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Abstract 

Malwares have sharp resemblance with the biological pathogens in terms of 

propagation. Biological pathogens spread from one living being to another in very short 

span of time. Similarly malwares also propagate rapidly from one host to another host 

and one network to another network, in order to spread infection in major scale. This 

spread can be epidemic if control strategies are not called in time. In order to timely 

intervene, study of epidemic behavior is very important. In this paper we develop 

SI1I2Q1Q2R1R2 model of worm propagation under quarantine control strategy. We have 

considered different infective, quarantined and recovered (or removed) group in our 

model. The motivation of such model came from the study of propagation dynamics of 

HIV. Our worm propagation and its quarantined based defense is based on staged-

progression (SP) hypothesis of HIV. We have studied in this paper the stability of worm 

free equilibrium condition and analyzed the epidemic state condition in terms of 

reproduction number. When reproduction number is greater than one the worm 

propagation become epidemic. If it is less than one then infection diminishes. Extensive 

analysis and simulation has been done to validate our system. Simulation result shows 

that effective quarantine strategy helps in controlling the epidemic outbreak of worms in 

networks. 

 

Keywords: malware, defense, propagation, quarantine, epidemic, stability, 
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1. Introduction 

Malware attacks are still a major source of network threats. These automated programs 

are responsible for several malicious activities in network. These malicious activities 

include extended bandwidth consumption, creating performance bottleneck, corrupting 

computing resources, causing denial of service attack. These malicious programs could 

propagate very fast using e-mail attachment, instant message; file sharing, Internet relay 

chat etc. Early intervention is required to stop them from propagating and infecting other 

machines at very high rate to prevent an epidemic condition. Quarantine [1-6], is one 

among many available defenses which slow down the worm propagation rate. 

Quarantine concept came from the age old practice of isolating the infectious 

individuals from healthy, yet susceptible population to prevent infection from spreading at 

an epidemic rate. Although it is practically not possible to isolate the entire subset of 

infectious population, the basic goal of quarantine is to curtail the speed of propagation by 
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isolating a subset of infectious population from susceptible population. Worms and other 

malware such as virus, Trojan etc. also propagate in computer network in similar way as 

of biological pathogens as described by many researchers. These malwares are automated 

program that replicate in order to spread themselves from one host to another host in the 

network. Within a very short span of time infection becomes epidemic, unless appropriate 

control strategy comes at rescue from such situation. Therefore it is very important to 

control the worm propagation, such that the manual and automated countermeasures can 

reduce the rate of infection. Quarantine is a defense strategy that is not sufficient by itself. 

It is complemented by other control strategies such as antivirus treatment, patching, 

filtering the malicious traffic using host level as well as network level firewalls, Intrusion 

detection system (IDS and Intrusion prevention system (IPS). These defense mechanisms 

help in removing the vulnerabilities and cure the infection. Quarantine slows down the 

rate of infection and thereby provides time to other control strategies to disinfect the 

infected host within the network. It also helps in buying time to apply the control 

strategies, thereby reducing the probability of vulnerable host to be infected by both 

external and internal host. Quarantine helps in reducing the damage in the network by 

preventing the outbreak as epidemic. 

In this paper we develop SI1I2Q1Q2R1R2 model of worm propagation under 

quarantine control strategy. We have considered different infective, quarantined and 

recovered (or removed) group in our model. The motivation of such model came from the 

study of propagation dynamics of HIV. The study of HIV and AIDS shows that the 

disease can spread in two ways. First, depending on infectivity the infective population 

can be divided in several different groups. Infective individuals will remain in that group 

until they develop AIDS. This hypothesis is known as differential infectivity (DI) 

hypothesis [7-8]. Another hypothesis of HIV propagation is staged-progression (SP) [7], 

where the infective population will pass through different stages of infection. The primary 

infective group may acquire secondary infection and so on. This is because infected 

individual loose immunity and thus prone to any other secondary infection thereafter. Our 

worm propagation and its quarantined based defense is based on staged-progression (SP) 

hypothesis of HIV. 

