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Abstract 

We present a novel on-line algorithm for target segmentation and tracking in video. In 

our approach, video data is represented by both temporal saliency and spatial one, and 

segmentation is accomplished by finding the minimum energy label assignment. The 

pixel-wise weight is assigned for each energy item according to the local information of 

each feature map. This local weight model enhances the segmentation accuracy. 

Experiments demonstrates that our approach is effective. 
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1. Introduction 

Image segmentation aims to group perceptually similar pixels into regions and it is a 

fundamental problem in computer vision. Video segmentation generalizes this concept to 

group pixels into spatio temporal regions that exhibit coherence in both appearance and 

motion. Most previous works have proposed the segmentation solutions based on graph-

cut. Different cues have been formalized in these methods, and merged together in the 

same framework referred as energy function. The label assignment solution is converted 

into the energy minimization one which can be solved by graph-cut [1-2]. In resolving 

the energy function, a weight factor is assigned for each energy item to control the 

proportion in the whole. For example, [2] proposed a Fisher linear discriminant to 

measure the discriminate performance of each feature map. In [3], a variance ratio 

measurement is adopted to adaptively adjust the weights of different features. [4] 

measures the discriminate power by computing the KL distance of histogram. Generally, 

the weights are motivated by the fact that the segmentation cues with high 

foreground/background discrimination deserve high weights so that they can make a 

significant contribution to the segmentation in the next frame. The weight of each energy 

item is a real value which is computed by the global information of different features in 

these methods. However, in some cases, each segmentation cue has different discriminate 

performances in different regions. The local information will obtain better property than 

the global one in these cases. 

Our goal is to address this problem within the same framework. Thanks to the idea in 

[5], an element uniqueness measurement, described as temporal salient map, is developed 

by two successive frames in our approach. The spatial salient map is designed in feature 

space which is different from the method proposed in [5] as well. Both measurements are 

computed in the same framework, high-dimensional Gaussian filtering, and two 

segmentation cues in energy function are constructed by both maps respectively. To 

obtain an accurate pixel-wise segmentation, we choose to integrate both cues into energy 
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minimization framework as a constraint instead of directly outputting it like [5]. An 

adaptive weight of each energy item is assigned for each pixel according to its 

discriminate performance within a certain neighborhood. 

 

2. Image Representation 

In this paper, we use super-pixels to abstract the image into perceptually uniform 

regions. Considering the irregular shape of the super-pixel, L2ECM for image 

representation is adopted. Provided with the raw feature vectors, we can obtain the 

L2ECM features for each super-pixel as [6]. Note that the covariance matrix is computed 

in each super-pixel in our approach. 

 

2.1. Feature Abstraction 

In this paper, we use an adaptation of SLIC super-pixels [7] to abstract the image into 

perceptually uniform regions. SLIC super-pixel representation not only reduces 

computational complexity in later stages of processing, but also makes computation more 

robust by enforcing consistency inside super-pixels. Considering the irregular shape of 

the super-pixel, L2ECM for image representation is adopted. Given an image, some raw 

features are formulated as 

f (x, y) = [I(x, y), I
x
(x, y) , I

y
(x, y) , I

xx
(x, y) , I

yy
(x, y) ]T            (1) 

where 
 
denotes the absolute value, I (x, y)

 
denotes the intensity of a pixel 

locating (x, y)
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I
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respectively. 
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where m  is the mean of the feature points which is defined as 

m =
1

N
s

f (x
i
, y
i
),C

s
(i, j)

i=1

N
så  

denotes the element at the i-th row, j-th column of C
S
,N

s
 

is the number of pixels inside S, d is the length of the raw feature f (x, y)
 
. 

