
International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015), pp.171-184

http://dx.doi.org/10.14257/ijgdc.2015.8.6.17

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2015 SERSC

Parallel Distributed Acceleration Based on MPI and OpenMP

Technology

Feng Liu
1,2,3

, Haitao Wu
1,3

, Xiaochun Lu
1,3

 and Xiyang Liu
4

1
National Time Service Center, Chinese Academy of Sciences,

3
East Shuyuan Road, Xi’an 710600, China

2
University of Chinese Academy of Sciences,

19A Yuquan Road, Beijing 100049, China
3
Key Laboratory of Precision Navigation and Timing Technology,

Chinese Academy of Sciences, 3 East Shuyuan Road,

Xi’an 710600, China
4
Xidian University, 2 South Taibai Road, Xi’an 710071, China

liufeng@ntsc.ac.cn, haitao@ntsc.ac.cn

Abstract

In order to speed up data processing in a signal monitoring and evaluation system, we

need to use a parallel method. It is obvious that the traditional stand-alone store has no

ability to satisfy the performance requirements, and the use of single core CPU is unable

to content the severe requirement of speed. Consequently, multi-machine parallel

acceleration technique based on MPI (cooperated with multi-core parallel acceleration

technique based on OpenMP) can effectively solve all above problems. In this paper, a

parallel distributed acceleration framework based on MPI and Open MP technology was

given. Experimental tests were carried to verify our proposal. Finally, some suggestions

to speed up the data processing was given.

Keywords: Parallel distributed; MPI; OpenMP

1. Introduction

Distributed computing studies how to put a problem which needs enormous computing

power to solve into many small parts, then assigns these parts to many computers for

processing, and finally obtains a final result by getting together the calculations results.

Multicore multiprocessor computers have spread around the world, as well as

providing a lot of convenience to people's lives. However, with the development of

society, relying solely on a computer processor has failed to meet the time, efficiency, and

performance requirements, even if the computing capacity reaches a limited state.

Some measurements are needed in order to be proposed to overcome this problem. The

first option is the use of the modern distributed parallel framework. This parallel

framework can fully utilize the multi-processor and idle computing power. It transports

data by the Internet and processes a variety of tasks in parallel.

The data in a spatial signal quality monitoring and evaluation system has

characteristics such as large density, large number of files, a huge amount of data needs to

be stored and processed. Traditional stand-alone storage and serial data processing can’t

meet the performance’s requirements. So it is necessary to take into account the use of

multi-machine parallel processing to speed up data processing, in order to further enhance

the efficiency and performance

Now the parallel and distributed methods mainly cloud computing, GPU &CUDA,

MPI & OpenMP and so on.

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

172 Copyright ⓒ 2015 SERSC

Cloud computing is a product of traditional computer and network technology

integration. It includes distributed computing, parallel computing, utility computing,

network storage, virtualization, load balancing, etc.

GPU & CUDA is a new computing paradigm. It makes full use of the advantages of

CPU and GPU to achieve parallel and distributed computing.

MPI is a parallel library rather than a language. MPI is the representation of the

standard or specification. It doesn’t indicate one of the specific implementation. MPI is a

message passing programming model and it becomes representative of this programming

model. MPI is also a widely popular programming platform on cluster computing[1].

Cloud computing needs to build NFS platform, there are problems such as data security

and data processing delay problems. GPU&CUDA programming model requires a

computer with NVIDIA CUDA processor, but the general computer doesn't have this

processor. MPI combines with FORTRAN77/C/Fortran90/C++, MPI doesn’t change a

serial language, only providing parallel languages callable library for serial language, so

that the smallest changes to the original serial program, it’s more convenient to use.

In summary, MPI-based distributed parallel acceleration technology has smaller

overhead and is easy to implement [2]. However, in many cases, the use of pure MPI

message passing programming model can’t obtain the desired performance on such a

multi-processor cluster configured. In order to combine the advantages of distributed

memory with shared memory, people propose a distributed / shared memory hierarchy.

OpenMP is a practical industry standard of shared memory programming. It’s more

widely to use MPI & OpenMP to achieve distributed / shared memory hierarchy. Hybrid

programming model can take full advantage of two programming models: MPI can solve

the communication of coarse-grained multi-processor. The OpenMP provides lightweight

threads and a good solution to interact with each multiprocessor computer inside various

processors [3].Compared with pure MPI model, MPI & OpenMP hybrid model uses the

fast access to shared memory instead of message passing in nodes. This can reduce the

cost of communications [4]. This hybrid programming model provides parallel between

nodes (i. e., multi-machine), the node (ie, stand-alone) and operating systems. This hybrid

programming model can take full advantage of shared memory models and message

passing model. It can effectively improve the performance of the system [5].

