
Fine Granularity Access Rights for Information Flow Control in
Object Oriented Systems

Allaoua Maamir Abdelaziz Fellah Lina A. Salem
University of Sharjah

Department of Computer Science
P.O. Box 27272, Sharjah

United Arab Emirates�
maamir, fellah, lina � @sharjah.ac.ae

Abstract

One of the main features of information flow control is to ensure the enforcement of privacy and
regulated accessibility. However, most information flow control models that have been proposed
do not provide substantial assurance to enforce end-to-end confidentiality policies or they are too
restrictive, overprotected, and inflexible. We present a model for discretionary access controls that
is in harmony with the object oriented paradigm. The model uses access rights applied to object at-
tributes and methods, thus allowing considerable flexibility without compromising system security
by leaking sensitive information. Models based on message filtering intercept every message ex-
changed among objects to control the flow of information. We present an algorithm which enforces
message filtering based on the defined access rights.

�������
	����������	���
�

Applications requiring secrecy and confidentiality are growing in numbers. A few examples are
electronic commerce, mobile computing, intranets and large network systems such as commercial
multiuser database systems. Secrecy ensures that users access only information that they are al-
lowed to see. Confidentiality ensures the protection of private information, such as payroll data,
employee and customer records, as well as sensitive corporate data, such as internal memos and
competitive strategy documents. There has been a general consensus that security is the key to
the success of these applications. Therefore, we need effective mechanisms and policies to pre-
vent accidental destruction and malicious attacks, and to control the disclosure and propagation of
the information to users who should not access the information. Information flow control and ac-
cess control models to design and implement secure systems have been widely researched. Various
kinds of access control models have been studied in literature, see for example [4, 8, 15, 18, 20, 21].
Information flow models are intended to address secrecy and privacy problems, however, most of
them are too restrictive to be used. Decentralized label models [11, 12, 13], have been introduced to
improve traditional models in several ways, making them more flexible by attaching flow policies
to pieces of data.

Another offensive method to loosen the strict information flow policies of the work in [18] has
been proposed by the same authors. This method allows exceptions (i.e., waivers) which can be
specified with reference to specific objects and users without disclosing sensitive information. The

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

81

need for improving flexibility in information flow policies without compromising system security
by disclosing sensitive information has been pointed out in previous and recent work, see for exam-
ple [8, 10, 13, 18]. Recently, a promising new approach based on the use of programming language
techniques for specifying and enforcing information-flow control policies has been developed; see
for example [1, 16, 17, 22].

An access rule is specified in the form �����������	��
 , where a subject � is allowed to access or
manipulate an object � through an operation �	� , such as read, write, or execute. The permission
to perform a certain operation on an object is said to be an access right. Discretionary access
control mechanisms restrict access to objects based solely on the identity of the subjects which are
trying to access them. However, this basic principle of discretionary access control (DAC) contains
a potentially illegal flow of information, that is, a subject which is granted access to an object
can pass the information along to another subject. Data in an object may be obtained via other
objects which then can be obtained by unauthorized subjects of the object. For example, if user
�� is allowed to read ���� � data, but on the other hand � � does not allow ��� to read it. � � cannot
control how � distributes the information it has read. � can read the information from � � and
then propagates it to � � since a copy of the information is now owned by � . A Trojan horse is
a computer program which works in a similar way, leaking information despite the discretionary
access control. The main drawback of DAC mechanisms is that they do not impose any control
on the flow of information. Thus, discretionary policies are vulnerable to Trojan horses, and DAC
cannot deter hostile attempts to access sensitive information. A DAC mechanism allows users
to grant or revoke access privileges to any of the objects under their control. Such users can be
corporations or agencies which are the actual owner of system objects as well as the programs that
process them.

Another access control model is the mandatory access control (MAC) which restricts access to
objects based on the sensitivity of the information they contain and the authorization of subjects to
access such information. Security labels (i.e., clearance) are associated with each object and subject
that reflect the subject’s trust level and ensure that sensitive information is not disclosed to subjects
who are not cleared to see it. Every entity, i.e., subject and object, is classified to a security class.
These mandatory policies are not particularly well suited to the requirements of organizations that
process unclassified but sensitive information.

