
International Journal of Security and Its Applications

Vol.8, No.1 (2014), pp.183-192

http://dx.doi.org/10.14257/ijsia.2014.8.1.17

ISSN: 1738-9976 IJSIA

Copyright ⓒ 2014 SERSC

Evading Anti-debugging Techniques with Binary Substitution

JaeKeun Lee, BooJoong Kang and Eul Gyu Im

Department of Computer and Software,

Hanyang University, Seoul, Korea

{jk890111, deviri, imeg}@hanyang.ac.kr

Abstract

Anti-debugging technology refers to various ways of preventing binary files from being

analyzed in debuggers or other virtual machine environments. If binary files conceal or

modify themself using anti-debugging techniques, analyzing these binary files becomes

harder. There are some anti-anti-debugging techniques proposed so far, but malware

developers make dynamic analysis difficult using various ways, such as execution time delay,

debugger detection techniques and so on. In this paper, we propose a Evading Anti-

debugging techniques method that can avoid anti-debugging techniques in binary files, and

showed several samples of anti-debugging applications and how to detect and patch anti-

debugging techniques in common utilities or malicious code effectively.

Keywords: Malware Analysis, Anti-debugging detection, Static Analysis, Dynamic

Analysis

1. Introduction

Software has been vulnerable to copyright infringements due to illegal copies and

distributions. Thus it is important for software developers to conceal the program’s core

sources code or flow when they build software binaries. So, many obfuscation techniques or

anti-debugging techniques were applied to binary files [1]. Anti-debugging techniques refer to

various ways of preventing binary files from being analyzed in debuggers or other virtual

machine environments.

As many debuggers or analyzing tools being developed rapidly, some developers try to

avoid debugging through anti-debugging APIs or other techniques [2]. To avoid anti-

debugging techniques, analysts trick binary files as if they are not in the analyzing

environments using plug-ins for debuggers. Using plug-ins for debuggers reduces the

debugger’s performance and the tracing speed. In addition, some anti-debugging techniques

can still detect the debugging environments, so execution results may be different in the

debugging environments.

In this paper, we propose a method to avoid anti-debugging techniques by analyzing

assembly instructions. Our proposed method analyzes and traces the general-purpose register

values to find out whether anti-debugging instructions exist, using anti-anti-debugging rule

sets. Our rule-based method, each time a new technology appears, can add or remove anti-anti

debugging rules quickly. In addition, because this method do not execute program in

debugger environments, it does not be detected by dynamic anti-debugging techniques. After

spotting the sections containing anti-debugging instructions, our Evading Anti-debugging

techniques tool patches the instructions with new instructions. Experimental results showed

that our method can remove anti-debugging instructions from malware.

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

184 Copyright ⓒ 2014 SERSC

The rest of paper is composed of following: In Section 2, background information of basic

anti-debugging technologies was introduced. Section 3 addresses related work on handling

anti-debugging technologies. Section 4 describes about our Evading Anti-debugging

techniques method, and Section 5 includes various samples and malicious codes involving

anti-debugging technologies. Section 6 concludes the paper.

2. Background

2.1. Assembly Instruction

Assembly language is a programming language directly corresponding to machine code,

and for Windows PE (portable executable) files. There exist several disassemblers or

debuggers, such as borg disassembler [3], ollydbg [4], ImmunityDebugger [5], and

IDA Pro [6]. Malware can be analyzed with assembly instructions generated from these

disassemblers. Additionally, some disassemblers provide address or register information for

some instructions, so analysts can apprehend detailed execution process with this information.

As shown in Figure 1, Anti-debugging technologies can also detect which Anti-debugging

API is called from instructions.

In addition, assembly instructions include General Purpose registers [7], such as EAX,

EBX, ECX, EDX, ESI, EDI, ESP, and EBP. These registers are used to save address

values, and could be used in API calls or flag references. Thus, analysts can understand the

program executions if they know the information in registers or the information that a certain

instruction references.

2.2. Anti-debugging Techniques

Table 1. Anti-debugging Techniques [8]

Type Name

API IsDebuggerPresent

CheckRemoteDebuggerPresent

FindWindow

ZwQueryInformationProcess

NtQueryInformationProcess

(ProcessDebugPort)

Flag BeingDebugged flags

Ntglobal flags

Heap flag

others RDTSC

OllyDbg Memory Breakpoint

SeDebugPrivilege

INT 3 Exception

 GetTickCount

Anti-debugging technology refers to techniques that prevent analyzing some parts of

binary files in debugging environments by executing different execution flows, or exiting the

executions. In Table 1 shows various anti-debugging techniques such as API based anti-

debugging, hardware based anti-debugging, timing based anti-debugging, etc.