To avoid computing the geodesic distance between covariances that lie on Riemannian 

manifold, we transform C
S  

into log(C
S
)  that locates in Euclidean space with matrix 

logarithm operation and construct the L2ECM feature for each super-pixel by performing 

half-vectorization of log(C
S
)  which is proposed in [6]. L2ECM feature for a super-pixel 

i in current image is a 
d(d +1)

2
 length vector which is described as f

i

t . L2ECM feature 

is adopted as a feature abstraction algorithm in our approach, because it has the following 

advantages: 

(1) The theoretical foundation of L2ECM is the Log-Euclidean framework, which 

endows the commutative lie group formed by the SPD (Symmetric and Positive Definite) 

matrices with a liner space structure. This enables the common Euclidean operations of 

covariance matrices in the logarithmic domain while preserving their geometric structure.  
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(2) The dimension of L2ECM feature vector is only related with the dimension of raw 

feature vectors regardless of the size and shape of estimated region such as super-pixel, 

which implies a certain scale and rotation invariance over the regions in different images. 

This kind of feature is better applicable to region-based algorithm than features that other 

region-based video segmentation methods used.  

(3) The noise-corrupting individual samples are largely filtered out with the average 

filter during covariance computation. 

 

2.2. Temporal Salient Map 

Let f
i

t{ },(i =1,2,3…M ) be the feature set of each super-pixel in current image f t . 

M is the number of the super-pixels. Assumed that the object is segmented well in 

previous image f t-1. The feature set in previous image which belongs to the object is 

defined as f
i

t-1{ },(i =1,2,3…N )
 
where N is the number of the super-pixels which 

belongs to the object in previous image. We directly compute the temporal saliency of 

each super-pixel in current image as 

T
i
=

1

d( f
i

t , f
j

t-1)
w(p

i

t , p
j

t-1)
j=1

N

å ,i =1,2,3…M
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1

Z
i

exp(-
1

2s
p

2
p
i

t - p
j

t-1
2

)  is a Gaussian weight function, p
i

t  and 

p
j

t-1

 
represent locations of the corresponding super-pixels in f t

 
and f t-1

 
respectively. 

d( f
i

t , f
j

t-1)
 
is a distance measurement between  f t

 
and f t-1. In addition, we find that 

the cosine distance outperforms the Euclidean one in L2ECM space. Z
i  

is the 

normalization factor ensuring w(p
i

t , p
j

t-1)
j=1

N

å =1 , and s
p

 controls the range of the 

temporal salient operator. 

The interpretation of Equation 3 is intuitive. Given a super-pixel i in f t  , the feature 

and the location of the give super-pixel are compared to all the super-pixels belonging to 

the object in f t-1 . d( f
i

t , f
j

t-1)  formulates the similarity of both super-pixels f t
i
  and 

f t-1

j
. w(p

i

t , p
j

t-1)  is related to the spatial distance between both super-pixels. A super-

pixel in f t  is more likely to be regarded as the object, both in feature space and in spatial 

space, under the condition that it is similar to the super-pixels in f t-1 . Overall, the 

temporal saliency of each super-pixel, Ti , formulates the probability of each super-pixel 

which belongs to the object in current frame ac- cording to previous segmentation. 

Note that although Equation 3 has the same structure as the „element uniqueness‟ in 

[5], both equations show different meaning. The temporal saliency in our approach 

formulates the similarity of the object in two successive frames. The element uniqueness 

in [5] analyzes the difference between the object and the background in an individual 

image. The subscript i and j in Equation 3 represent the super-pixel in current frame and 

in previous frame respectively.  

 

2.3. Spatial Salient Map 

Temporal saliency exhibits the object similarity between two consecutive frames. 

However, lighting variation and noise might be incorrectly assigned to dynamic objects. 
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Spatial saliency is always adopted to reduce errors resulting from temporal saliency. The 

difference between temporal saliency and spatial saliency is that the former is measured 

in some successive frames, while the latter is computed in an individual image. In our 

approach, we estimate the distribution of each super-pixel in current frame as the spatial 

salient measurement which is defined as 

D
i
= p

j

t -m
i

t
2

w( f
i

t , f
j

t )
j=1

M

å ,i =1,2,3…M
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m
i
= w( f

i

t , f
j

t )p
jj=1

M

å defines the weighted mean position of super-pixel i. Z
i

'
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i
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N
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spatial salient operator. 