More recently, a family of reference models for role based access control (RBAC) has been pro-
posed and investigated in research, see for example, [6, 7, 19]. RBAC methods can be viewed as an
alternative to traditional discretionary (DAC) and MAC policies that are particularly attractive for
commercial applications. The RBAC model has extended the framework access model to include
role hierarchies. The translation of a mandatory access control model into a role hierarchy has been
presented in [14]. In RBAC, access decisions are based on the roles and responsibilities of each
user in the organization’s structure. A role can be defined as a collection of access rights, which
represent a set of job functions in the organization. Each user is assigned one or more roles, and
each role is assigned one or more privilege. For example, within a hospital system, access rights and
decisions are based on the roles that medical personnel can play in the organization. The potential
role of a doctor can include prescribing medications, recommending treatments, and interpreting
the results of an imaging test. The role of a nurse can include providing care for patients, measur-
ing vital signs, and monitoring drug administration. The role of a medical assistant may include
taking health histories, and performing laboratory tests. Roles can be hierarchical, mutually ex-
clusive, collaborative, or overlapping. For example, in a hospital some roles are hierarchical. The
doctor role may include all privileges granted to the nurse role, which in turn includes all privileges

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

82

granted to the medical assistant role. Role hierarchies are a natural generalization of organizing
roles for granting responsibilities and privileges within an organization. RBAC is used particularly
for commercial applications, because it reduces the cost of security administration and the com-
plexity of managing large networked systems. For example, RBAC has been implemented on the
Web servers and particularly to an intranet computing environment in [7]. A variation of the RBAC
model called object oriented role-based access model (ORBAC) has been proposed by [23]. In
an ORBAC based system, object technology has been used to model application-level user access
control. However, the confinement problem may occur in the ORBAC based system and objects
can be accessed by unauthorized users. In order to deal with this problem, a role set assignment
method based on the principles of MAC security policy has been proposed in [24].

Although the ability for discretion to specify accesses is not lost in the model of [18], the overall
flexibility is reduced by the application of very tight and strict policy where the access rights are
applied at the object level. A subject either has the right to read/write an entire object (read/write
each attribute of the object) or none. Rights to execute methods of an object are not considered at
all. The work in [3, 2] is based on RBAC. It considers flow control which requires program analysis.
We believe program analysis requires rigorous and sophisticated tools. Furthermore, access rights
are based on class relationships. Class relationships can help to assign access rights to subjects
however assignment should be based on object instances. For example, a person � (from class �)
could have two friends (same kind of relationship), � and � � (from the same class �), but � may
allow some information to pass to � but not to � � . This is very common scenario in practice.
In this paper, we propose an approach based on access rights applied to object attributes and meth-
ods. Such approach makes access control improve flexibility without increasing the potential for
information leaks and disclosure. The remainder of the paper is organized as follows. Section 2 de-
scribes the object-oriented model and introduces the basic terminology used throughout the paper.
Section 3 describes the authorization model. Section 4 describes the information flow policies and
the message filter is presented in Section 5. Section 6 presents the experiment results and finally
Section 6 concludes the paper.

�
�����	��
 ��	��� � ��
 �
	�
 ��� ���
��

Object-oriented systems are composed of objects. Objects can be defined as an encapsulation
of data state, methods for manipulating that data. Classes are prototypes of objects. An object
is a physical implementation or an instance of a class. A class is defined to be a set of attributes
and methods and may have many instance objects. Objects interact and communicate by passing
messages. A method of an object is invoked by sending a message to the object. Access to attributes
of an object is also based on the message-passing paradigm. Messages are the means by which
objects communicate, and for each message, a corresponding method is executed. If an object
wants to access an attribute of another object, it sends a message requiring the execution of a
method that reads that attribute and returns it to the sender. New classes can be created by reusing
(i.e., inheriting) attributes and methods from other existing classes. However, inheritance is beyond
the scope of this paper. Further research considerations with respect to the propagation of access
rights through inheritance hierarchies is being investigated.