 

2. Related Work 

One of the early theoretical model of worm propagation was proposed by Fred and 

Cohen [9]. The mathematical theory of epidemiology [10-12] concerning propagation of 

infectious disease is well established. Computer worms spread in network much like 

infectious diseases. Epidemiological theory can correctly represent the spreading behavior 

of worms and network limitations associated with it. Extensive research has been done in 

modeling the spreading of malware in computer and other networks. Kephart and White 

proposed a classical epidemiological model [13] of computer virus by drawing analogy 

between computer virus and biological virus. This model was later used in [14] to explore 

the propagation dynamics of Code Red worm [15]. Zou et. al., further refined these 

models to consider effect of human countermeasures such as scanning with anti-virus, 

installing and updating patches and filtering with firewalls. They proposed a two-factor 

model in [4]. Weaver et. al., [16] also improved the propagation model in [14] and [5] to 

fit with observed Code-Red propagation data. Many of the above mentioned models are 

actually based on Karmack-McKendrick classical epidemic model and [12] [17]. In 

classical simple epidemic model (also known as S-I model) [10-11], all hosts in network 

can take one of only two states: Susceptible (S) and Infectious (I). In classical general 

epidemic model (also known as SIR model) an additional state, Removed/Recovered (R) 

is introduced [17]. Classical simple epidemic model is simplest worm epidemic model 

and inspired many researchers  to adopt this model to develop propagation dynamics of 

many bandwidth limited TCP  worms such as Code Red [17] , Slammer [18] etc. 
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Chen et. al., presented a sophisticated Analytical Active Worm Propagation (AAWP) 

epidemic model [19] for characterizing random scanning worms. AAWP is based on 

deterministic approximation and discrete times. This model provides some 

countermeasures by monitoring connections in unused address space. Kesidis et. al., 

adopted simple deterministic equations used by Kermack-McKendrick to correctly 

describe the spreading behavior of TCP worms, Slammer and Witty. This model also 

captures the scanning activity and limitation of their spread in networks. Worm 

propagation in network has been described by many other epidemic models [20-25] using 

different state transitions and different parametric conditions. 

The worm propagation can be described using both deterministic as well as stochastic 

model. Deterministic models are further classified as continuous time and discrete time 

models. The deterministic models are based on homogeneous assumptions. i.e., every host 

in network has equal probability of infecting any other vulnerable hosts. The models are 

not constrained by network topology. Continuous time propagation models are 

represented by set of differential equations whereas discrete time models are represented 

by set of difference equations. 

Mishra and Saini [26] developed a different mathematical model to study the 

propagation behavior of the worms in computer system. These models help in finding 

probability of a system to be infected. They are useful in developing optimal defense 

solution against malware. Yan and Liu [27] studied SEIR worm propagation model. This 

model considers permanent recovery from infection state after some countermeasure 

applied on it. However in computer epidemiology, the condition is not realistic. Host can 

never achieve permanent immunity. 

To overcome this constraint Mishra and Saini proposed SIRS model [28] that consider 

fixed period temporary immunity of the recovered hosts and SEIR model [29] that 

considers constant latent and immune periods. Worm free condition is discussed. 

Epidemic state threshold parameter- reproduction number has been evaluated. However 

the papers do not investigate the global stability of worm free equilibrium state. Fei et. al., 

proposed a three layer worm model (TLWM) [29], to study the effect of network address 

translator (NAT), in propagation speed of worms. In this work the authors have extended 

the simple classical model and two factor model discussed above. Analysis and 

simulation study shows that NAT is effective in slowing the propagation speed of worms 

in Internet. 

Kondakci presented a stochastic worm propagation model [30] using Markovian 

process to analyze epidemic states of computer system. This model helps to study the 

dynamics of state transition during worm propagation to estimate infection probability 

and rate of recoverability of infected hosts. Karma et. al., [31] investigated the effects of 

DNS delays on worm propagation in IPV6 networks. Toutonji et. al., proposed VEISV 

model [32] to study the effectiveness of human countermeasure on worm spreading 

behavior. They have studied various conditions of reproduction number on epidemic 

control. Global as well as local stability of worm free equilibrium has been discussed in 

this paper. Simulation result and analysis shows positive impact of countermeasure on 

worm propagation. Yao et. al., described a worm propagation model [33] with time delay 

in quarantine. Local and global stability analysis has been discussed. Hopf bifurcation 

condition is derived to study the worm elimination condition. 
 