The interpretation of Equation 4 is intuitive. Ideally features belonging to the 

background will be distributed over the entire image exhibiting a high spatial variance, 

whereas the object are generally more compact with small variance. For our spatial 

saliency, we slightly modify the „Element distribution‟ proposed in [5] and instead 

computing in CIELab space with in L2ECM feature space to achieve a good performance 

in our experiments. In our implementation, parameters s
p  

and s
f
 are set to 5 and 15 

respectively. 

 

3. Energy Model for Salient Object Segmentation 

Our salient object segmentation framework combines both temporal salient cue and 

spatial salient cue with object's appearance information. Based on the cues, segmentation 

can be solved by energy minimization. 

Given input image I, let I
i{ }  

and s
i{ }  

denote the sets of image pixels and 

corresponding labels respectively. Label s
i
=1

 
if I

i  
belongs to the background, and 

s
i
= 0

 
otherwise. 

 
M

i

T{ }  and M
i

D{ }  
are the pixel-wise temporal salient map and the 

spatial salient map respectively (A regional salient value obtained from previous section 

is assigned to each pixel that belongs to the region). Salient object segmentation can be 

formalized as energy minimization 
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are data association energies generated by 

object appearance cue, temporal salient cue and spatial salient cue respectively. l
i
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i

T
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are their weight factors for each pixel. They are all non-negative and satisfy 
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where constant parameter e =1 , m  is chosen to be 
1

2 Ii - I j
2

, and · denotes 

expectation over all pairs of neighbors in an image sample. This term imposes a tendency 

to spatial continuity of labels. 

 

3.1. Object Appearance 

Object appearance cue U C (s
i
, I
i
)  evaluates the evidence for pixel labels based on 

color distribution in foreground and background. The foreground and background color 

likelihood are modeled non-parametrically according to the histograms in the YUV color 

space. The histograms is smoothed by a Gaussian filter to avoid over-learning, and they 

are learned adaptively over successive frames based on data from the segmented 

foreground in previous frame. 

 

3.2. Temporal Saliency and Spatial Saliency 

In addition to object appearance, temporal salient cue and spatial salient cue are key 

terms of our framework. Both cues are computed by the temporal salient map and the 

spatial salient map which are constructed in current frame. We define the temporal salient 

cue as 

U T (s
i
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- log
M

i
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i
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ï
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 (7) 

where mT '

 and mT  are the mean temporal salient value of the background and the one of 

the foreground respectively. They are updated by the previous segmentation result. 

The spatial salient cue U D(s
i
,M

i

D )
 
is formalized in the same framework as 

U T (s
i
,M

i

T ) , and only difference is to substitute M
i

D{ }  
for M

i

T{ } . The object 

appearance cue, the temporal salient cue and the spatial salient cue are linearly combined 

with l
i

C{ }, l
i

T{ } and l
i

D{ } respectively. Such energy functions can be efficiently 

minimized by using the graph-cut algorithm as [2-1], leading to a binary segmentation of 

the image. 

 

3.3. Online Weight Tuning 

The weight factor of each energy item represents the proportion in the whole energy. 

Most proposed methods obtain the weight factors according to the global information of 

the corresponding cues. It is called global weight in our paper. Each weight is always 

computed by the discriminate performance of each segmentation cue. However, in some 

cases, each segmentation cue has different discriminate performances in different 

regions. The middle row of Figure 1, shows three segmentation cues in our paper. 

Overall, the temporal salient cue, Figure 1e, filters out most of the noise, and it will 

obtain the highest global weight in energy function. However, in terms of the object 

appearance cue, it has more ability to distinguish between the girl‟s legs and the 

background. Global weight will lead to inaccurate segmentation result which is illustrated 
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in Figure 1b. Local weight for each pixel, which is computed by local information of 

each cue, is adopted in this case. 

In our approach, we determine the discriminate performance li  of pixel i for each 

feature by using the pixels that lie inside a rectangle sub-window surrounding the pixel i. 