We assume a finite set of domains � ��� � ������� ����� . Let ����� �� � � �! � � "� ��� �$#&%('*),+
where nil is a special element. Every element of � is referred to as a primitive object (an integer,
a string, � � &- . Let . be a set of attribute names, / a set of system object identifiers. Users of the
system are considered as objects and each user has a unique user identifier. Denote by 0 the set

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

83

of all user identifiers and by � � / � 0 . Each element of � is referred to as an object identifier
(�����).

Definition 1. A non primitive object, � , is a tuple � ' ��. ��� �	�
 where '�
 / , A a set of attribute
names, � a set of attribute values where each value is in � � / , and � a set of method names. In
the above definition, a non primitive object has an ����� , an ordered set of attributes, an ordered set
of attribute values, and a set of methods.

Definition 2. A message sent from an object to another, that has a method called � , is a tuple
�� � ����� � ����� � ������� � �������
 where �������
 � � / � . . The parameters are the arguments values
to be passed to the method � .

Definition 2 states that a message is made up of the name of the method to be invoked and a set
of parameters. Each parameter could be a value (a primitive object), an ����� , or an attribute.

Definition 3. A reply to a message is either success, failure, NIL (an empty reply), or a tuple of
return values ��� � ������� ��� � �
 where � ���
 � � / , ' ��� ������� � % .

Each object has a built-in read method and a built-in write method for each attribute. Similarly,
each object has a built-in create method. Access to an attribute is carried through having the ob-
ject to send a primitive message to itself. A primitive message causes the invocation of a built-in
read/write. The same applies for the case of creating of an abject instance. The built-in methods
are said to be primitive because they do not cause invocation of other methods.

� �����
� � 	!�� � �#"%$ 	��� ��� ���
 �

In order for a subject (a user or a system object) to access an attribute of an object or to create
an object instance it must have the appropriate access right. Similarly, for an object to execute a
method of an object it must have the permission to do so. We associate with each attribute, att,
a read access list (RACL), and a write access list (WACL) containing the objects which have the
right to read and write the attribute respectively. With each method, � , a permission list (PERL),
contains the objects which can invoke the method, is associated. Each object, � , has a create access
list (CACL) containing the objects which have the right to create instances of the object.

RACL(att) = # ����� � � of all objects which can read �'&#& + �
WACL(att) = # ����� � � of all objects which can write ��&(& + �
PERL(�) = # ����� � � of all objects which have the right to invoke � + �
CACL(�) = # ����� � � of all objects which have the right to create an instance of � + �

By default each of the above lists contains the ����� of the owner of the object. The owner of an
object is the creator of the object. The above lists are determined for each object and assigned at
creation time. We assume during execution those lists remain unchanged. Those lists should be
determined from the business rules of the application. From now on we assume their existence.
When a user desires to start an activity, the user sends a message to an object executing a method of
that object. The set of all method invocations (direct and indirect) to carry out the desired activity
form what is called the user’s transaction. In a transaction, if method � executing on object �
invokes method � � of � � then the access authorizations of object � are checked. For example, if
� � is a read for attribute att then � must be in RACL(att) for the access to be granted otherwise
the access is denied.

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

84

We refer to an execution of a method � � of object � � as � � . In a transaction, if an execution � � of
method � � executing on object � � invokes the execution ��� of method � � on � � then the execution
� � is suspended until ��� returns. This is what is termed as synchronous interaction mode in [18].
This is the only interaction mode we assume in this paper, our model could be augmented with the
other interaction modes defined in [18]. Having that set, the following defines the execution order
of methods.

Definition 4. If an execution � � invokes the execution ��� and the execution � � , we say that the
execution � � precedes the execution � � if � � was invoked before � � .

