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Abstract 

Currently, main Infrastructure-as-a-Service (IaaS) systems employ the template-based 

virtual machine (VM) deployment method in their data center to reduce the startup 

latency of user VMs. However, because of the large size of VM templates, usually, limited 

number of them can be cached by the each cluster of servers in an IaaS system. In the 

face of the large scale deployment requirements of user VMs with various application 

purposes in the IaaS system, the limited number of VM templates can not support the 

quickly deploying of all user VMs to be deployed in it. Hence, the optimal caching 

management of VM template is a challenging work in an IaaS system. In this paper, we 

propose a mechanism, the Representative Virtual Machine Templates (RVMTs), by which 

the rapid deployments for a large scale of user VMs with different application purposes in 

an IaaS system can be achieved with limited number of representative virtual machine 

templates cached, to solve the problem of the optimized caching management of VM 

templates in an IaaS system. We formulate the finding of RVMTs as an optimization 

problem with given constraints and introduce the K-medoids Clustering-based RVMTs 

finding algorithm to solve it. We also theoretically prove that this algorithm can achieve 

the optimal result. On the implementation side, we design a VM template caching system, 

called VMTCS, to achieve our VM template caching mechanism based on RVMTs. The 

simulation experiment results prove the validity of our method. 
 

Keywords: Virtual Machine Template, Caching, K-medoids Clustering, Average 

Startup Latency, IaaS 

 

1. Introduction 

Cloud Computing [1~6] is a new computing model in which large-scale users can 

concurrently access any IT resources including hardware infrastructures, various platform 

and software services over the Internet, in a scalable, high-available, on-demand and 

low-cost manner. In recent years, it has generated strong interest in the academic and 

industry sectors and achieved great success on commercial applications. With the 

characteristics meeting very well with the demands of Cloud Computing paradigm, 

virtualization technologies, especially host virtualization, have been critical supporting 

technologies for the successful implementation of Cloud Computing paradigm. 

Host virtualization enables large-scale virtual machines (VMs) [7~11] to be 

concurrently consolidated on and share the same set of physic hosts in a data center. 

Various application systems (including operating systems, support software and user 

application software) with different functions can be deployed and run on these VMs to 
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meet a variety of user application requirements. Host virtualization technology 

significantly improves the utilization rate and generality of hardware resources in a data 

center. Cloud service vendors can benefit largely from this technology in two aspects, 

reducing operating costs and increasing total service throughput of data center. Therefore, 

the current dominant Cloud service vendors have been employing it in their IaaS solutions, 

such as Amazon’EC2 [12]. 

Under virtual environments, a user application system is deployed and runs on a user 

VM to provide corresponding user service. However, before being able to provide service, 

the user VM needs to undergo a deployment process (including related installation, 

configuration and startup). The time consumed by the deployment process is commonly 

called the user VM startup latency, which adversely affects the agility of deployment of 

user application systems and services. Nevertheless, for Cloud Computing paradigm, 

rapid user service deployment is the main premise for achieving the goal of on-demand 

computing, thus the agile user VMs deployment is critical for the success of Cloud 

Computing. 

Now there are two main methods to deploy a user VM. On the one hand, a user VM 

can be deployed from scratch and the involved steps are: (1) Creating the user VM with 

virtual hard disk on selected host; (2) Installing OS and user application software; (3) 

Configuring (network, boot option, etc); (4) Starting the user VM. In general tens of 

minutes are taken for completing the process of VM deployment from scratch. On the 

other hand, user VMs can also be deployed by corresponding VM templates [13]. In this 

method, a template is a complete disk image pre-installed with OS and application 

software, and the template-based VM deployment can usually be completed in following 

three steps: (1) making the virtual disk image of the VM from corresponding template; (2) 

Starting VM; (3) reconfiguring the VM as needed. In the template-based VM deployment 

method, the installation process of OS and application software are removed from the 

deploying process of user VMs, which reduces the user VM startup latency. Thus, in 

practice, main public Cloud service vendors, such as Amazon, employ the later method to 

achieve the deployment of user VMs. 

However, an IaaS system [14] usually has multiple clusters of servers to deploy user 

VMs. These clusters of servers may be located in different places and connected with 

Internet. Hence, in order to deploy a user VM, the corresponding VM templates must be 

transferred from the central repository to the selected hosting physical server over 

network. Considering that the VM templates are often tens of Gigabytes in size and 

network speed is relatively limited, thus the transmission of VM template is often 

time-consuming and accounts for the primary part of the startup latency of a user VM 

when it is deployed by the template-based deployment method. In content distribution 

networks [15], a well-known practice is to introduce a cache for the server who demands 

the content services to improve the speed of service response. Similarly, the cache of VM 

templates can also be used for physic servers in an IaaS improving the speed to access 

VM templates. 

Moreover, although the template-based VM deployment [13] is an effective way to 

reduce the startup latency of user VMs, the optimal caching management of VM template 

is a challenging work. Because a VM template is a complete disk image pre-installed with 

given OS and application software, one VM template just can meet the deployment 

demand of a specific user VM [13]. When the VM template corresponding to a user VM 

is not cached near the physic server assigned to deploy it, the transmission of the VM 

template is needed for the deploying process, which is time consuming. Hence, to achieve 

rapid deployment of various user VMs and services in an IaaS system, more VM 

templates with different software components should be cached for each cluster of servers 

in the IaaS system. Nevertheless, the VM templates are often tens of Gigabytes in size and 

the caching of VM templates requires huge storage resources.  

In our previous work [16], the VM template caching mechanism used in each physic 
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server cluster was not discussed in detail. However, the caching mechanism for VM 

template will directly affect the user VM deployment time in an IaaS system. Studying an 

optimized VM template caching mechanism, considering the peculiarity of the VM 

template caching, to further minimize the average startup latency of user VMs to be 

deployed in an IaaS system will be the main task of this paper.   

