of all influence forces of each location reflects 

the possibility that it could become an active region. The location closer to the road 

context is more likely to be affected by the influence force, and the possibility that it 

could become the active region is greater. As the distance increases, the influence will 

gradually decrease. It shows that the relation between the location and the potential active 

region gradually decreases. This process can be considered as a typical distance 

attenuation phenomenon. In the existing distance attenuation model, the exponential 

function, power function and Gauss function can reflect this phenomenon. The 

exponential function is selected as the distance attenuation model to calculate the 

influence level of road context. Moreover, in the road network, it is obviously 

inappropriate to utilize Euclidean distance as the distance measure in distance attenuation 

model. Therefore, the shortest path calculation method is utilized here, which is defined 

as follows: 

Definition 2.3. It is assumed that there is a point u V in road network 

( , , )RN V E w . Its shortest path to the other point v V  is ( , )SP u v . If the distance 

betweenu  and v  remember is denoted as ( , )dist u v , ( , ) ( ( , ))dist u v len SP u v . 

Definition 2.4. The average distance between any point p V  in space and any road ir  

is denoted as ( , )iavgDist p r , which is equal to the average value of the shortest path 

between point p and all vertices j iv r  in 1 2{ , ,..., }nir v v v . It is defined by formula 2 as 

follows: 

1

( ( , ))
1

( , )
n

j

j
i len SP p vavgDist p r

n 

                                                                                     (2) 

If there is a point q V in space, 'q is the point when q is mapped to its nearest edge 

ie E . Average distance from point q  to any road ir  is the sum of the distance 

( ', )Dist q p between point 'q  and its nearest point and the average distance between point 

p and road ir , which is defined by formula 3 as follows: 

1

( ( , ))
1

( , ) ( , ')
n

j

j
i len SP p vavgDist q r dist p q

n 

                                                                (3) 

Combined with the importance level of road context, the calculation method of the 

influence level of the road context is defined as follows: 

Definition 2.5. Any point p in the space is subject to the influence force of road context 

'ir R ,( 'R is the set of road context objects shared by users) which is denoted as ( )
irIF p . 

Its size is defined by formula 4 as follows: 

( ) ( ) exp( ( , ))i i irIF p IL r avgDist p r                                                                         (4) 

The sum of the influence force of the road context shared by all users at point p  is: 

'
'( ) ( )

i

ir R
rRIF p IF p



                                                                                                         (5) 
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 It is observed that the influence force is proportional to the importance level of the 

road context and inversely proportional to the average distance between point p and ir . 

As for the distance attenuation function exp( ( , ))iavgDist p r  , parameter  is the 

experience parameter, the general range of values is in the interval of [0.001,0.002]. 

Greater influence force of a point indicates that its location is representative in users’ 

daily activities, and it is more closely related to users’ potential active regions, vice versa. 

Therefore, if these representative points are clustered by a certain method, the 

corresponding user active regions could be extracted. 

 

3. Road-Context-Based Active Region Extraction Algorithm 

Active region extraction is divided into three steps. 1) Division of geographical space 

based on grid. 2) Extraction of active regions in each effective grid through relevant 

algorithms. 3) Combination of the results so as to get the final set of users’ active regions. 
 

3.1. Grid Division 

Before extracting the set of user active regions, the whole geographical space is 

divided into a number of first level grid regions, which are denoted as  

{ ( , ) |1 ,1 }m nSG G i j i m j n      . Depending on the difference in the city of the objects 

and the actual situation of the shared road location, the unit length of the grid area can 

range from 0.02 to 0.05 latitude and longitude coordinates. Here, the interval based on the 

latitude and longitude coordinates takes into account that the road network is generally 

stored in latitude and longitude format in spatial database. 

Afterwards, each first level grid region G  is divided into k k  sub-grids, which are 

denoted as { ( , ) |1 ,1 }k kG g i j i k j k      . The unit length of each sub-grid is 0.001 

latitude and longitude coordinates interval, and the actual corresponding length is about 

110 meters. The unit length can be used to achieve better calculation accuracy and reduce 

the amount of calculation. 
 

3.2. Active Region Extraction Algorithm based on Road Context 

It is the most important to determine the region range to extract the active regions. In 

order to calculate the range of active regions, the concept of grid density is introduced. 

For each sub-grid, the size of the influence force of the road context is its density, which 

is defined as follows: 

Definition 3.6. For a grid ( , ) n ng i j G  , where 1 ,1i n j n    , its four vertices are 

assumed as ' { , , , }rtlt lb rb
V v v v v , and its ( ( , ))density g i j is the average value of the 

influence force on the four vertices of the road context, which is defined by formula (6): 

' ' ' '

1
( ( , )) ( ( ) ( ) ( ) ( ))

4 R R R R rtlt l rb
density g i j IF v IF v IF v IF v   

                                       (6) 

Afterwards, the Road-based Active Region Extraction algorithm (RAREA) is 

described. Firstly, RAREA calculates the threshold value  , and its function is to find the 

grid regions with larger density. Formula 7 defines its calculation method: 

( ( ( ))+ ( ( ))) / 2Max density g Min density g                                                                   (7) 

For all ( , ) n ng i j G  , if its ( ( , ))density g i j is greater than the threshold value  , and 

it is a maxima, it will be added into a maximum priority queue Q . In the meantime,  the 

sub-grid density smaller than the threshold value   is set as zero. The maxima refer to the 

density of the sub-grid is not less than the density of the other sub-grid in eight directions. 