The remainder of this paper is organized as follows: Section 2 introduces the parallel

framework. Section 3 introduces the experimental principle. Then in Section 4, we

conduct tests. Finally, Section 5 concludes.

2. Related Work

The receiver receives data from satellite transmission and then merges multiple

receiver’s files into a big document. The receiver produces a data file every day.

The data that involved in data processing is the data when received under normal

tracking state.

The pseudo range, carrier phase, carrier-to-noise ratio, Doppler in raw data files

are text format. The datum is stored in columns, one item per second. The first line

of the file is the stored content’s storage format. The size of the observed data file is

2GB.

Calculate and get the singular value points, loss of lock points and jump size,

then marking their UTC time by using the second week of the original observation

data, detecting receiver jump second phenomenon. You can get singular value points,

loss of lock points and jump size through the comparison of the adjacent section of

the original observation data. You can get the jump second by reading the receiver

weeks seconds count.

Excluding singular value, then replacing the singular value with the average

singular values in the pro domain in raw observation data. Dealing pseudo-range,

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

Copyright ⓒ 2015 SERSC 173

carrier phase data in a fifth-order polynomial fitting, getting a fitting curves by

fitting raw data of ten minutes, getting the fitting difference of pseudo-range and

carrier phase through using the normal data to divide fitting data, calculating the

mean standard deviation. Then count standard deviation of the day, calculate the

mean standard deviation.

Calculating B1, B2, B3 IQ slips pseudo range consistency, getting IQ slip pseudo

range consistency by making a difference with raw data of IQ slip pseudo range,

obtaining the final result by subtracting the mean consistency data. Then count

standard deviation of the day, calculate the mean standard deviation.

Calculating ionospheric delay correction value and correcting pseudo-range

measurements by using dual-frequency ionospheric formula, calculating B1I and

B2I frequency, B2Q with B3Q frequency pseudo range consistency.

The use of dual-frequency ionospheric delay calculated correction values and

correct pseudo-range measurements to calculate the pseudo B1I and B2I frequency,

B2Q with B3Q frequency distance consistency. Pseudo-corrected pseudo-range

measurements from the original concept of measuring the frequency plus

ionospheric delay correction value, the pseudo B1I revised concept of pseudo-

distance measurement and B2I corrected range measurements for the poor, pseudo

B2Q corrected and pseudo-range measurements B3Q corrected for deviation from

the observations, while subtracting the mean of the evaluation, that the two groups

are asking to get the consistency of the final result of the pseudo-range, calculate the

standard deviation of daily data and calculated results mean. Original pseudo-range

measurements plus the frequency ionospheric delay correction value is the corrected

pseudo-range measurements, the corrected pseudo-range measurements of B1I

subtracts the corrected pseudo-range measurements of B2I、the corrected pseudo-

range measurements of B2Q subtracts the corrected pseudo-range measurements of

B3Q, subtracting the average value, then obtaining the required two groups pseudo

range consistent final results. Calculating the standard deviation of the daily results

and calculating the mean

The Calculated formulas are as the formula (1), (2)and (3):
~

2

2 2

j i

i i i

j i

  
 

  
 


 (1)

~
2

2 2

i j

j j j

i j

  
 

  
 


 (2)

~ ~

i j
    

 (3)

i
 , j

 , i
 , j

 represent no ionospheric error ranging code pseudorange and

ionospheric error ranging code pseudorange, j represents the frequency unlike

i. i
 and j

 represent units of distance phase observations, i
 and j

 are

wavelengths，

2

2 2

j i

i

j i


 

  

 is ionospheric error.

2.1. The Principles of MPI

As shown in Figure 1, there are four processes that are identified as 0,1,2,3. The

running machine is called tp5. As for the implementation of results, the program

itself has only one MPI print statements, but because it starts four processes and

each process print operation simultaneously, so the final results of the

implementation have four print statements [6].