In our other work [17], the VM template caching scheme based on the K-mean 

clustering is proposed. However, it is difficult to practically apply this scheme because the 

VM templates corresponding to centers of each cluster during the iteration process of the 

K-mean clustering algorithm is difficult to find. In addition, the scheme in [17] doesn’t 

take the dynamically changing probabilities of user VMs to be deployed into 

consideration when selecting the VM templates to be cached and is not adaptive to the 

real-time status of user VM deployment requirements in an IaaS system.      

The other solutions on the VM image template caching, such as the DiffCache [18] 

proposed by Deepak Jeswani, in which templates and patches are selected to cache based 

on the frequency of use, have also been proposed. However, these solutions are mostly 

based on the traditional caching strategy, in which considering that the cache space is 

usually limited, only some of the contents which are frequently used recently or have a 

great chance to be used in the near future can be cached. Although this strategy is simple 

in implementation, it is not globally optimal for the average startup latency of user VMs 

to be deployed in an IaaS system when used in the VM template caching.  

In this paper, we propose the concept, the Representative Virtual Machine Templates 

(RVMTs), by which the rapid deployments for a large scale of user VMs with different 

application purposes in an IaaS system can be achieved with limited number of 

representative virtual machine templates cached for each cluster of servers, and propose 

the corresponding management mechanism as well as finding algorithm for RVMTs. 

RVMTs are different from each other and the number of RVMTs is determined by the size 

of storage space. In our design, each RVMT can be used to deploy a group of user VMs 

and when a user VM needs to be deployed, the two steps involved in the deployment 

process are: (1) selecting one RVMT among other RVMTs which is most similar to the user 

VM in terms of the application system and deploying a VM from the selected RVMT by 

template-based deployment method; (2) transforming the VM having been deployed in 

step (1) to the user VM by a operation called the application system transform. The 

principle about the application system transform will be detailed in section 2.1. The 

RVMTs-based deployment method mentioned above achieves deploying a large amount of 

user VMs without the transmission of the VM templates reducing the startup latency of 

the user VMs, but the application system transform operation involved would introduce 

extra time overhead to the deployment process. By our finding algorithm, RVMTs are 

optimally selected from a large amount of VM templates according to the principle, i.e., 

minimizing the average startup latency of all user VMs to be deployed in an IaaS system. 

In addition, as time goes on the probabilities for user VMs to be deployed (i.e., the use 

probability of VM templates corresponding to user VMs) are dynamically changing as 

well as different from each other and this factor is also considered in the finding process 

of RVMTs. With limited storage resources, Cloud service vendors can achieve shorter 

average startup latency of all user VMs by exploiting the VM template caching 

mechanism based on RVMTs. Followings are the main contributions offered by this work:  

1) Defining the concept, the use hotness of VM templates, which is calculated based on 

the access time sequences over a past time interval I for the VM templates, for accurately  

predicting the use probabilities of them over a future period of time. The MRFU 

algorithm, which is a combination of two principles: MRU (Most Recently Used) and 

MFU (Most Frequently Used), is proposed to calculate the use hotness of the VM 

templates, giving due consideration to both access time and access frequency. Note that, 

the access for a VM template here means the use of the VM template. 
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2) Proposing a K-medoids clustering-based algorithm which takes the dynamically 

changing use probabilities of VM templates into consideration to adaptively find RVMTs 

to cache for consistently keeping the minimizing of the average startup latency of all user 

VMs to be deployed in an IaaS system as time goes on. 

3) Designing the corresponding VM Template Caching System (VMTCS) to support 

the VM template caching mechanism based on RVMTs. 

The rest of the paper is organized as follows. In section II, we first introduce some 

related preliminaries. Then we formulate the problem of finding RVMTs among a large 

amount of VM templates in section III. In section IV we present the K-medoids 

clustering-based RVMTs finding algorithm. We present the architecture of VMTCS in 

Section V. We evaluate our approach in Section VI. Finally, we conclude in Section VII. 

 

2. Preliminaries 

2.1. Application Systems Transform (AST) 

It is well known that one application system can be transformed to another one by 

uninstalling unwanted and installing missing software components. Furthermore, although 

application systems have their own special purpose, different application systems have 

many same software components [19]. Therefore, the transform between two different 

application systems can usually be achieved quickly because only a few software 

components need to be uninstalled or installed as needed. AST is a key operation for the 

RVMTs-based user VM deployments to run smoothly. 

 

2.2. Distance between Application Systems (DAS) 

DAS is an important concept used in the K-medoids clustering-based RVMTs finding 

algorithm proposed in this paper and defined as the time overhead during AST operation 

between application systems. Obviously, when two application systems, in terms of the 

application system, are more similar to each other, the less time needed for AST operation 

and the value of DAS is smaller [19]. The definition of DAS is given in the following 

equation: 

                        




IcRc

cITcRTBAD ,                     (1) 

, where D(A,B) represents the distance from application system A to B. R and I 

respectively represent the sets of software components which the application system A 

needs to remove and install during AST. RTc is time cost for the removal of the software 

component c (c∈R) and ITc is time cost for the installing of the software component c (c

∈I). 

 

2.3. Use Hotness of VM Templates 

In this section, we will give the formal definition and calculation method for the 

current use hotness of VM templates, which will be used to accurately predict the use 

probabilities of them over a future period of time. In Cloud environments, the use hotness 

of VM templates constantly change according to that of user application system deploying 

requirements in the Cloud data center on real-time basis. In our method, the use hotness 

for each VM template is calculated for every time interval I and the new use hotness value 

is calculated based on current use hotness value in a time interval I and historical one in 

the previous time interval I with different weights. 