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 185

In case of the IsDebubberPresent API which is the most common anti-debugging

technique, the API returns the PEB’s beingDebugged flag, and using this flag, the process

can distinguish whether it is being debugged or not. Most anti-debugging APIs use certain

data that judge what information flag contains. There are also time-based anti-debugging

techniques that monitor execution delay to find out whether debugging environments are used

or not.

3. Related Work

Most of the existing researches against anti-debugging suggested exploring multi-path or

flags in debugger environments. However, these approaches fail to hide debugger

environments, even though modifying the analyzing environments similar to PC execution

environments. Artem Dinaburg et al., [9] proposed “Ether” implementation hypervisor level

of CPU. From controlling the analysis environment outside, the malware may not know the

presence of an analyzer. L. Liu et. al., [10] proposed Malyzer, using the shadow process,

which monitored other processes running malicious code. Malyzer makes this shadow process

invisible to the original suspicious process. As a result, Malyzer defeat anti-debugging

techniques. M. N. Gagnon et al., [11] focuses anti-debugging techniques and also suggested

ways to protect software. Peter Ferrie [12] explained about various anti-unpacker tricks and

described what features it has when the OS environment is differentiated. In addition, he

made it easy to infer avoiding debugger environment by checking the flag value. Kawakoyal,

Iwamura and Itoh [13] practiced Stealth Debugger, VMM with debugging function, and

controlled Time Tick to avoid time checking anti-debugging technology. Xu Chen et. al., [14]

also used Stealthy Debuger - used to conceal Virtual Machine, signature or debugger

environment – to suggest various ways of avoiding anti-debugging technology. aadp [15] is

a plugin for ollydbg and ImmunityDebugger that aims to avoid anti-debugging

techniques, such as anti-debugging APIs or flags. J. Lee et al., [16] proposed a basic concept

of a rule-based anti-anti-debugging system, but their paper did not have enough experimental

data.

Most of the researches focused on concealing debugger usage in dynamic analyze

environment or characteristics emerging from virtual machine execution. However, in most of

dynamic environment, concealing signature or using other plug-ins takes more time than

analyzing the binary itself without environment setting or plug-ins. Moreover concealing the

existing analyze environment would make the framework itself useless when it is detected by

new anti-debugging technology, and it will cost more expense and time to set new

environment.

4. Our Proposed Method

This section suggests rule structure and whole composition of Evading Anti-debugging

techniques method, various ways of detecting anti-debugging technology by analyzing

assembly code, patching ways of byte sequence matching.

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

186 Copyright ⓒ 2014 SERSC

4.1. Evading Anti-anti-debugging Techniques Method Overview

Figure 1. Evading Anti-anti-debugging Techniques Method Overview

Our Evading Anti-debugging method focuses on detecting and patching to avoid anti -

debugging techniques based on static analysis. As shown Figure 1, the method can be

split into three steps. First, our rule set is parsed, and an input binary file is

disassembled. Next, detection signatures in the rules are searched in assembly

instructions, and detected instructions are recorded with offset information. Lastly,

locations of the recorded instructions from the previous step are identified in binary

files, and the matched byte sequences are modified to new byte sequences according to

the patching rules defined in our rule set.

4.2. Rule Composition

Table 2. Rule Composition

Name Type Keyword Parametesr Patchhex …

1 IsDebuggerPresent 1 IsDebuggerPresent 0 33c0 …

2 BeingDebugged 2 +02h 0 33c0 …

3 CheckRemote 1 CheckRemote 2 585833c0 …

4 Ntglobal flags 2 +68h 0 33c0

… … … … … … …

In Table 2, Rule refers to regulations for searching and patching anti -debugging. A

rule is composed of 5 parts – Number, Name, Type, KeyWord, Patch_Hex. Number

means input sequence when setting the rule, and Name means title of the following

anti-debugging. Next, Type gets different assigned number according to whether the

anti-debugging rule is API Type, TEB list referred flag, or other. KeyWord means the

string value used when searching. It could hold string such as IsDebuggerPresent,

or status such as +02h. In status case, sort of the Type is also searched – searching only

real flag status. Lastly, Patch_Hex is searched by the rule, and if specific Hex Byte

Sequence is evaluated as anti-debugging, the existing Patch_hex is conversed to byte

sequence for patching.

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 187

New anti-debugging techniques emerged when, creating new debugger plug-ins or

the debugger's another scripting language to create the time-consuming need. While

Depending on composition, add a new rule to the speed of our rule-based method is

very fast and flexible.