� �������
��� $ 	��� �
	 ����

When an object, � , sends a message to object � � , we say that the information flows from �
to � � and it is termed as forward flow. Similarly, when � � replies to � we say that there is a
flow of information from � � to � and it is called backward flow. This corresponds to what is called
forward and backward information transmission in [18]. Our assumption is identical to that in [22].
We make similar assumption to that of [18], during execution, methods are not allowed to change
their own code or the code of other methods. This is to ensure that no information can be hidden
in method codes. Further, we assume that only the information written to object attributes is the
only information that remains after the execution of a method is finished. For example static local
variables like in C++ are not permitted. In the rest of the paper we would use information flow and
information transmission interchangeably. In a transaction, if a transmission of information from
object � to object � � , and information is transmitted from � � to � � , we say there is an indirect flow
from � to � � . Note that it is not necessary for the information transmitted from � � to � � be the same
as the information transmitted from � to � � , it could be derived from it or not related to it at all.
Hence, the information flows that we are considering are potential rather than actual. Limiting the
work to only actual flows requires rigorous program code analysis [4], which is outside the scope of
this paper. Certainly, considering only actual flows for control would have a great impact on overall
system performance.

When the execution � � of method � � of object ��� invokes the execution �� of method � � of
object � � , � � sends a message � � � � ���'� � ���'� � ������� � �������
 to � � . For the message to be allowed
� � must have permission to invoke the execution of � � and � � must have the right to access each of
the parameters. Similarly, for the reply of the message from � � to � � to be allowed, � � must have the
right to access each of the reply parameters. Further, the message/reply should not enact an unsafe
flow, this would be explained later. To characterize the access rights of a message parameter we
define the read access list of a parameter as follows:

Definition 5. Let ��� be an execution of � � of � � invoked by an execution � � of � � . The message sent
by � � to � � to invoke ��� is � � � � ����� � ����� � ������� � � �'���
 . The RACL of a parameter is defined as
follows:

(a) If �������
 . , the parameter is an attribute att, then RACL(���'� �) � RACL(att).

(b) If �������
 / , the parameter is an ����� , then RACL(���'���) = � .

(c) If �������
 � , the parameter is a primitive object (i.e., a computed value), then RACL(���'�'�) =
VACL(� �) where VACL(� �) is the set of objects that can access a computed value by � � as
defined in Definition 6.

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

85

Cases (a) and (b) above are self explanatory. Case (c), ����� � is a computed value by � � . While
computing ������� any of the following could be used:

(a) Some parameters of � � .
(b) Some attributes � � has read.

(c) Some returned values by a method invoked by � � .
(d) A computed value from any the above.

Hence, ������� should be at least as protected as any of the above elements that were used in deriving
it. To avoid program analysis, which is beyond the scope of this paper, to determine how the
value of ������� is derived we have considered VACL(� �) which considers all parameters of � � (see
Definition 6. Once again we are considering potential flows in this work rather than actual flows.

Definition 6. VACL(� �) is the set of objects that can access a computed value by � � . VACL(� �) is
constructed incrementally as the execution � � proceeds as follows:
Let � �'� � ���'� � ������� � �����&� be the parameters of the message invoking � � , (the RACL of each param-
eter is defined by Definition 5).

(i) At the start of � � , if � � is invoked by a user or it has no parameters set VACL(� �) := �
otherwise set VACL(� �) := RACL(�����) � RACL(����� �) � � � � RACL(� �'� �).

(ii) Each time � � reads an attribute � , set RACL(� �) = VACL(� �) � RACL(�).

(iii) Each time � � receives a reply from an execution � � of some method � � , set VACL(� �) �
VACL(� �) � RACL(� �) where RACL(� �) is the set of objects that are allowed to read the
reply of � � and it is defined below in Definition 7. Note case (ii) is covered by (iii), it is
written for paper readability.

In (i) if � � has no parameters (no information transmitted to it by the message) then a computed
value by � � should be accessible to all objects (no other methods are invoked so far by � �). if � �
is invoked by a user VACL(� �)is set to � . That is, we only consider the information read during
transaction execution not the information introduced by the user. This is the same as in [18]. If
� � is not invoked by a user and receives information from its invoker then a computed value by
� � should be at least protected as the information received and VACL(� �) is set to RACL(�����) �
RACL(����� �) � � � � RACL(���'� �). In (ii) and (iii), each time � � receives a reply from an execution
� � it invoked then a computed value by � � should be at least as protected as the reply and VACL(� �)
is set to VACL(� �) � RACL(� �).