International Journal of Grid Distribution Computing 

 Vol. 8, No. 3, (2015) 

 

 

Copyright ⓒ 2015 SERSC  279 

                 

 

     












11

00

1
itempHotnessaaCtempHotness

itempHotness

iii

i

 

                                     

,

,

      (2) 

In the above equation, temp denotes a VM template; Hotnessi-1(temp) denotes to the 

historical use hotness value of the template in the (i-1)th I time interval, while Ci 

represents the template’s use hotness value currently computed in the ith I time interval; 

the symbol a represents the weight of Ci. The bigger is the value of a, the bigger the 

impact Ci has on the value of Hotnessi(temp) and vice versa. The current value of the use 

hotness of temp, Hotnessi(temp), will be used to predict the use behavior and use 

probabilities for the VM template temp over the future (i+1)th I time interval. 

Since in this method the VM template’s historical use hotness is used to calculate the 

current one, the VM template’s use hotness can be kept at a relatively stable level and the 

impact of use hotness fluctuation on its calculation is also kept at a minimal level. 

Additionally, since current use hotness takes up a bigger weight, the impact of which is 

also bigger, while the historical use hotness’s influence is reduced. This means the current 

use behavior for a VM template can be accurately revealed. 

However, when we compute the current use hotness of a VM template over a time 

interval I, the pattern of access time sequence for it in this time interval should be taken 

into account. If a time interval I is equally divided into 10 parts, the three typical patterns 

of access time sequence for a VM template can be illustrated in Figure1. 
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Figure 1. Patterns of Access Time Sequence for a VM Template 

For the Pattern 1 in Figure1, the access time concentrates on the beginning part of I. 

For the Pattern 2 in Figure1, the access time concentrates on the middle part of I. And for 

the Pattern 3 in Figure1 the access time concentrates on the final part of I. During the time 

interval I, though the access frequency for VM templates in Pattern 1, Pattern 2 and 

Pattern 3 is the same, but the possibility of future access to the VM template in Pattern 2 

is higher than Pattern 1, and the possibility of future access to the VM template in Pattern 

3 is the highest.   

Therefore when we calculate the use hotness of a VM template during a time interval I, 

not only access frequency during I, but also the impact of access time sequence on the 

VM template’s use hotness should be taken into consideration. In this paper we adopt the 

MRFU algorithm to calculate the use hotness of a VM template during a time interval I. 

The MRFU algorithm is a combination of two principles: MRU (Most Recently Used) 

and MFU (Most Frequently Used). It gives due consideration to both access time and 

access frequency and the principle involved is that the weight of the last access is the 

biggest and it gets smaller in each previous access. Based on the above mentioned 
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discussions, the computational formula for the Ci in formula (2) is shown below. 

                           
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                         (3) 

In formula (3), n denotes the number of accesses for a VM template during the ith time 

interval I, Ti represents the final time of ith I and { n
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tttt ,,,, 
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points when the VM template is accessed. The weight function w(x) for each 
k

i
t  is 

defined as follows. 
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,
X

Xw                        (4) 

  Note that, adjusting the degree to which the access time affects the use hotness value 

of a VM template during a time interval I can be achieved by setting different value for 

the parameters  and in formula (4). 

 

3. Problem Description  

As discussed previously in the section 1, the RVMTs-based deployment method 

achieves deploying a large amount of user VMs without the transmission of the VM 

templates reducing the average startup latency of the all user VMs, but the application 

system transform operation involved would introduce extra time overhead to the 

deployment process and the time overhead introduced by the application system 

transform operation is also an important factor causing the startup latency of a user VM. 

So the aim of the finding RVMTs is to further shorten the average startup latency of user 

VMs by reducing the average time overhead for all user VMs caused by the application 

system transform operation involved in the deployment process.  

In this section, the problem of finding RVMTs will be formulated. Before further 

discussions, we first give some relevant definitions below. We define the set of all user 

VMs probably to be deployed in an IaaS system as follows:  

 
jin

vmvmjivmvmvmvmUVM    ,,,,, 
321

           (5) 

In the formula (5), the vmi represents one type of user VM. For each user VM vmi in 

the set UVM, we use tempi to represent its corresponding VM template and then we can 

get the set of user VM templates below: 

                   
n

temptemptemptempUVMT ,,,, 
321

               (6) 

Note that, considering the nature of Cloud Computing paradigm, the UVM for an IaaS 

system usually is be of following features. On one hand, because in an IaaS system the 

user VMs to be deployed usually have various application purposes, the differences of 

application system exist between these user VMs in UVM. On the other hand, in UVM the 

user VMs with the similar application purpose have the similar application system, which 

means for these user VMs there is smaller DAS between each other, and vice versa. These 

features can be illustrated by the following Figure 2. 
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Figure 2. User VM Distribution in Terms of the DAS 

The Figure2 shows a typical distribution of user VMs in UVM for an IaaS system in 

terms of the DAS between them. From this figure, we can find that the DAS between 

different user VMs varies greatly. For example, the D(vmA, vmC) is obviously larger than 

the D(vmA, vmB) and this means that the vmA and vmB are of similar application purpose as 

well as application system, while the application purpose and application system of vmC is 

obviously different from the vmA and vmB. 

As described previously in this paper, usually a limited number of VM templates can 

be cached for each cluster of servers in an IaaS system because of limited storage 

resources and thus, for each cluster of servers just a subset of UVMT can be cached in it. 

We will use the symbol TC to represent the subset cached and the size of TC is 

determined by the storage space size. Assuming that the storage space can accommodate 

m VM templates, we can describe TC by the following formula: 

 
m

tctctctcTC ,,,, 
321

                       (7) 

The tci in the formula (7) denotes one type of user VM template cached. Obviously, 

there are 
m

n
C  combination methods for TC.   