4.3. Anti-debugging Detection Algorithm

Our anti-debugging detection algorithm handles three cases. The first case is to call

APIs directly using their addresses. As shown Figure 1.A, it is the case when call

dword ptr [IsDebuggerPresent] appears in assembly instructions. Like most

of anti-debugging functions, the IsDebuggerPresent API returns value to the eax

register after being called. If the return value is 0, it represents the program is not being

debugged, while the return value 1 means the program is on debugging. Therefore, this

instruction is widely used to detect debugging environments. In Figure 1.B, the ‘call

dword ptr [IsDebuggerPresent]’ instruction is replaced by ‘xor eax,

eax’ (33c0) - initializing eax to 0.

Figure 2. Flow Chart of Anti-debugging Detection Algorithm

The second case handles copying dword ptr [IsDebuggerPresent] to a general

purpose register before this API is called. While in some cases malware developers copy the

above API address to other register to avoid anti-debugging detection. The third case is the

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

188 Copyright ⓒ 2014 SERSC

case that flags in PEB (Process Environment Block) are directly examined to detect

debugging.

The third case is when distinguishing whether it is anti-debugging by using flag values.

Figure 3.D shows process of approaching PEB through fs, and copying beingDebugged

flag value to register using +02h. If a register approaches PEB, different flag should be

marked like Register of Interest (ROI) concept, and it should be decided whether the Rule

could be applied at once, initializing the flag value to 0. A block Diagram and patching

methods are described below.

Besides, it shows the process of copying ROI to other registers. The mov command copies

ROI and calls it. Patch is necessary for copy call section, since it is doing the same task after

all. push, pop and copy operations are executed alike this process.

After this basic detection algorithm, patch using the Hex value specified in the Rule. In the

API function case, push operator is used according to the number of parameters, and the

Windows API follows stdcall logic – therefore pop(58h) operator is needed

accordingly. Thus in the rule, pop should be added according to the number of parameters, to

make the pointer indicate proper spot when executing binary.

In addition, in some the operating system, anti-debugging APIs address has been changed by

offset. In this case, the nearest conditional branches (JNZ) from anti-debugging APIs were

replaced by normal branches (JMP) without modifying the call anti-debugging APIs

Instruction.

A

B

C

D

Figure 3. Cases of Anti-debugging

5. Experiments

This section explains experimental result of our anti-debugging method. The

experiments were performed in a Windows XP environment, and the modified borg

disassembler and ollydbg were used.

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 189

5.1. Anti-debugging Patch Experiment

Table 3. Anti-debugging included Sample

API & Flag Name Detection & Patch

IsDebuggerPresent O

CheckRemoteDebuggerPresent O

FindWindow O

ZwQueryInformationProcess O

NtQueryInformationProcess O

BeingDebugged flags O

Ntglobal flags O

Heap flag X

In Table 3, Initially, we create a sample binary file that has various anti -debugging

techniques, such as IsDebuggerPresent, CheckRemoteDebuggerPresent,

FindWindow, ZwQuery(NtQuery)InformationProcess, BeingDebugged,

the Ntglobal flag and the Heap force flag. Then, we tested our Evading Anti -anti-

debugging method with this sample and the method detected all the anti -debugging

techniques except the Heap force flag. The Heap force flag can be detected but cannot

be patched because Patch Hex value was oversized compared to the original Hex value.

Table 4. Anti-debugging included Malicious Code Families

Malicious Code Name Detection& Patch

Trojan.Agent.a.b.c.d

IsDebuggerPresent

ZwQueryInformationProcess

CheckRemoteDebuggerPresent

Trojan.Antavmu.a.b.c IsDebuggerPresent

Backdoor.Agent.a.b IsDebuggerPresent

Worm.Autorun.a.b.c.d IsDebuggerPresent

Table 5. Anti-debugging included Commercial Software

Program Name Detection& Patch

AcroRd32 IsDebuggerPresent

Alzip IsDebuggerPresent

Ggpo IsDebuggerPresent

DaumPotPlayer IsDebuggerPresent

Winrar IsDebuggerPresent

Chrome IsDebuggerPresent

Tables 4 and 5 shows experimental results with malware and commercial software.

Most malware was found to have only the IsDebuggerPresent API. But the

ZwQuery InformationProcess API was used to in the Trojan.Agent family.

Most malware focuses on infecting rather than anti-debugging, so only a simple anti-

debugging technique is used. Anti-debugging techniques were also used in commercial

software, and in most cases, only the IsDebuggerPresent API was detected.