To decide whether a reply should be returned to the invoker or be blocked, we define the read
access list associated with an execution

Definition 7. Given an execution � � of a method of object � � , the read access list associated with
it, RACL(� �), is the set of objects that are authorized to access the information in the reply of � � .
RACL(� �) is constructed incrementally while � � is executing as follows:

(a) If � � is a read of an attribute att, set RACL(� �) � RACL(att).

(b) If � � is a write or a create, set RACL(� �) � � .

(c) If � � is not a read, a write, nor a create:

(i) At the start of � � set RACL(� �) � � .

(ii) Each time � � reads an attribute att, set RACL(� �) � RACL(� �) � RACL(att).

(iii) Each time � � receives a reply from an execution � � of some method � � , set RACL(� �) �

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

86

RACL(� �) � RACL(� �). Note case (ii) is covered by (iii), it is included for paper read-
ability.

Case (a) is self explanatory. (b) indicates if � � is a write or a create no information about the state
of � � is returned and hence RACL(� �) is set to � . (i) is self explanatory, (iii) each time � � receives
a reply from an execution � � it invoked then the reply of � � should be at least as protected as the
reply of � � , hence RACL(� �) is set to RACL(� �) � RACL(� �). Note: The concept of RACL(� �) is
adopted from [18].

�
� �
���� $��
 	 � � 	�
 � � ���

The message filter [9] is a trusted system component which has the ability to intercept messages
exchanged among objects to control the flow of information. In this section, we elaborate on the
information flow control policies using message filtering. The filter blocks a message from �!� to � �
if � � does not have the right to access the information (parameters) in the message or the message
could enact an unsafe flow as explained below. The filter would block a message/reply in the
following cases:
Let the execution � � of method � � of object � � invokes the execution �� of method � � of object � � ,
� � sends a message ��� � � ����� � ����� � ������� � �������
 to � � .

(a) � � does not have the permission to invoke the required method by the message, i.e., � ���

PERL(� �).

(b) If � � does not have the right to read the information in the message. That is, � � is not in the
RACL of each parameter.

(c) If � � saves the information received from � � (case of a write or a create), and it may pass it (or
a derived value from it) to unauthorized objects directly or indirectly through an authorized
object. In this case it said that the message enacted an unsafe (forward) flow.

() In case of a write ��
��������������� ������� -
 For the flow of information from � � to � � to be
safe, att should be at least as protected as ���) . That is, RACL(att) � RACL(val) must
be satisfied.

(�) In case of a create � � ���"!������#���) �����) � ������� �����)%$ -
 � � must be a class. The operate
create an object � with attributes ��&(& � ��&(& � ������� � ��&(& $ with values � �) ��� �) � ������� ��� �)&$
and methods � ��� � ������� ��� � . For the flow to be safe RACL(��&(& �) should be set to# � � + � � �'� �) � , ' � � ������� �) - WACL(�'&#& �) should be set to # � � + , for every attribute
��&(& � of � . and PERL(� �) should be set to # ��� + for every method � � of � .

(d) If � � receives information through the reply of � � , it may pass it to unauthorized objects
(directly or indirectly). In this case it said that the message enacted an unsafe (backward)
flow. This information passing may happen during the execution of � � or even after it finishes
execution if the information is saved in the attributes of ��� . Hence, for the flow to be safe
each attributes of � � should be at least as protected as the reply and any value computed by � �
should be at least as protected as the reply. That is, # VACL(� �) � # RACL(��&(& �) where ��&(&��
is an attribute of � � + + � RACL(� �) must be satisfied.

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

87

The code for the message filter is given below.
Input: Message (msg) sent by execution � � , running on object � � . The message requires the execu-
tion � � on � � .
Output: Return reply of �� which might be success, failure, NIL, or a tuple of return values.

begin
RACL(� �) � � .
if � �
 0 // � � is invoked by a user
then VACL(� �) � � �

invoke � �

RACL(� �) � � � �
reply � � reply from ���

return reply to � �
else case msg of

(1) � READ, att
 do
// att is an attribute of � � � � � is a read

if � �
 RACL(att)
then invoke � � // let message pass

// reply will be set to the value of att
RACL(� �) � � RACL(att)
RACL(� �) � � RACL(� �) � RACL(� �)
VACL(� �) � � VACL(� �) � RACL(� �)
// update VACL of � �
reply � � failure

return reply to � �

(2) � WRITE, (att, val)
 do
// � � is a write, val value of attribute att

if � �
 WACL(att)
then if RACL(att) � RACL(val)