After that, all elements in Q  are conducted with the following operations successively: 
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1. Dequeue of the element with the greatest priority (namely the grid object with the 

largest density in the current queue), which is assumed as '( , )g i j . If it has not 

been accessed, it will be added to the Visited list to implement the next step. 

Otherwise, the first step is roll-back until Q  is empty 

2. Add the grid neighbors along the four different directions (up , down , left , right) 

of '( , )g i j of successively. The average density of the grid regions after the 

addition is calculated. If the average density value drops rapidly after adding a new 

network neighbor, the addition of new grid is cancelled. In the meantime, the 

calculation in this direction is cancelled. Take the left direction as an example 

(similar to the calculation mode in other directions), if 

( ') ( '')avgDensity G avgDensity G   , the calculation in this direction will be 

cancelled. 

Where, 'G and "G  represents the sets of sub-grids before and after adding new 

grid neighbors in this direction. ( ')avgDensity G 和 ( '')avgDensity G  are reckoned 

into the average density values respectively.   is the descendent factor of average 

density values. Based on  , the grid neighbors with the closest density value can 

be found around the grid with the highest density value. Therefore, the grid region 

with the highest density value can be formed so as to find the road range with the 

most significant influence force. Formula 8 defines the default calculation method 

of the descendent factor  : 

max( ( ( , ))) min( ( ( , )))density g i j density g i j


 


                                                  (8) 

3. When the calculation is completed in the four directions, four sub-grids in which 

the calculations are stopped in each direction are recorded, and assumed as 

( , )
left

g i j l , ( , )
right

g i j r , ( , )topg i t j  ad ( , )bottomg i b j respectively. 

Therefore, the minimum bounding rectangle (MBR) covering these four grids is a 

candidate active region, which is added into the set of candidate active regions 

(CAR). 

4. Finally, after obtaining the set of CAR, it is needed to carry out the intersection 

judgment of rectangles. The intersection of rectangles in the plane includes two 

kinds of cases. As for the judgment of the intersection between each two candidate 

active regions, if there is an intersection, they will be merged. The new active 

region after the merger is the minimum bounding rectangle covering the two active 

regions. The intersection judgment is repeated until none of the regions within 

CAR intersect with each other. The returned CAR is the set AR of active regions in 

this grid region. 

Pseudocode of RAREA is as follows: 
Algorithm Road-based Active Region Extraction 

Input: 

 { ( , ) |1 ,1 }n nG g i j i n j n      : Set of grids, each grid has the density value 

( ( , ))density g i j  

Output: 

 AR : Set of active regions extracted 

Algorithm: 

1: Q  ; //A max priority queue whose member is grid and the priority of each element is 

the density value 

2: Visited  ; //A list which records the visited grids 

3: G GCAR AR  ; //Lists which record the candidate active regions and active regions 

respectively in grid G  
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4: Calculate the threshold  ; // formula 4-7 

5: Calculate the descendent factor  ; // formula 4-8 

6: for each ( ( , )g i j G ) do 

7:    if ( ( , ))density g i j   and ( ( , ))density g i j is a maxima then 

8:      add ( , )g i j  to Q ;  

9:    else 

10:      set ( , ) 0g i j   

11:    end if 

12: end for 

13: while Q  is not empty do 

14:    . () ( , )q Q pop g i j   is first element of Q ; 

15:    if q Visited  then 

16:      add q  to Visited ; 

17:      for each { , , , }direction left right top bottom  do 

18:         while (avgDensity(G’) - avgDensity(G’’)) <=  do 

19:            set G’ = G’’; 

20:            add new neighbor grid g  into G’’; 

21:         end while 

22:         mark left_index, right_index, bottom_index and top_index; 

23:      end for 

24:      mBox = MBR(left_index, right_index, bottom_index,top_index); 

25:      add mBox  to GCAR ; 

26:    end if 

27: end while 

28: while foundIntersection do 

29:    set foundInsection = false; 

30:    for each pair ( [ ]GCAR i , [ ]GCAR j ) in GCAR  do 

31:      if [ ]GCAR i  intersects with [ ]GCAR j  then 

32:         set foundInsection = true; 

33:         [ ]GCAR i  = MBR( [ ]GCAR i , [ ]GCAR j ); 

34:         remove [ ]GCAR j  from GCAR ; 

35:      end if 

36:    end for 

37: end while 

38: G GAR CAR ; 

 

6. Experiment and Analysis 

In order to verify the accuracy and efficiency of the active region extraction algorithm 

based on the road context and the social relation recommendation algorithm based on 

active region, a series of experiments are designed. For the active region extraction 

algorithm based on the road context, it is the basis of the social relation recommendation 

algorithm based on active regions. The strengths and weaknesses of its efficiency have a 

direct impact on the accuracy of the recommendation. Therefore, the overall efficiency of 

the algorithm, the impact of the grid region division and the accuracy of extracting the 

active regional are assessed. As for the social relation recommendation algorithm based 

on active region, it is assessed in the aspect of overall efficiency of the algorithm. 