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

190 Copyright ⓒ 2014 SERSC

5.2. Patch Verification Experiment

Table 6. Trace Change of Worm.Autorun.A

Tracing Patching Before

 00402155 CALL 00401E65

Target

Pos

00401E65 CALL DWORD PTR DS:[<&KERNEL32.IsDebuggerPresent>

 EAX=00000001

 00401E6B TEST EAX,EAX

00401E6D JE SHORT 00401E77

00401E6F PUSH 0 ExitCode = 0

00401E71 CALL DWORD PTR DS:[<&KERNEL32.ExitProcess>]

 EAX=00000000, ECX=7C7D0000, EDX=77C11AE8,

 EBP=0012FEE4, ESI=7C93DE6E, EDI=00000000

 Process terminated, exit code 0

Tracing Patching After

 00402155 CALL 00401E65

Target

Pos

00401E65 XOR EAX,EAX EAX=00000000

00401E67 NOP

00401E68 NOP

00401E69 NOP

00401E6A NOP

 00401E6B TEST EAX,EAX

00401E6D JE SHORT 00401E77

00401E77 RETN

0040215A CALL 004021B0

004021B0 PUSH EBP

004021B1 MOV EBP,ESP EBP=0012FF00

004021B3 PUSH ECX

004021B4 MOV EAX,DWORD PTR FS:[18] EAX=7FFDF000

004021BA MOV DWORD PTR SS:[EBP-4],EAX

Table 6 shows Worm.Autorun.A in the environment of the debugger is terminated

immediately. After patching the debugger is not detected in IsDebuggerPresent

API. As a result, Worm.Autorun shows a different behavior. On the other hand, in

Table 7, 8 AcrobatReader and Trojan.Agent.a did not shut down right in the debugger

environment. But after both programs are patched, Worm.Autorun.A shows different

behaviors.

Table 7. Trace Change of AcrobatReader

Tracing Patching Before

 0043EF60 Main MOV DWORD PTR SS:[EBP-18],ESP

Target

Pos

0043EF63 CALL DWORD PTR DS:[<&KERNEL32.IsDebuggerPresent>

 EAX=00000001

 0043EF69 TEST EAX,EAX

0043EF6B JE SHORT 0043EFAD

0043EF6D MOV DWORD PTR SS:[EBP-28],1000

0043EF74 MOV EAX,DWORD PTR SS:[EBP+8] EAX=00AB4328

0043EF77 MOV DWORD PTR SS:[EBP-24],EAX

0043EF7A CALL DWORD PTR DS:[<&KERNEL32.GetCurrentThreadId>]

 EAX=00000A68

Tracing Patching After
 0043EF60 MOV DWORD PTR SS:[EBP-18],ESP

Target

Pos

0043EF63 XOR EAX,EAX EAX=00000000

0043EF65 NOP

0043EF66 NOP

0043EF67 NOP

0043EF68 NOP

 0043EF69 TEST EAX,EAX

0043EF6B JE SHORT 0043EFAD

0043EFAD MOV ECX,DWORD PTR SS:[EBP-10] ECX=0012FB98

0043EFB0 MOV DWORD PTR FS:[0],ECX

0043EFB7 POP ECX ECX=7620CCAB

0043EFB8 POP EDI

0043EFB9 POP ESI

0043EFBA POP EBX

0043EFBB MOV ESP,EBP

0043EFBD POP EBP EBP=0012FBA4

0043EFBE RETN

004085EF MOV DWORD PTR SS:[EBP-20],EBX

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 191

Table 8. Trace Change of Trojan.Agent.A

6. Conclusion

In this paper, we proposed a rule-based patching method to avoid anti-debugging

techniques by analyzing assembly instructions. Our rule-based method, each time a new

technology appears, can add or remove anti-anti debugging rules quickly. In addition,

because this method do not execute program in debugger environments, it does not be

detected by dynamic anti-debugging techniques. After spotting the sections containing

anti-debugging instructions, our Evading Anti-debugging techniques tool patches the

instructions with new instructions. Experimental results showed that our method can

remove anti-debugging instructions from malware. Our future studies will be multi -byte

sequence matching to improve processing speed.

Acknowledgements

This research was supported by Next-Generation Information Computing Development

Program through the National Research Foundation of Korea(NRF) funded by the Ministry of

Science, ICT & Future Planning (2011-0029924).

References

[1] P. C. Van Oorschot, “Revisiting software protection”, Information Security, Springer, (2003), pp. 1-13.