// val is a parameter and it has an RACL
then invoke � � // att will be set to val

RACL(� �) � � �
RACL(� �) � � RACL(� �) � RACL(� �)
VACL(� �) � � VACL(� �) � RACL(� �

reply � � success
else reply � � failure

else reply � � failure
return reply to � �

(3) � CREATE, ���) ��� �) � ������� �����)%$
 do
// � �) �����) � ������� �����)%$ are attribute values

if � �
 CACL(� �)
then invoke � � // creates object �

// with attributes ��&#& � �'&#& � ������� � �'&#& $
// with values � �) ��� �) � ������� �����)%$
// and methods � ��� � ������� ��� �
RACL(�'&#& �) � � # � � + � � � � �) � , ' ��� ������� �)),

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

88

WACL(�'&#& �) � � � � for every
attribute ��&(&�� of �
PERL(� �) � � � � for every method � � of �
RACL(� �) � � �
RACL(� �) � � RACL(� �) � RACL(� �)
VACL(� �) � � VACL(� �) � RACL(� �)
reply � � � ��� of �

else reply � � failure
return reply to � �

(4) � � � ����� � ����� � ������� � � �'� $

// Where � is not READ, WRITE, nor CREATE.
// � � is the execution of method �
if � �
 PERL(�) AND � �
 RACL(����� �), for� � � ������� �)
then if no parameter then set VACL(��) � � �

else set VACL(���) � � � � �������
invoke � �

if # VACL(� �) � #�� � RACL(�'&#& �) where ��&(&��
is an attribute of � � + + � RACL(� �)
then reply � � reply from ���

RACL(� �) � � RACL(� �) � RACL(� �)
VACL(� �) � � VACL(� �) � RACL(� �)

else reply � � NIL
else do not invoke � �

reply � � failure
return reply to � �

We have showed that the algorithm disallows every unsafe flow and that if a flow is allowed then
it is safe. Proofs are in a technical report and interested readers can request them directly from the
authors.

� �������
 � � �
 �
	 �

We have run some experiments in which objects, access rights (ACL’s and permissions), and
transactions were randomly generated. First, we used 3 classes � �	� � � and � � . � has 4 attributes
and 4 methods. � � has 3 attributes and 2 methods. � � has 5 attributes and 2 methods. The
maximum total number of randomly generated objects is 30 objects. Each run of the experiment
considered 30 randomly generated transactions. Table 1 shows for each run the transactions that
were not allowed because they might have enacted unsafe flows. In each case we checked each
transaction manually to see whether the transaction should have been allowed or blocked, that is we
considered actual flows. We ran the same experiments with the filter in [18]. The results show that
our filter has allowed a much larger number ”legal” transactions (those that were checked manually
not to enact unsafe flows) that then filter of [18] as we have expected. Access rights were mapped
from our model to correspond to the model of [18].

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

89

Table 1. First Experiment. NT indicates the number of transactions.

Total number NT NT NT
of objects allowed by allowed by should be

our filter filter of [18] allowed
9 12 4 15

15 12 1 14
18 12 2 13
21 13 1 15
24 7 1 8

We ran a second set of experiments in which we considered classes with more attributes and
methods. � has 14 attributes and 10 methods. � � has 2 attributes and 8 methods. � � has 5
attributes and 3 methods. The results are recorded in Table 2. As expected our filter had much
better results than that of [18].

Table 2. Second Experiment. NT indicates the number of transactions.