3. Formulation of the Model 

We propose SI1I2Q1Q2R1R2 model to study the worm propagation dynamics under 

quarantine defense strategy. We have considered variation in infectiousness and 

quarantine in our model. We assume that the total nodes K are divided into following 

states:  S (Susceptible), E (Exposed), I1 (Primary infected), I2 (Secondary infected), Q1 

(Quarantine of I1), Q2 (Quarantine of I2), R1 (Removed) and R2 (Recovered). A host can be 
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at any one of these eight states at any point of time. Susceptible host become Exposed 

when a worm code is transferred into it. Mere transfer of a malcode does not make the 

host infectious. The worm code may take some time (latent period) before it gets activated 

in a host, to start the malicious activities in it. Once the worm code is activated the host 

becomes infected. It may start showing its malicious behavior at this stage. The worm 

code may also get replicated to infect other hosts in the network. In this model we have 

considered differential infectiousness I1 (Primary infection) and I2 (added secondary 

infection). Exposed nodes first enter into subgroup I1 and then gradually progressed into 

I2, when other infection gets added into previously infected subgroup. Both infectious 

groups may be quarantined till they are recovered. Q1 represents quarantine of I1. Q2 

represents quarantine of I2. The necessity of different quarantine group is due to 

difference in infectiousness, and therefore variation in treatment. We assumed that 

different infectious nodes are isolated in different group, and separate control strategies on 

them are applied for their cure. R1 is the removed population from I1. R2 is the recovered 

population from I2. 

Figure 1. Model State Transition Diagram 

Figure 1 shows the state transition of our model. This model is formulated with the 

assumption that total nodes in the network are relatively stable, and there are replacement 

possibilities against dead nodes. Let S(t), E(t), I1(t), I2(t), Q1(t), Q2(t), R1(t) and R2(t) 

denote the number of nodes in states S, E, I1, I2, Q1, Q2, R1, R2 at time t, we have the total 

number of nodes:  

S(t) + E(t) + I1(t) + I2(t) + Q1(t) + Q2(t) +R1(t) + R2(t) = K(t)            (1) 

The system of differential equations for this model depicted in Figure 1 is given by:  
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Where    denote the inclusion of new nodes in the system i.e., birth coefficient of the 

nodes,   is the coefficient of natural death, i.e., permanent filature of the node due to 

software or hardware fault,   is the death rate due to severe attack, β is the infectivity 

contact rate, α is the coefficient of transmission from E to I1,   denote the coefficient of 

removal of nodes from I1,   is the coefficient of transmission from I1 to I2,   is the 

coefficient of recovery from I2, θ is the rate of transmission from I1 to Q1,   is the 

coefficient of recovery from Q2 ,   is the rate of cure from Q1 into R2. 

 

4. Worm Free Equilibrium 

Here we will analyze equilibrium and stability of our model; we compute the basic 

reproduction number for the worm control or worm eradication. By the equation (1) and 

the system of equations (2), 

we get,   
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reproduction number defined in next section. 

 

5. Basic Reproduction Number (R0) 

To compute basic reproduction number, R0, we consider the following equations of 

infected classes of the population as, 
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By linearizing system (4), we get, 
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6. Stability of the System 

To evaluate the stability of worm free equilibrium, we take the Jacobian matrix of the 

system (4.2), that is, 
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Obviously, the eigen values are, -  , - (    ) , - (                ) ,

( )       ),  (         ),   -(         ), 0, -  . Since all eigenvalues are 

less than or equal to zero, hence the system is locally asymptotically stable. 

Lemma 1:    If R0 ˂ 1, the disease – free equilibrium P0 is locally asymptotically stable. 

If R0 = 1, P0 is stable and if R0 ˃ 1, P0 is unstable. 