Next, We would continue to give the definition of the time overhead for deploying user 

VM caused by the application system transform operation involved in the deploying 

process, which will be denoted by T_transf. For any a user VM vm and the VM template 

temp the vm is deployed from, then based on the definition of the DAS mentioned in 

Section 2.2 we can define the T_transf for the vm as: 

                      vmtempDvmtemptransfT      ,,_                 (8) 

However, when deployed in an IaaS system, the vm is actually deployed from a special 

VM template selected from the set of VM templates cached by each cluster of servers in 

an IaaS system (i.e., the TC). The selected VM template is the most similar to the vm in 

terms of the application system among other ones in TC. So the T_transf for the vm, when 

deployed in an IaaS system, can be defined as follows: 

 

  













TCtempTCtcvmtctransfT

TCtemp

vmTCtransfT

vm

vm

       

  

  

,,_min

,

,_

0

  (9) 

In the formula (9), tempvm denotes the VM template corresponding to the vm, which in 

fact is the complete disk image of the vm. With tempvm cached in each cluster of servers in 

an IaaS system, i.e., TCtemp
vm

 , the vm can be deployed directly from it without doing a 

application system transform operation and thus the value of  vmTCtransfT   ,_ is 0. 
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 The formula (9) shows that the T_transf for every user VM to be deployed in an IaaS 

system is directly affected by TC. Still taking the typical distribution of user VMs in UVM 

shown in Figure2 for instance, we present two different combination methods of TC in the 

following figure, where each dot represents the VM template corresponding to a user VM 

in UVM.    

d

tc1
tc2

tc3

tc4

tc5

d

(b) Combination method 2 for TC 

tc1

tc2

tc3

tc4

tc5

(a) Combination method 1 for TC 

 

Figure 3. Distribution of Different Combinations for TC 

In the Figure 3, to facilitate the illustration, we assume that the size of TC is 5 (i.e., 

m=5) and the TC ’s elements, tc1, tc2, tc3, tc4 and tc5, are represented by the hollow dots in 

the Figure3. As shown in the sub-graph (a) of Figure3, by the combination method 1 for 

TC, just a part of user VMs in UVM can be deployed with small T_transf, while the large 

T_transf is needed for the other ones in UVM when they are deployed. According to the 

features of UVM discussed previously, there are different classifications of user VMs in 

UVM in terms of the similarity of application purpose, or the DAS between each other. 

The combination method 2 for TC shown in the sub-graph (b) of Figure3 consists of the 

VM templates corresponding to the user VMs, which respectively belong to and represent 

different classifications of user VMs in UVM. It is obvious that by the TC in the sub-graph 

(b) the all user VMs in UVM can be deployed with relative small T_transf and this TC is 

the better choice for an IaaS system compared with the one shown in sub-graph (a). So, 

optimally selecting TC among the 
m

n
C  combination methods is crucial for an IaaS system 

to take account of the T_transf of all user VMs in UVM and then achieve the smallest 

average T_transf of these user VMs when they are deployed in the IaaS system. 

Moreover, every user VMs in UVM has its own probability to be deployed, which 

changes dynamically as time goes on, and this factor must be considered in the process of 

optimally selecting TC. So we introduce the concept, the User VM Group in an IaaS 

system (UVMG), and define UVMG by the following two-tuples: 

                              PU V MU V M G  ,                           

                       
n

ppppP ,,,, 
321

                         (10) 

The UVM in formula (10) has the same meaning as the UVM defined in formula (5) 

and pi indicates the probability to be deployed of the vmi in UVM, i.e., the use probability 

of the VM template tempi in UVMT corresponding to vmi, over a future period of time. 

The calculating method for pi can be defined as follows:  

 

 




UVMTtemp

C

iC

i
tempHotness

tempHotness
p

  

                    (11) 

HotnessC represents the current use hotness of VM template and the relevant definition 

and calculating method of HotnessC have been described in detail in the previous section 

2.3. Based on the above definitions, we can define the average time overhead caused by 
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the application system transform operation involved in the user VM deployment in an 

IaaS system as follows:  

   
i

n

i

i
pvmTCtransfTUVMGTCtransfAvgT  

1

  ,_,_          (12) 

In the formula (12), vmi represents a user VM in UVM. Then the problem of finding 

RVMTs can be concretely formulated as follows: 

         U V M GTCtransfAvgTUVMGRVMTstransfAvgT ,_min,_   

                      mTCUVMTTC   ,                        (13) 

The meaning of the formula (13) is that: among the 
m

n
C  combination methods for TC, 

the TC by which for all user VMs in UVM the smallest average time overhead caused by 

the application system transform operation involved in the deployment process can be 

achieved, is RVMTs. 

By the relevant discussions for the Figure3 and the meaning of the formula (13), we are 

inspirited to use the Clustering-based method to achieve the finding of RVMTs. The 

relevant contents will be discussed in detail in the following section 4. 

 

4. K-Medoids Clustering-Based RVMTs Finding Algorithm 

In this section, we will illustrate the problem of using a K-medoids clustering-based 

algorithm to find the RVMTs which satisfies the formula (13). The K-medoids [20, 21] is 

one of unsupervised clustering algorithms, which aims to partition n elements into k 

clusters so as to minimize the Sum of Squared Deviation ,  

 
 



k

i iCp

i
op

1

2

 

                         (14) 

, where Ci and oi respectively denotes the ith cluster and the medoid of the ith cluster, 

while p represents the object in a cluster. In the formula (14), 
i

op   indicates the 

similarity between the two objects p and oi. It is worthwhile to note that there are various 

similarity measures between two objects, such as the Euclidean Distance. In our problem, 

the objects on which the K-medoids clustering algorithm executes are various user VMs 

(i.e., various application systems) in the UVM for an IaaS system and user VM’s 

probability to be deployed need to be considered during the clustering process. Moreover, 

the similarity measure between two different user VMs, as described in the previous 

section 2.2, is defined as the Distance between Application Systems (DAS) and according 

to the definition of DAS, it is known that the DAS between any two different user VMs is 

always of positive value. Based on the above situations, the traditional K-medoids 

clustering algorithm should be correspondingly reformed before it can be used to solve 

our problem. Thus, to make the K-medoids clustering algorithm suitable for our problem 

here, the aim to minimize the measure is changed to minimize the following metrics  ,  

    
 



k

i iCvm

vm

i

medoidmedoid
pvmvmtransfTVM

1     

 

 
 ,_          (15) 

, where 
i

medoid
vm

 

 
 is the medoid of the cluster Ci, 

 321

medoidmedoidmedoidmedoid
vmvmvmVM ,,  k

medoid
vm,, and 

k

i i
CUVM

1
 , 
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while
vm

p  represents the vm’s probability to be deployed and the calculating method for 

it has been described in the previous section 3. 