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

174 Copyright ⓒ 2015 SERSC

 The begin of“Hello World”Program

Process0 Process1 Process2 Process3

MPI_INIT MPI_INIT MPI_INIT MPI_INIT

MPI_COMM_RANK

myid=0

MPI_COMM_RANK

myid=1

MPI_COMM_RANK

myid=2

MPI_COMM_RANK

myid=3

MPI_GET_PROCESS_NAME

processor_name=”tp5”

namelen=3

MPI_GET_PROCESS_NAME

processor_name=”tp5”

namelen=3

MPI_GET_PROCESS_NAME

processor_name=”tp5”

namelen=3

MPI_GET_PROCESS_NAME

processor_name=”tp5”

namelen=3

Write

Hello World! Process 0 of 4 on tp5

Write

Hello World! Process 1 of 4 on tp5

Write

Hello World! Process 2 of 4 on tp5

Write

Hello World! Process 3 of 4 on tp5

MPI_FINALIZE MPI_FINALIZE MPI_FINALIZE MPI_FINALIZE

 The end of“Hello World”Program

Figure 1. MPI Running Framework Example

2.2. The Principles of OpenMP

As shown in Figure 1, there are four processes that are identified as 0,1,2,3. The

running machine is called tp5. As for the implementation of results, the program

itself has only one MPI print statements, but because it starts four processes and

each process print operation simultaneously, so the final results of the

implementation have four print statements [6].

The implementation of OpenMP uses a Fork-Join model. The main thread creates

and executes multiple threads according to the OpenMP compiler guidance

statements when encountering parallel parts during execution, the number of threads

created generally proportional to the number of the computer core [7].

As shown in Figure 2, the standard parallel mode’s basic idea is as follows: There

is only one main thread called Master Thread when the program begins running, the

child threads execute serial program, the parallel parts derive other threads to

execute; however, the serial parts can’t be executed if the parallel parts aren’t over.

This is the standard parallel mode ---Fork/Join Parallel mode, the shared memory

parallel programming also uses Fork / Join Parallel mode.

A CB A CB A B

Parallel Task I Parallel Task IIIParallel Task II

Master Thread

A

C

B

Parallel Task I

Master Thread

D

A

D

B

Parallel Task II

C

A

B

Parallel Task III

Figure 2. OpenMP Running Framework Example

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

Copyright ⓒ 2015 SERSC 175

3. Experiment Principle

Experimental machines are installed Ubuntu system, pre-installed MPICH2 and

configured password ssh login authentication with multiple machines. Each machine

using the same user name, then pre-transfer all copies of the data to every machine. The

files have the same path.

3.1. Serial Proposal

As shown in Figure 3, the serial program is in accordance with the requirements

of the needs analysis. Firstly, reading data line by line, then determining whether

reading to the end, thirdly, getting the UTC time for Singular values, loss of lock

points and jumping points, fourthly, removing singular value, UTC time of

transition points, excluding the singular value , then polynomial fitting pseudo range

and carrier phase, then obtaining the mean standard deviation, next pseudo range

conformity assessment, then, correcting pseudo range ionospheric error data. Finally,

outputting consumed time of the serial program, the running program ends

successfully.

Reading Data

File

The begin of

program

Getting the UTC time for

Singular values​​, loss of lock

points and jumping point

Removing

singular value

Polynomial fitting

pseudorange and carrier

phase, then obtainIng the

mean standard deviation

Pseudorange conformity

assessment

Correcting pseudorange

ionospheric error data

The end of

program

Y

N

Whether the

end of the file

Figure 3. Serial Proposal Flow Chart

3.2. MPI & OpenMP Hybrid Parallel Proposal

For the MPI & OpenMP hybrid parallel proposal, assumptions used 5 computer

parallel processing in Figure 4.

First of all, the main() function starts timing for memory mapping file, and then

give the 5 computer tasks:

Process 0, in other words, is computer 0, it read serially, obtain locks, jump

points and singular value of UTC time, eliminating singular values, assessing the

pseudo range conformity, and then use OpenMP parallel guidance language to fix

pseudo range ionospheric data in parallel; at the same time, using MPI_Recv ()

function to receive the finish task signal messages completed by the other 4

computers, statistical eventually run time; when a computer is 0 to receive all the

computer to complete the task, calculate the entire program running time, and then

finish the program.

There are 24 phases, 24 phases were allocated evenly to 4 machines.

Computer 1: the computer first using OpenMP parallel guidance statements to

read B1 phase and pseudo range data in parallel, then run the polynomial fitting on

each phase and calculating the standard deviation of average every day. When the

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

176 Copyright ⓒ 2015 SERSC

computer 1 finish assigned tasks, It will use MPI_Send () function to send a

message to a computer 0 to notify it has completed the task.