 

Experimental environment and data 

The experimental computer running the algorithm is a DELL Optiplexhost. Its 

hardware configuration is as follows: CPU Core 2 Duo 2GHz, RAM 2048MB. All 
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algorithms are written in Java. Background relation database system is Postgre9.1, and 

GIS database is Postgis1.5. All road data sets in the experiment are collected from 

Chinese road data set provided by the open street map organization. A total of 352234 

road data records are collected. Road context is cited from the data of 20 Sina Weibo 

users, including a total of 745 road data records. 

Overall performance 

Firstly, the overall performance of the road-context-based active region extraction 

algorithm (RAREA) is assessed. The default method of grid division is adopted. That is, 

the unit length of each first level grid region is 0.03 latitude and longitude coordinate 

interval. The unit length of each sub-grid under the first level grid region is 0.01 latitude 

and longitude coordinate interval. The correspondingly actual lengths are about 3000 

meters and 100 meters. 100 active sub-grids (sub-grid with road context) are randomly 

extracted among those collected among the data of 20 Sina Weibo users. 5,10,15 and 20 

pieces of road context are adopted to test the efficiency of RAREA respectively, which 

are averaged after the calculation. Figure 5, shows the execution time of RAREA. 

 

 

Figure 5. Efficiency of RAREA 

As shown in the figure, execution time of RAREA is relatively long, and the efficiency 

is low. This is for that when the influence force of road context is calculated, the RAREA 

adopts the classic Dijkstra shortest path algorithm. Each time will spend about 0.002 to 

0.003 seconds. There are about 31*31 grid divisions in the sub-grid regions. For any road 

location information, at least 961 times of the shortest path algorithm needs to be 

calculated, namely the least time consumption is 1.922 seconds. Therefore, the running 

time of RAREA is influenced by the number of roads and the number of points in the road. 

Moreover, RAREA utilizes the average shortest distance when calculating the influence 

force of the road context. In order to improve the efficiency of the RAREA, it is adjusted 

to utilize the distance of the central points of the road. That is, the shortest path is 

calculated for once, which can effectively reduce the number of calculation of the shortest 

path. The adjusted RAREA is named as modified RAREA. Although the running time of 

the modified RAREA has been significantly improved compared with the RAREA, it still 

needs relatively long running time. 

Since the vertices of any sub-grid are fixed after the grid division, the shortest paths to 

any roads are also fixed. Therefore, the shortest distance between all vertices of the sub-

grids and all road data can be calculated, and the results are stored. The calculation of the 

influence force of the road context only needs to endow the results of pretreatment with 

different weights, which can reduce the running time of RAREA to the maximum extent. 

The running efficiency of the RAREA after preprocessing is shown in Figure 6. It can be 
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seen that the efficiency of RAREA has been greatly improved since it omits the time of 

calculating the shortest path. 

 

 

Figure 6. Efficiency of RAREA after Preprocessing 

Influence and accuracy of grid division 

The default unit length of the first-level grid region is 0.03 latitude and longitude 

coordinate interval. The default unit length of each sub-grid is 0.03 latitude and longitude 

coordinate interval. The unit lengths of each first-level grid region are adjusted, which are 

in the unit intervals of 0.01, 0.03, 0.06 and 0.1. RAREA is utilized to extract the set of 

active regions of 20 Sina Weibo users, and the changes in the size of the active region set 

is shown as Figure 7. 

 

 

Figure 7. Number of Active Regions Extracted under Different Grid Unit 
Lengths 

It can be seen that the number of the extracted active regions generally decrease with 

the increase of the unit length of the first-level grid. This is for that if a region with dense 

road context is segmented during the division of the first-level grid, it is likely to generate 

effective active regions in different grid division, which results in the errors of the 

calculation results. Therefore, the division of the first-level grid is likely to affect the final 

extraction results of RAREA. However, as for the grid with longer unit length, the 

complexity of the processing and the cost of algorithm will be significantly increased. 

 

6. Conclusion 

Road context is a pattern manifesting location context that maps the user's location to 

the nearest road. It could reduce the granularity of information so as to achieve the 

purpose of protecting the privacy of users' locations. In view of the situation that the 
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traditional location context mining technology does not support the road context, this 

chapter proposes an algorithm that could extract users’ active regions based on the road 

context. The set of users’ active regions could be extracted by measuring the importance 

levels of different road context and establishing models to analyze the intrinsic link 

between the road context and its potential active regions. 
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