  Then the reformed K-medoids clustering algorithm suitable for our problem can be 

described as the following three steps:  

  Step 1: (Selecting initial medoids) 

1-1. Calculating the density for each user VM in UVM and for a given user 

VM UVMvm
h
 , calculating it density by the following formula:  

     nhrvmvmDUVMvmvmvmDensity
hh

,,, 1        ，    (16) 

          , where    is the cardinality of a set and r is a constant predefined.   

1-2. Selecting k user VMs from UVM to initialize 
medoid

VM  (i.e., selecting 

k initial medoids): selecting the
h

vm which has the biggest value of 

 
hh

pvmDensity   among others in UVM as the initial 
1

medoid
vm  and 

selecting the 
1

1






i

j

j

medoidh
vmUVMvm which has the biggest value of 

 
h

vmDensity  

        
h

i

medoidhmedoidh
vmvmDvmvmDp ，，

11 
 ,,min  as the 

initial
i

medoid
vm , i=2,3,…,k. 

1-3. Obtaining the initial cluster result by assigning each of the remaining 

user VMs in UVM to the nearest medoid. 

1-4. Calculating the metrics  according to formula (15) based on the 

current cluster result. 

  Step 2: (Updating medoids) 

      From UVM, finding a new medoid 
new

medoid
vm  of current cluster Ci, 

i=1,2,3,…,k, which minimizes the value of 

 




iCvm

vm

new

medoid
pvmvmtransfT

    

 
 ，_ , and updating the current medoid in each 

cluster by replacing with the new medoid. 

  Step 3: (Assigning objects to medoids) 

3-1. assigning each UVMvm  to the nearest medoid and obtaining the new 

cluster result. 

3-2. Calculating the metrics   according to formula (15) based on the new 

cluster result. If the value of the metrics   is equal to the previous one, then stop 

the algorithm. Otherwise, go back to the Step 2. 

 Note that, the parameter k in the above reformed K-medoids clustering algorithm is 

set according to the number of VM templates each cluster of servers in an IaaS system 

can accommodate. If still assuming that the storage space of each cluster of servers can 

accommodate m VM templates, then we have k=m. 

 Because the quality and convergence rate of the K-medoids clustering algorithms are 

affected heavily by the selecting of the initial medoids [22], [23], we optimize the 

selecting of the initial medoids for our problem in the reformed K-medoids clustering 

algorithm. As shown in the step 1, when selecting the initial medoids from UVM, we 
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synthetically consider these user VMs’s density and the probability to be deployed and 

keep any two initial medoids being dissimilar as much as possible. This selecting method 

can effectively accelerate the convergence speed of the K-medoids clustering algorithm 

when it is used to solve our problem. 

After executing the reformed K-medoids clustering algorithm on UVM, we will take 

the m VM templates which respectively correspond to the m VMs in the final 
medoid

VM  

as RVMTs. Next, we will go on to prove the correctness of the above K-medoids 

clustering-based RVMTs finding algorithm. 

If using 
medoid

FVM  to denote the final 
medoid

VM ={
1

medoid
fvm

 
, 

2

medoid
fvm

 
, 

3

medoid
fvm

 
,…, 

m

medoid
fvm

 
} and using 

medoid
FVMT ={

1

medoid
fvmt

 
, 

2

medoid
fvmt

 
, 

3

medoid
fvmt

 
,…, 

m

medoid
fvmt

 
} to denote the set of VM templates which respectively 

correspond to the VMs in
medoid

FVM , we will have the following theorem. 

Theorem 1: For a given UVM, if the 
medoid

FVMT  is obtained by executing the 

reformed K-medoids clustering algorithm on the UVM, the obtained 
medoid

FVMT  is the 

RVMTs of the UVM, which satisfies the formula (13).  

Proof of the Theorem 1: Assuming that the obtained 
medoid

FVMT  is not the RVMTs 

satisfying the formula (13), and then we should be able to find the RVMTs={rvmt1, rvmt2, 

rvmt3,…, rvmtm} of the UVM, which can meet the following inequality,  

   UVMGFVMTtransfAvgTUVMGRVMTstransfAvgT
medoid

，，  __     (17) 

, considering the existence of optimal solution of the formula (13). Now, for each rvmti 

in RVMTs we create a set  
i

rvmtNeighbor . Among all vm UVM, we include these, 

each of which has the smaller DAS from rvmti to itself (i.e.,  vmrvmtD
i
, ) compared 

with other ones in the RVMTs, into the set  
i

rvmtNeighbor , and then we can get m 

clusters and UVM=  
m

i i
rvmtNeighbor

1
. The rvmti is the medoid of the 

cluster  
i

rvmtNeighbor . 