Computer 2~4 work as same as Computer 1, Computer 2 processes only two B2

pseudo range, computer handles B3 pseudo range, Computer 4 processes B1, B2,

B3’s carrier data.

 The begin of the Program

 The end of the

Program

Starting Computing time (It is

assumed that There are 5 computers)

Memory-mapped files

Determine whether

successfully mapping
 The end of the Program N

Process0 Process1 Process2 Process3 Process4

Reading Data

Get the UTC time

of singular values​​,

loss of lock points

And jumping

points

Excluding singular

values

Pseudorange

conformity

assessment

Correct

error

data of

B1IW

Correct

error

data of

B2IW

…
...

MPI_Recv () Function

receives the tasks

completion

information

Read

B1IW

pseudo

-range

data

Read

B1IN

pseudo

-range

data

…
...

Read

B1QA

pseudo

-range

data

Parallelly polynomial fitting B1IW

Parallelly polynomial fitting B1IN

Parallelly polynomial fitting B1……

MPI_Send () function To send the

consummation information to

inform the process of 0

Read

B2IW

pseudo

-range

data

…
...

Read

B3IW

pseudo

-range

data

…
...

Read

B4IW

pseudo

-range

data

…
...

Parallelly

polynomial fitting

B2IW

Parallelly

polynomial fitting

B2IN

Parallelly

polynomial fitting

B2……

MPI_Send ()

function To send the

consummation

information to

inform the process

of 0

Parallelly

polynomial fitting

B3IW

Parallelly

polynomial fitting

B3IN

Parallelly

polynomial fitting

B3……

MPI_Send ()

function To send the

consummation

information to

inform the process

of 0

Parallelly

polynomial fitting

B4IW

Parallelly

polynomial fitting

B4IN

Parallelly

polynomial fitting

B4……

MPI_Send ()

function To send the

consummation

information to

inform the process

of 0

Y

Figure 4. MPI & OpenMP Hybrid Parallel Proposal Flow Chart

3.3. The MPI Parallel Framework

For the MPI & OpenMP hybrid parallel proposal, assumptions used 5 computer

parallel processing in Figure 4.

The MPI parallel framework allows users set the number of computers and the

processes run on each computer on their demand. Figure 5 shows the MPI run the

process in detail.

First of all, the main () function starts the MPI_Init () function, all the 5

computers will start doing their assigned tasks at this time, Figure 5 set computer 0

is the computer given priority to the other computers, receiving other four computer

to complete the task messages, finally, computer 0 run the MPI_Finalize () function

over the whole application.

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

Copyright ⓒ 2015 SERSC 177

Figure 5. MPI Parallel Framework Flow Chart

3.4. Checking Data Parallelly

Computer 0 checks each phase data, due to the independence between 24 phase

data. We can use OpenMP parallel block technology for each phase data. Figure 6

displays the flow chart of parallel correction.

Figure 6. Checking Data Parallelly Flow Chart

3.5. Reading Data Parallelly

As shown in Figure 4, computer 1 ~ 4 respectively on the pseudo range and

carrier phase polynomial fitting and calculate the mean standard deviation. Each of

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

178 Copyright ⓒ 2015 SERSC

the data is calculated by computer, to get so can use OpenMP parallel block

technology on each computer parallel reading data.

Figure 7 shows the flow chart of parallel process of data read.

Figure 7. Reading Data Parallelly Flow Chart

3.6. Fitting Standard Deviation Parallelly

24 phase need to calculate daily average standard deviation of the carrier, the

pseudo range. The solution is: once every ten minutes for fitting, take the normal

data minus fitting data to get the pseudo range and carrier phase fitting difference,

calculate the standard deviation, statistics the standard deviation calculation of

standard deviation averages every day. Due to there is a total of 144 ten minutes a

day. We realized it by using the POSIX thread to create 144 threads at the same time

in a short period of time to deal with the standard deviation of every 10 minutes.

Figure 8 shows fitting process standard deviation parallel.

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

Copyright ⓒ 2015 SERSC 179

Figure 8. Fitting Standard Deviation Parallelly Flow Chart

4. Test

4.1. Test Plan

The test is divided into two models: a serial model, parallel MPI & OpenMP

model.

MPI & OpenMP model respectively set up eight kinds of plans: two processes,

the three processes, four processes, five processes, process of six, seven, eight, and

nine.

The advantages of using MPI & OpenMP model: MPI can solve multiprocessor

asked coarse-grained communication and OpenMP providing lightweight threads is

a good way to solve every multiprocessor computer internal interaction between

each processor. We can give the processor performance to the pole. In our plan , we

have thought a lot about the MPI & OpenMP model.