Lemma 2: Assume that a bounded real valued function   f: [0, ∞] → R be twice 

differentiable with bounded second derivative. Let k → ∞ and f(tk) converges to f
∞
 or f∞. 

Then, 

0)(lim 
 kk tf

. 

Theorem 1: If R0 ˂ 1, then the worm free equilibrium is globally asymptotically stable.  

Proof: In the above discussion, we have obtained that the unique worm free 

equilibrium P0 of the system (2) is locally asymptotically stable, if R0 ˂ 1. From the first 

equation of the system (2), we have,  
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Let      , such that,  >max {(     ) (                 ) (           
  ) (         ) (         ) . Thus,       is a strictly positive matrix. If λi (i = 1, 

2, 3, 4, 5) are the eigenvalues of P, then,       (i = 1, 2, 3, 4, 5) are the eigenvalues of 

(         ) Thus from the Perron – Frobenius theorem, (         ) has a simple, 
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positive eigenvalue equal to dominant eigenvalue and corresponding eigenvector e > 0, 

which implies that, λi are real. If (      ) is the dominant eigenvalue of (         ), 
then λ1>λi (i = 2, 3, 4, 5) and  

e P = e λ1. Obviously, λi (i = 1, 2, 3, 4, 5) are the roots of the equation, 

λ
5
 – (Ʃ λ1) λ

4
 + (Ʃ λ1 λ2) λ

3
 – (Ʃ λ1 λ2 λ3) λ

2
 + (Ʃ λ1 λ2 λ3 λ4) λ - (λ1 λ2 λ3 λ4 λ5) = 0 

Since R0 ˂ 1, for ε ˃ 0 (sufficiently small), so the coefficients of the above equation are 

positive. Thus λi (i = 1, 2, 3, 4, 5) are negative. So, from equation (5), for t ≥ t0,  

    )(),(),(),(),()(),(),(),(),( 212112121 tQtQtItItEetQtQtItItEe
dt

d
  

Integrating the above inequality, we get, 
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

, for 

t ≥t1 ≥t0. 

Since, λ1< 0,  )(),(),(),(),(. 121112111 tQtQtItItEe → 0 as t → ∞ 

Using e > 0,  )(),(),(),(),( 2121 tQtQtItItEe → [0] as t → ∞. 

By lemma 2, we choose a sequence tn → ∞, sn → ∞ (n → ∞), such that, 

S(sn) → S
∞
, S(tn) → S∞, Ṡ(sn) → 0, Ṡ(tn) → 0. 

Since, E(t), I1(t), I2(t) → Q1(t), Q2(t) → 0 as t → ∞, so, from the first equation of 

system (2),     we get,   lim ( )t S t





 . 

Hence by using lemma 1, the disease – free equilibrium P0 is globally asymptotically 

stable,        if R0 ˂ 1.          

We now try to investigate the local stability of the endemic equilibrium point                

P
*
 (S
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, E
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, I1
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, I2

*
, Q1

*
, Q2

*
, R1

*
, R2

*
). When the system (2) is linearized about the 

equilibrium P
*
 and Routh – Hurwitz theorem is applied to the roots of the characteristic 

equation, all the roots have negative real part. Hence P
*
 is locally asymptotically stable. 

We have the following important result: 

 If R0> 1, then the system (2) has unique endemic equilibrium P
* 

which is locally 

asymptotically stable. 

 

7. Results and Discussion 

In this section we develop the experimental setup to study the dynamics of worm 

propagation in network under quarantine control strategy. As we mentioned before, 

quarantine itself is not sufficient defense measure. It slows down the infection, allowing 

other human countermeasures to take action on the infection. 

It is difficult to use real world worm traffic traces. Traffic traces for some of very 

popular worms such as Code-Red-I, Code-Red-II, Slammer, Sapphire are also not in 

public domain. Working with sampled traces is not suitable to correctly study the worm 

propagation behavior under different circumstances. Few malware traces available in 

CAIDA (www.caida.org) does not come with legitimate traffic, as they were filtered, 

when the traces made available. Therefore we have to rely on simulation with different 

parametric values. Simulation result with different set of parameter gives an insight to the 

worm propagation behavior, which are helpful in designing an optimal solution for worm 

defense. 
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We solve the system of equations using Runge-Kutta-Fehlberg fourth-fifth order 

numerical methods and the system is simulated under parametric condition mentioned in 

corresponding figure. Figure 2 shows the dynamic behavior of different states with time. 