  According to the reformed K-medoids clustering algorithm, the 
medoid

FVM  

satisfies the following formula,  

    mVMUVMVMVMFVM
medoid

    ,min           (18) 

  Considering the equivalence of 
medoid

FVM  and
medoid

FVMT , i.e., 

 vmfvmtransfT
i

medoid
,_

 

 
=  vmfvmttransfT

i

medoid
,_

 

 
, and the formula (18), we can 

get the following inequality,  

  
 



m

i iCvm
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i

medoid
pvmfvmttransfT
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,_  

 
 

 
 

m

i Nvm
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1
i
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,_  

                    UVMGRVMTstransfAvgT ,_                     (19) 
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There is a confliction between the inequality (17) and (19) and it is caused by our 

assumption. So the theorem 1 is correct and means that RVMTs can be generated by the 

reformed K-medoids clustering algorithm. 

 

5. VM Template Caching System (VMTCS) Architecture  

In a typical IaaS system, there usually are multiple clusters of servers used to deploy 

and run user VMs. These clusters of servers may be located in different places and 

connected with Internet. Figure4 shows the infrastructure components of VMTCS. 
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Figure 4. Architecture of VMTCS 

A deployment management module runs on the Deployment Server, which parses user 

VM deployment requests and designates suitable physic servers to deploy user VMs. The 

deployment commands of user VMs will be sent by the deployment management module 

to the Front-end of clusters the designated physic servers belong to. 

Based on the received deployment commands, the Cluster Front-end in each cluster of 

servers selects the most suitable VM templates among these locally cached ones for the 

deploying of user VMs. Concretely, for the deployment command of a given user VM vm, 

the Cluster Front-end would select an rvmti from the RVMTs cached locally which 

minimizes the value of  vmrvmttransfT
i
,_   for the deploying of the vm and the 

selected rvmti will be sent to the designated physic server to achieve the deployment of 

the vm. 

The RVMTs Management Server runs a RVMTs management module, which is 

responsible for the generation and update of the RVMTs stored in the RVMTs Repository. 

The metadata for each user VM to probably be deployed in the IaaS system (i.e., each 

user VM in UVM), such as, the application system composition information, the access 

time sequence and the probability to be deployed, as well as the information about the 

installing and uninstalling time for various kinds of software is stored in the RVMTs 

Management Server. Considering the fact that the probability to be deployed of each user 

VM in UVM is dynamically changing as time goes by, the RVMTs management module 

will constantly update, based on the access time sequence, the probability of each user 
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VM for every past time interval I according to the relevant methods described in the 

section 2.3 and formula (11). Everytime the probabilities to be deployed of user VMs in 

UVM are updated, based on information for each user VM in UVM, such as, software 

composition and the current probability to be deployed, as well as the information about 

the installing/uninstalling time for various kinds of software, the RVMTs management 

module would adaptively regenerate RVMTs by executing the reformed K-medoids 

clustering algorithm in section 4, consistently minimizing the average time overhead 

caused by the application system transform operation involved in the deployment process 

of user VMs in the IaaS system and then the average startup latency of them as time goes 

on. 

RVMTs are stored in the RVMTs Repository, which may be accommodated by a SAN 

(Storage Area Network) or a NAS (Network-Attached Storage), linked with high speed 

and bandwidth networks such as Gigabit Ethernet. Based on the received update of 

RVMTs from the RVMTs Management Server, the RVMTs Repository updates itself on the 

real time basis. In addition, everytime the RVMTs Repository is updated, the Local Cache 

Space of each cluster of servers in the IaaS system will be updated synchronously.   

The Software Update Source has various types of software stored in it. The concept of 

it is similar to the YUM (Yellow Dog Updater, Modified) update source for Linux. In 

order to make the Software Update Source available for both Linux and windows 

platform, a HTTP server could be employed to build up it. When deployed by the 

RVMTs-based deployment method proposed in this paper, a user VM can access the 

needed software over Internet from the Software Update Source during the application 

system transform operation involved in the deployment process. 

 

6. Evaluation  

In this section, we will focus on the performance evaluation of our VM template 

caching mechanism based on RVMTs, which is represented by the RVMTs model in the 

simulation experiments. The method of the simulation comparison experiments of our 

RVMTs model and the VMTs model representing the VM template caching mechanism 

based on the traditional caching strategy as well as the relevant analysis of the experiment 

results will be detailed in the following part of this section.   

  

6.1. Simulation Scenario 

 Our simulation scenario is shown in the following Figure5. These modules in Figure5 

are implemented by different processes and the details of them will be explained in the 

following sub-sections. 
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Figure 5. Simulation Scenario 

6.1.1. User VM Deployment Requirement (DR) Generator 

In our simulation comparison experiments, we use a 10 dimensional vector to denote 

the application system composition of a user VM in UVM: 

 
10321

ssssASC ,,,,                       (20) 

Each element si, i=1,2,3,…,10, in ASC corresponds a specific type of the software 

which may be required in a user VM. The si is a binary variable. The value of si being 

1(i.e., si=1) means that the software si corresponds is required by a user VM’s application 

system, while the value of si being 0 means that the software si corresponds is not required. 

Based on the definition of the above formula (20), it is obviously that in our simulation 

scenario there are 2
10

 different kinds of ASC, each of which represents a type of user VMs 

in UVM.  

Firstly, in order to simulate the different probabilities of user VMs in UVM to be 

deployed, we assign each ASC with different probabilities, meaning that the deployment 

requirements for user VMs in UVM will be sent to the IaaS system with the different 

probabilities which are assigned to each ASC corresponding to them. The above 2
10

 

different probabilities will be generated based on the Normal Distribution  2
0 ,N  or 

the Discrete Uniform Distribution  nDU  with the parameter 10
2n . If we use symbol 

,,,,,
10

2321 ip
i

 to represent the 2
10

 different probabilities, then the following 

formulas (21) and (22) give the value of pi generated respectively by the  2
0 ,N  and 

 10
2DU :  
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                         10

10
2321

2

1
,,,,,  ip

i
                     (22) 

The parameter  for the  2
0 ,N  can be assigned with different values to simulate 

different distribution patterns of deployment requirements of user VMs in an IaaS system. 