In the MPI & OpenMP model, for the same kind of testing plan, think about of

the amount according to the process and the performance of the processor, we assign

different process a number of different tasks, to get the results of each test task. In

order for the accuracy of the calculation results, we have to do computation on each

task allocation 10 times, and then averaging. Picking out the optimal solution model

in all test plans, the optimal solution is obtained the experiments the optimal

solution.

Note: the default process program code 0 processing 24 phase data consistency

check and correction, so according to the rules for the optimal solution is not all

processes share the 24 tasks. All the test data are only for our experiment program.

Experimental test was conducted on 3 computers, 3 computer configuration in Table

1.

Table 1. Experimental Environment Configuration

ID Memory Processor IO Buffer OS

Computer 1 3.9 GiB
Intel(R) Xeon(R) CPU

W3505@2.53GHz × 2
4096 KB 32 bit ubuntu12.04 pae

Computer 2 5.7 GiB
Intel(R) Core(TM)i3 CPU

M350@2.27GHz ×4
3072 KB 32 bit ubuntu11.10 pae

Computer 3 7.9 GiB
Intel(R) Xeon(R) CPU

E5440@2.83GHz × 8
6144 KB 32 bit ubuntu12.04 pae

4.2. Serial Model

Serial model is all the process according to certain order serial computing, there

is no parallel parts. Table 2 shows the time of average serial computing used.

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

180 Copyright ⓒ 2015 SERSC

Table 2. The Average Time Used in a Serial Model

Serial model (measuring unit: s)

File Size 569M 898M 1.1G 1.5G 1.7G 2.0G 2.2G

Average time 48.849 71.27 80.083 110.589 123.008 151.611 162.229

4.3. Parallel Model

Due to many test data, this paper only shows the optimal data of each test plan.

According to Table 3, we come to the conclusion:

Table 3. MPI & OpenMP Optimal Average Time on all Process Data with
Serial Contrast

(P: process, measuring unit: s)

 2P 3P 4P 5P 6P 7P 8P 9P 1P

569M 21.3103 15.04 14.47 14.35 11.47 10.17 12.43 11.38 48.849

898M 33.6471 23.93 22.67 22.37 17.77 16.05 19.48 17.89 71.27

1.1G 39.4154 28.03 26.44 26.29 22.7 18.55 22.7 21.31 80.083

1.5G 57.6382 40.82 38.93 37.85 32.82 26.98 32.91 30.22 110.589

1.7G 63.5922 45.24 43.42 42.27 37.88 30.06 36.55 33.51 123.008

2.0G 79.2515 53.61 56.88 53.99 45.04 39.03 45.85 42.45 151.611

2.2G 85.4921 63.63 61.19 63.44 49.64 40.69 49.46 45.69 162.229

 The model of parallel running process of the optimal plan 7, relatively stable

operation, the optimal overall performance.

 As a result of MPI in multimachine still exists between messaging overhead,

such as can be seen from Figure 9 and not increase as the process operation

results, the best process after the optimal value reaches a certain number

operation result will decline.

Figure 9. All Processes Optimal Solution Comparison Chart

 The experiment’s optimal solution is just for our program, for the different

needs of the project, we can determine the parallel model can reach a certain

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

Copyright ⓒ 2015 SERSC 181

speed, but the optimal parallel plan and the optimal cost time may not as same

as our plan.

 Table 4 shows the pure MPI optimal solution and MPI & OpenMP optimal

solution relative to a serial time reduced percentage.

Table 4. Parallel Optimal Schemes on Serial Reduction Percentage

 569M 898M 1.1G 1.5G 1.7G 2.0G 2.2G

Reduction percentage 79.18% 77.48% 76.84% 75.60% 75.56% 74.26% 74.92%

5. Conclusion

5.1. The Advantages of Parallel

The test is divided into two models: a serial model, parallel MPI & OpenMP

model.

1) Improve the MPI Code Extensibility

 The reason for hard to extend the MPI code is the balance the load of every

machine. Using mixed programming patterns, can achieve better parallel

granularity. MPI only responsible for the communication between nodes, a

coarse-grained parallel; OpenMP implementation of internal parallel, because

the OpenMP has no load balancing problems, to improve the performance.

2) Copies of Data

 Data copies are often limited to memory, and owing to its poor scalability and

global communication. Every node in pure MPI applications, the size of the

memory is divided into the number of processors. And hybrid model can for

the whole node memory processing, can achieve more ideal problem domain.