At each sub-window, two data clusters, ZF
win{ } and ZB

win{ } are extracted for each feature 

map respectively. ZF
win{ }  represents a data set of the feature value that belongs to the 

object in sub-window, and ZB
win{ }  is a data set that belongs to the background. A 

discriminate power of each pixel is measured in the sub-window which is defined as 

l
i
= max(0,

Z
F

win -Z
B

win

std(Z
F

win )+ std(Z
B

win )
) s.t. std(Z

F

win ) ¹ 0 and std(Z
F

win ) ¹ 0
 

(8)
 

where Z
F

win

 
and std(Z

F

win )
 
represent the mean and standard deviation of cluster ZF

win{ } 

respectively. Z
B

win

 
and std(Z

B

win )
 
represent the mean and standard deviation of cluster 

ZB
win{ }. Because we find that the key factor affecting the segmentation result lies in the 

object‟s edge, the local weights are only computed in the neighborhood of the object‟s 

edge. And in other regions, global weight, computed by [2], is adopted as well. 

The bottom row of Figure 1, shows three weighted segmentation cues. In Figure 1g, 

the features of the girl‟s legs are multiplied by larger weights to obtain the better 

discriminate power than global weight. In Figure 1h, the weighted features of the girl‟s 

head achieve the same effect. Although the saliency values in local weight (bottom row 

in Figure 1), are smaller than the one in global weight (middle row in Figure 1), on the 

whole, it can not affect the segmentation result because of the most parts of the girl are 

saliency in the image. In addition, the weight of the color likelihood in girl‟s legs and 

arms are larger than the weight of the other cues in the same locations. It will contribute 

to the accurate segmentation cut in graph-cut framework. The local weight solution 

definitely result in a better segmentation performance than global weight solution in this 

case. Figure 1c, illustrates the better segmentation result than Figure 1b. 
Frame = 7 Frame = 7
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(d)            (e)      (f) 
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(g)            (h)      (i) 

Figure 1(a): An Origin Image; (b): Segmentation Result by Global 
Weight; (c): Segmentation Result by Local Weight; (d): Color 

Likelihood; (e): Temporal Salient; (f): Spatial Salient; (g): Weighted 
Color Likelihood; (h): Weighted Temporal Salient; (i): Weighted Spatial 

Salient 

4. Experiment 

We use the GT-SegTrack database to perform quantitative performance comparisons 

between our approaches and two alternative segmentation methods: our global weight 

approach, our local weight approach, the state-of-the-art level set-based tracker described 

in [8] and the baseline graph-cut method using KLT-based temporal links described in 

[1]. Because the number of frames in each sequence is small and the scene in each 

sequence is not complicated, l
i

C ,l
i

T ,l
i

D

 
are constantly set to 0.4, 0.4 and 0.2 

respectively in our global weight approach. A quantitative comparisons of segmentation 

performances are provided in Table 1. The performance is measured by the average 

number of error pixels in each video sequence which is formalized as 
e
ii=1

L

å
L

, where L is 

the number of the images in a sequence, and ei  is the number of error pixels in image 

i. The performances of our both approaches are better than other methods across some 

sequences. However, our global weight approach obtains  a poor performance in girl 

sequence since the contours of the girl‟s legs and arms are drifted gradually. On the 

contrary, our local weight approach performs well in girl sequence because of the 

accurately segmentation in each frame. Figure 2, shows some examples of segmentation 

results based on our local weight approach in all sequences. 

Table 1. Quantitative Comparison on GT-SegTrack Database 

sequence [8] [1] 

Our 

global 

weight 

Our 

local 

weight 

Average 

object size 

Number of 

frames 

parachute 502 235 300 298 3683 51 

girl 1755 1304 3608 1297 8160 21 

soldier 2984 2228 1600 1642 6321 31 

monkey 4142 2814 2790 2619 6011 31 

 

5. Conclusion 

In this paper, we have proposed a novel energy minimization method for salient object 

segmentation. Temporal salient cue and spatial salient cue are computed by high 
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dimensional Gaussian filtering function. Moreover, we deal with the weight of energy 

items in a generalized way. Adaptive pixel-wise weight approach is proposed to increase 

the robustness of the system in some cases. The approach is tested on several challenging 

video sequences and yields improved performance. 
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(a) parachute sequence   (b) soldier sequence 

 
(c) monkey sequence       (d) girl sequence 

Figure 2. Some Examples of Segmentation Results Based on Our Local 
Weight Approach 