When   has smaller value, based on the formula (21), there are fewer user VMs in 

UVM assigned with larger probabilities, which means that deployment requirements in the 

IaaS system concentrate on fewer user VMs, and vice versa. When the value of pi is 

generated based on the  10
2DU , all user VMs in UVM are assigned with the same 

probability, which means that deployment requirements in the IaaS system are equally 

scattered across all user VMs. Note that, whether the value of pi is generated by the 

formulas (21) or (22), the sum of all pi is equal to 1, i.e., 1
1024

1
 i i

p . Under the different 

distribution patterns of deployment requirements of user VMs mentioned above, a set of 

simulation comparison experiments would be conducted to evaluate the performance of 

our RVMTs model. 

Furthermore, for simulating the dynamic change over time of user VM’s probability to 

be deployed, ,,,,,
10

2321 ip
i

 would be randomly reassigned to different ASC (i.e., 

user VMs in UVM) with a certain frequency. 

Finally, during our simulation comparison experiments, a process will be started as the 

deployment requirements (DR) generator, which constantly sends different vector ASC 

with the current probabilities assigned to them to the Deployment Module in Figure5 

simulating the deployment requirements of user VMs in an IaaS system. The sending 

frequency of the DR generator is set to one time per second. 

 

6.1.2. RVMTs Model and VMTs Model 

As shown in Figure5, both RVMTs and VMTs model consist of three main modules. For 

our RVMTs model, the RVMTs Management Module and RVMTs Repository respectively 

simulate the function of the corresponding module in Figure 4, which has been detailed in 

the previous Section 5. Note that, because the content in the Local Cache Space of each 

cluster of servers always maintain consistent with those of the RVMTs Repository, for 

simplicity we use the RVMTs Repository to replace the Local Cache Space in our 

simulation scenario. The Deployment Module in Figure 5 simulates the both functions of 

the Deployment Server and the Cluster Front-end in Figure 4. Next, we will go on with 

the description of the VMTs model. 

The VMTs model corresponds to the VM template caching mechanism based on 

traditional caching strategy, where among the UVM of an IaaS system, m user VMs with 

the first m largest probabilities to be deployed would be selected currently and the m VM 

disk images corresponding to them would be cached as the VM templates by the each 

cluster of servers in an IaaS system, m being the number of VM templates can be 

accommodated. Everytime the probabilities to be deployed of user VMs in UVM are 

updated, the m VM templates cached will be reselected based on the new calculated 

probabilities. The VMTs Management Module in Figure5 implements the VM template 

management mechanism mentioned above. Note that, in our simulation comparison 

experiments, the VMTs Management Module exploits the same way adopted by the 

RVMTs Management Module to constantly update the probabilities to be deployed of user 

VMs in UVM. Although the VMTs model is comparatively easy to implement, the VMTs 

model is not optimized for the average startup latency of all user VMs to be deployed in 

an IaaS system and adopting it may cause the situation in Figure3 (a). 

The Deployment Module of the VMTs model has the same function as that of our 

RVMTs model, but it use the VMTs Repository during selecting the suitable VM templates 

for the user VMs to be deployed. The VMTs Repository also has the same function as the 
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RVMTs Repository in our RVMTs model. In addition, in our simulation comparison 

experiments the Deployment Module of our RVMTs and the VMTs model are also 

responsible for computing two metrics, ASL (Average Startup Latency) and HR (Hit 

Ratio), which will be used to evaluate the performance of these two models. 

 

6.1.3. Evaluation Metrics 

The metric ASL means the average startup latency of all user VMs to be deployed 

during our simulation comparison experiments and it can be calculated as follows:  

      

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N
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1

1
,_         (23) 

The metric HR indicates the ratio between these simulated DR which can be completed 

within a given time restriction T and the all DR imitatively generated during our 

simulation comparison experiments. The HR of the VMTs model and our RVMTs model 

can be calculated as follows: 

 
  
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     ,,,,_

,

1

 (2

4) 

In the formula (23) and (24), vmi denotes a user VM corresponding to a simulated DR 

and N denotes the number of all DR imitatively generated during our simulation 

comparison experiments. VMBootTime represents the time cost by the startup process of a 

user VM from a VM template. Without loss of generality, we assume that the 

VMBootTime of all user VMs to be deployed in our experiments have the same value. In 

addition, the     in formula (24) is the cardinality of a set. 

 

6.2. Experimental Results and Analysis 

Using the simulation scenario detailed in the Section 6.1, we conduct multiple sets of 

simulation comparison experiments with different settings of several parameters. The 

values of these parameters and some relevant variables involved in our experiments are 

listed in the following Table 1. 

Table 1. Values of Relevant Parameters and Variables 

Parameter/Varia

ble 
Definition Value 

VMBootTime 
Time for a user VM to start from a 

VM template 
60s 

T 
Time restriction for the computing of 

the metric HR (Hit Ratio) 

100s/200s/300s/400s/500s/6

00s 

InstallingTime 
Time to install a specific type of 

software 
90s 

UninstallingTime Time to uninstall a specific type of 10s 
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software 

I 

Time interval to update the 

probabilities to be deployed of user VMs 

in UVM 

100s 

m 

Number of VM templates the each 

cluster of servers in the IaaS system can 

accommodate 

10/15/20 

  
Standard deviation of the Normal 

Distribution used in imitatively 

generating DR  

0.5/1.5/3/5/10 

N 

Number of all DR imitatively 

generated during each simulation 

comparison experiment  

5000 

Note that, without loss of generality, the InstallingTime and UninstallingTime of any 

type of software have the unified settings in our simulation comparison experiments, as 

shown in the Table.1. In addition, at the beginning of each simulation comparison 

experiment, the probabilities to be deployed of all user VMs in UVM would be initialized 

to the same value. 