3) Convenient to Achieve Optimum Parallel

 In some cases, the MPI application implementation performance does not

improve with the increase of the number of processors, but there has an optimal

value. When using the mixed programming model will be beneficial, because

we can use OpenMP threads instead of processes that can reduce the number of

processes required, to run the ideal number of MPI process, reoccupy OpenMP

further decomposed task, making all processors run efficiently. Due to

computer configuration, limits can no longer create OpenMP parallel area. We

use the bottom of the POSIX thread to create lightweight threads to achieve

further in parallel.

5.2. Summary

Parallel and distributed technology is very mature both at home and abroad, there

are also many implementation frameworks, such as cloud computing, CUDA+GPU,

and OpenMP+MPI, The reasons for our paper bases on the MPI + OpenMP

technical are mainly the technology is very mature, in the parallel framework is easy

to satisfy the high speed and large capacity of data processing. By using the parallel

framework we get the following conclusion:

 Parallel design usually were better than the serial design;

 MPI & OpenMP model makes full use of advantages of MPI and OpenMP each,

and each other at the same time they can make up for their shortcomings;

 All the parallel frameworks are not with the more the process number, the more

speed, when to achieve an optimal value, along with the increase in the number

of process, the process speed slows down instead;

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

182 Copyright ⓒ 2015 SERSC

 In the same configuration environment, different parallel plan program cost

time difference is very big, and every kind of parallel plan has its own optimal

solution;

 We try to use the same computer configuration on every test, so that we can

minimize the performance problems caused by the different computer

configuration, or low configuration computer cost time will become the

bottleneck of the whole cost time.

 The experiment’s optimal solution is just for our program, for the different

needs of project, we can determine the parallel model can reach a certain speed,

but the optimal parallel plan and the optimal cost time may not as same as our

plan .The reason for this is the application of parallel granularity and so on.

References

[1] K. Hwang, “Advanced Computer Architecture: Parallelism”, Scalability, Programmability,

China Machine Press, Beijing (1999).

[2] Y. Feng, S. Y. Zhou, “Research on Development of Mixed Mode MPI+OpenMP Applications”,

Computer System and Application. vol. 15, no. 2, (2006).

[3] J. Q. Michael, “Parallel Programming in C with MPI and OpenMP”, McGraw Hill Higher

Education, New York (2003).

[4]] S. G. Caglar, G. D. Benson, Q. Huang, C. W. Chu, “USFMPI: A Multi-threaded Implementation of

MPI for Linux Clusters. Proceedings of the 15th International Conference on Parallel and Distributed

Computing and Systems”, Louisville, USA, (2002) September.

[5] Y. H. Zhao, X. B. Chi, “MPI+OpenMP Hybrid Paradigms and Efficient Implementation Base on SMP

Clusters”, Microelectronics and Computer. vol. 10, (2005).

[6] MPI: a message-passing interface standard. http://www.mpi-forum.org (1995).

[7] OpenMP C and C++ Application Program Interface. http://www.openmp.org (2002).

Authors

Feng Liu, he received his master's degree in Measuring and

Testing Technologies and Instruments from Graduate School of

Chinese Academy of Sciences, China, in 2008. Now he is studying

the PhD of Astrometry and Celestial Mechanics in University of

Chinese Academy of Sciences, China. His current research interests

include the applications of cloud computing and parallel computing

in GNSS.

Haitao Wu, he received his PhD in Astrometry and Celestial

Mechanics from Graduate School of Chinese Academy of Sciences,

China, in 2002. Now he is a research professor in National Time

Service Center (NTSC), Chinese Academy of Sciences. His current

research interests focus on overall technical and applications of

satellite navigation system.

Xiaochun Lu, she received his PhD in Astrometry and Celestial

Mechanics from Graduate School of Chinese Academy of Sciences,

China, in 2004. Now she is a research professor in National Time

Service Center (NTSC), Chinese Academy of Sciences. Her current

research interests focus on satellite navigation signal design and

assessment.

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

Copyright ⓒ 2015 SERSC 183

Xiyang Liu, he received his PhD in Circuits and Systems from

Xidian University, China, in 2007. Now he is a professor in School of

Software of Xidian University. His current research interests focus on

distributed computing and software testing.

International Journal of Grid Distribution Computing

Vol. 8, No.6, (2015)

184 Copyright ⓒ 2015 SERSC