Total number NT NT NT
of objects allowed by allowed by should be

our filter filter of [18] allowed
9 13 0 14

15 10 1 10
18 9 0 10
21 8 2 9
24 8 0 9

� ��� � � � ������ �

We have proposed a flexible and nonrestrictive information flow model for object-oriented sys-
tems without compromising system security or increasing the potential for information leakage and
disclosure.
By considering the authorizations of object attributes and methods, we can get rid of all unnec-
essary messages blocking that the message filter in [18] strictly enforces. Defining authorizations
for attributes and methods dovetail with access rights semantics in the real world and fits very well
with the object oriented paradigm. This work leaves some issues not addressed and opens further
research. One issue to be investigated is the case where methods do store information between exe-
cutions (for example the case of local static variables in C++). A second issue is how to incorporate
inheritance.

�
 �
 �
 � �
 �
[1] A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a java-like language. In

Proc. IEEE Computer Security Foundations Workshop, pages 253–267, June 2002.

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

90

[2] S. Chou. Embedding role-based access control model in object-oriented systems to protect privacy. Journal of
Systems and Software, 71(1-2):143–161, 2004.

[3] S. Chou and et al. Information flow control in multithread applications based on access control lists. Information
& Software Technology, 48(8):717–725, 2006.

[4] D. E. Denning. A lattice model of secure information flow. Comm. of the ACM, 19(5):236–243, 1976.

[5] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Communication of the
ACM, 20(7):504–513, July 1997.

[6] D. F. Ferraiolo and et al. Role-based access control: Features and motivations. In Proc. 11th Annual Computer
Security Applications Conference, pages 241–248, Dec. 1995.

[7] D. F. Ferraiolo and et al. A role based access control model and reference implementation within a corporate
intranet. ACM Transactions on Information and Systems Security, 2(1):34–64, Feb. 1999.

[8] E. Ferrari and et al. Providing flexibility in information flow control for object-oriented systems. In Proc. IEEE
Symposium on Security and Privacy, pages 130–140, May 1997.

[9] S. Jajodia and B. Kogan. Data model with multilevel security. In Proc. IEEE Symp. on Security and Privacy, pages
76–85, 1990.

[10] A. Maamir and A. Fellah. Adding flexibility in information flow control for object-oriented systems using versions.
International Journal of Software Engineering and Knowledge, 23(3):313–325, June 2003.

[11] A. C. Myers and B. Liskov. A decentralized model for information flow control. In Proc. ACM Symp. on Operating
System Principles (SOSP), pages 129–142, 1997.

[12] A. C. Myers and B. Liskov. Complete safe information flow with decentralized labels. In Proc. of IEEE S&P,,
1998.

[13] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM TOSEM, 9(4):410–422,
Oct. 2000.

[14] S. Osborn and et al. Configuring role-based access control to enforce mandatory and discretionary access control
policies. ACM Transactions on Information and System Security, 3(2):85–106, 2000.

[15] F. Pottier and S. Conchon. Information flow in inference for free. In Proc. ACM International Conference on
Principles of Functional Programming, pages 46–57, September 2000.

[16] F. Pottier and V. Simonet. Information flow inference for ml. In Proc. ACM Symp. on Principles of Programming
Languages, pages 319–330, January 2002.

[17] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1):5–19, January 2003.

[18] P. Samarati and et al. Information flow control in object-oriented systems. IEEE Transactions on Knowledge and
Data Engineering, 9(4):524–538, July/August 1997.

[19] R. Sandhu. Role activation hierarchies. In Proc. of 3rd ACM Workshops on Role-Based Access Control, pages
22–23, 1998.

[20] R. Sandhu and P. Samarati. Authentication, access control, and audit. ACM Computing Surveys, 28(1):241–243,
March 1996.

[21] G. Smith. A new type system for secure information flow. In Proc. of 14th IEEE Computer Security Foundations
Workshop, pages 115–25, 2001.

[22] S. Zdancewic and A. C. Myers. Secure information flow and cps. In Proc. European Symposium on Programming,
volume 2028 of LNCS, pages 46–61, April 2001.

[23] C. N. Zhang and C. Yang. An object-oriented rbac model for distributed systems. In Working IEEE/IFIP Conference
on Software Architecture, (WICSA), pages 24–32, 2001.

[24] C. N. Zhang and C. Yang. Information flow analysis on role-based access control model. Information Management
and Control Security, 10(5):225–236, 2002.

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

91

International Journal of Security and its Applications
Vol. 2, No. 3, July, 2008

92