 

6.2.1. Experimental Results with Different m 

The parameter m determines the number of VM templates which can be cached in the 

each cluster of servers in the IaaS system (i.e., the number of VM templates the VMTs and 

RVMTs Repository can accommodate in our simulation scenario). The experiments in this 

sub section aim to study how the parameter m affects the performance of the VMTs model 

and our RVMTs model. Concretely, we conduct several experiments for different values of 

parameter m. In each of these experiments the parameter   remains unchanged all the 

time and is constantly set to 10, and the values of other parameters are set according to 

Table.1. Figure6 and Figure7 show the change trends of the evaluation metrics ASL and 

HR of the VMTs model and our RVMTs model with parameter m varying from 10s to 20s.    
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Figure 6. Average Startup Latency (ASL) of the RVMTs and VMTs Model With 
Different Values of Parameter m 
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(b) Hit ratio with parameter m=15
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Figure 7. Hit Ratio (HR) of the RVMTs and VMTs Model With Different Values 
of Parameter m 
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From the Figure 6, we can find that the ASL of both our RVMTs Model and the VMTs 

Model get smaller as the value of the parameter m increases, but our RVMTs Model has 

much less ASL than the VMTs Model with different values of parameter m and has the 

bigger relative decrement than the VMTs Model as the value of the parameter m goes up. 

This is because: based on the theory of the K-medoids clustering algorithms, the Sum of 

Squared Deviation of clustering result is the metrics to evaluate the validity of clustering, 

the smaller value of which means the better clustering quality, and is able to get reduced 

by increasing the number of target classifications (i.e., increasing the value of parameter k 

of the K-medoids clustering algorithms). Therefore, the metrics  of the reformed 

K-medoids clustering algorithm, which is used to find RVMTs in this paper, will reduce as 

the parameter m gets larger and then the ASL of our RVMTs Model will be reduced 

effectively. However, by the VMTs Model, the increasing of the value of the parameter m 

just can locally reduce the startup latency for a small part of user VMs to be deployed and 

then has small contribution to the reducing of the ASL of the VMTs Model. The above 

situation can also be well proved by the HR of our RVMTs Model and the VMTs Model 

shown in the Figure 7. From the Figure 7, we can find that compared with the VMTs 

Model, more user VMs can be deployed within shorter time by our RVMTs Model with 

with different values of parameter m.  

Based on the above experiment results and analysis, we can conclude that for all user 

VMs to be deployed in an IaaS system, the more agile deployments can be achieved by 

our RVMTs Model with the restriction on the number of the VM templates the each cluster 

of servers in the IaaS system can accommodate. 

 

6.2.2. Experimental Results with Different Distribution Patterns of DR 

In this sub section, for different distribution patterns of DR imitatively generated based 

on the Normal Distribution with parameter   varying from 0.5 to 10 and the Discrete 

Uniform Distribution, we conduct different experiments to study how the performance of 

the VMTs model and our RVMTs model are affected by the different distribution patterns 

of DR. In each of these experiments the parameter m remains unchanged all the time and 

is constantly set to 10, and the values of other parameters are set according to Table 1. 

The change trends of the evaluation metrics ASL and HR of the VMTs model and our 

RVMTs model with different distribution patterns of DR are shown in the following Figure 

8 and Figure 9. 
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The Figure8 shows that the ASL of our RVMTs Model and the VMTs Model both get 

larger as the distribution of DR imitatively generated get more scattered and the increase 

of the VMTs Model’s ASL is sharper compared with our RVMTs Model. It is note that both 

ASL of the VMTs Model and our RVMTs Model are almost equal to 60s when parameter 

 =0.5. This means for the both two models the deployments of user VMs can be 

achieved without involving the application system transform operations, considering that 

the VMBootTime is set as 60s in our experiments. This situation can also get proved by the 

sub-chart (a) in the Figure9, which shows that the HR of both the VMTs Model and our 

RVMTs Model have reached to 100% with the time restriction T being 100, and the reason 

for the above situation is that the all DR imitatively generated, when the parameter   is 

set to 0.5, concentrate on a few type of user VMs and the all VM templates corresponding 

to them can be completely accommodated by the VMTs Repository and RVMTs 

Repository.  

Based on the above experiment results and analysis, we can find that the performance 

of the VMTs Model is just acceptable when the distribution of DR is relatively 

concentrated. However, because of the universality of the Cloud Computing paradigm, 

there usually are various user VMs with different application purposes to be deployed in 

an IaaS system, i.e., the distribution of DR in a real Cloud Computing environments is 

scattered. Therefore, we can get the conclusion that our RVMTs Model is more suitable 

than the VMTs Model for the Cloud Computing paradigm. 

 

7. Conclusion  

Currently, main IaaS systems employ the template-based VM deployment method to 

reduce the startup latency of user VMs. However, because of the large size of VM 

templates, usually, limited number of them can be cached by the each cluster of servers in 

an IaaS system. In the face of the large scale deployment requirements of user VMs with 

various application purposes in the IaaS system, the limited number of VM templates can 

not support the quickly deploying of all user VMs to be deployed in the IaaS system. 

Hence, the optimal caching management of VM template is a challenging work in an IaaS 

system. 

In this paper, we propose the concept, the Representative Virtual Machine Templates 

(RVMTs), by which the rapid deployments for a large scale of user VMs with different 

application purposes in an IaaS system can be achieved with limited number of 

representative virtual machine templates cached, to solve the problem of the optimized 

caching management of VM templates in an IaaS system. On the implementation side, we 

introduce the K-medoids Clustering-based RVMTs finding algorithm and the VM template 

caching system (VMTCS) to achieve our VM template caching mechanism based on 

RVMTs. We also study the architecture and working mechanism of VMTCS. In addition, 

the simulation comparison experiments are designed to evaluate VMTCS and the 

experiment results prove the validity of it.  
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