The behavior of S, E, I1, I2, Q1, Q2, R1, R2 is depicted in this figure. We observe this 

propagation behavior is with R0<1. And the system is asymptotically stable. This is the 

result of quarantine and other security measures applied during defense. Figure 3 and 

Figure 4 shows, as the number of infectious nodes increases, the number of quarantine is 

also to be increased, in order to achieve worm free equilibrium and global stability of 

disease free equilibrium. When the quarantine reaches some threshold, the infection 

diminishes. This provides the other countermeasures time to prevent the epidemic 

outbreak of a worm. Figure 5 and figure 6 shows that dynamics of recovered nodes 

against quarantined node. Quarantine obviously increases recovery. But an optimum 

quarantine is required to get its maximum benefit. Figure 7 clearly shows that when the 

number of infectious node increases, recovery becoming difficult, as the infection spread 

from one host to another host. Figure 8 shows the dynamics of Infectious, quarantined and 

recovered nodes when R0<1.  Figure 9 shows recovery improves when both quarantine 1 

and quarantine 2 group increases. This result is obvious; as such situation provides other 

countermeasure to act on infectious nodes to remove the worms. 

. 

Figure 2. Propagation Behavior of Different Classes of Nodes with 
Parametric Values, Λ=0.03, ξ=0.07, β=0.15, θ=0.35, μ=0.03, γ=0.05, α=0.45, 

ϕ=0.35, ψ=0.15, δ=0.25, η=0.15, χ=0.45 
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Figure 3. Effect of Q1 with Respect to I1 with Parametric Values, Λ=0.03, 
ξ=0.07, β=0.15, θ=0.35, μ=0.03, γ=0.05, α=0.45, ϕ=0.35, ψ=0.15, δ=0.25, 

η=0.15, χ=0.45 
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Figure 5. Effect of Q1with Respect to R2 with Parametric Values, Λ=0.03, 
ξ=0.07, β=0.15, θ=0.35, μ=0.03, γ=0.05, α=0.45, ϕ=0.35, ψ=0.15, δ=0.25, 

η=0.15, χ=0.45 
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Figure 7. Dynamics of R2 with Respect to I2 with Parametric Values, Λ=0.03, 

ξ=0.07, β=0.15, θ=0.35, μ=0.03, γ=0.05, α=0.45, ϕ=0.35, ψ=0.15, δ=0.25, 

η=0.15, χ=0.45 

 
Figure 8. Dynamical Behavior of the System with  Parametric Values, 
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δ=0.25, η=0.15, χ=0.45 
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Figure 9. Dynamics of R2, Q2& Q1 with Parametric Values, Λ=0.03, ξ=0.07, 
β=0.15, θ=0.35, μ=0.03, γ=0.05, α=0.45, ϕ=0.35, ψ=0.15, δ=0.25, η=0.15, 

χ=0.45 

7. Conclusion 

We proposed SEI1I2Q1Q2R1R2 model of worm propagation under quarantine control 

strategy. We have considered different infective, quarantined and recovered (or removed) 

group in our model. Our worm propagation with quarantined based defense is based on 

staged-progression (SP) hypothesis of infectivity. Exposed nodes first enter into infective 

subgroup I1 and then gradually progressed into infective subgroup I2, when other infection 

also gets added into previously infected subgroup. Both infectious groups may be 

quarantined till they are recovered. Q1 represents quarantine of I1. Q2 represents 

quarantine of I2. The necessity of different quarantine group is due to difference in 

infectiousness, and therefore variation in treatment. Simulation result shows that when 

basic reproductive number R0<1 infection diminishes and prevent epidemic condition. 

Result also shows that optimal quarantine helps in reducing infection and increases 

recovery.  
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