[2] M. Brand, C. Valli and A. Woodward, “Malware Forensics: Discovery of the intent of Deception”,

Proceedings of the 8th Australian Digital Forensics, (2010), pp. 39-45.

[3] borg disassembler, http://www.caesum.com/.

[4] O. Yuschuk, Ollydbg. http://www.ollydbg.de/.

[5] Immunity inc, Immunity Debugger, http://www.immunityinc.com/.

[6] C. Eagle, “The IDA Pro Book: The Unofficial Guide to the World's Most Popular Disassembler”, No Starch

Press, (2008).

[7] Intel® 64 and IA-32 Architectures Software Developer Manuals. www.intel.com/products/processor/

manuals/.

[8] M. V. Yason, “The art of unpacking”, Retrieved, (2008) February 12.

[9] A. Dinaburg, P. Royal, M. Sharif and W. Lee, “Ether: malware analysis via hardware virtualization

extensions”, Proceedings of the 15th ACM conference on Computer and communications security, ACM,

(2008), pp. 51-62.

Tracing Patching Before

 00407533 SUB ESP,0CC

Target

Pos

00407539 CALL DWORD PTR DS:[<&KERNEL32.IsDebuggerPresent>]

 EAX=00000001

 0040753F TEST EAX,EAX

00407541 JNZ 00407644

00407644 MOV ESP,EBP

00407646 POP EBP EBP=0012FF28

00407647 RETN

00407C25 MOVZX EAX,AL

00407C28 CMP EAX,1

00407C2B JE 00407CE4

Tracing Patching After
 0043EF60 MOV DWORD PTR SS:[EBP-18],ESP

Target

Pos

00407539 XOR EAX,EAX EAX=00000000

0040753B NOP

0040753C NOP

0040753D NOP

0040753E NOP

 0040753F TEST EAX,EAX

00407541 JNZ 00407644

00407547 PUSH 105

0040754C CALL 00401072

00401072 PUSH EBP

00401073 MOV EBP,ESP EBP=0012FE14

00401075 SUB ESP,0C

International Journal of Security and Its Applications

Vol.8, No.1 (2014)

192 Copyright ⓒ 2014 SERSC

[10] L. Liu and S. Chen, “Malyzer: Defeating anti-detection for application-level malware analysis”, Applied

Cryptography and Network Security, Springer, (2009), pp. 201-218.

[11] M. N. Gangon, S. Taylor and A. K. Ghosh, “Software protection through anti-debugging”, IEEE Security &

Privacy, vol. 5, no. 3, (2007), pp. 82-84.

[12] P. Ferrie, “Anti-unpacker tricks”, Proceedings of the CARO Workshop, Amsterdam, (2008).

[13] Y. Kawakoya, M. Iwamura and M. Itoh, “Memory behavior-based automatic malware unpacking in stealth

debugging environment”, Proceedings of the 5th IEEE International Conference on Malicious and Unwanted

Software (MALWARE), (2010), pp. 39-46.

[14] X. Chen, J. Andersen, Z. M. Mao, M. Bailey and J. Nazario, “Towards an understanding of anti-

virtualization and anti-debugging behavior in modern malware”, Proceedings of the IEEE International

Conference on Dependable Systems and Networks, (2008), pp. 177-186.

[15] Anti-Anti-Debugger Plugins, https://code.google.com/p/aadp/.

[16] J. K. Lee, B. J. Kang and E. G. Im, “Rule-based Anti-anti-debugging System”, Proceedings of the 2013

ACM Research in Adaptive and Convergent Systems, Monteal, Canada, (2013) October 1-4.

Authors

JaeKeun Lee, is a master student of Hanyang University, Korea. He

got the B.S. degree in computer engineering from Hanyang University,

Seoul, Korea, in 2012.

Research interests: Malware Analysis and Detection, Network

Security. Parallel Computing, and Cloud Computing

BooJoong Kang, is a research engineer of Division of The Research

Institute of Industrial Science at Hanyang University, Seoul, Korea. He

got B.S. and M.S. from Hanyang University in 2007 and 2009 each, and

Ph.D. from Hanyang University in 2013

Research interests: Malware Analysis, RFID and SCADA Security

Eul Gyu Im, is a faculty member of Department of Computer and

Software at Hanyang University, Seoul, Korea. He became a Member of

IEEE in 1994. He got B.S. and M.S. from Seoul National University in

1992 and 1994 each, and Ph.D. from University of Southern California in

2002. Before joining Hanyang University, he worked for National

Security Research Institute in Daejeon, Korea. He is also a member of

ACM

Research interests: Malware traffic Analysis, Malware Binary

Analysis, RFID Security, and SCADA Security

