
International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018), pp.89-98

http://dx.doi.org/10.14257/ijgdc.2018.11.3.08

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2018 SERSC Australia

Middleware-based Model for Dynamic Reconfiguration of Web

Service
1

Rahmat Ilahi, Novia Admodisastro, Norhayati Mohd Ali, Abu Bakar Md. Sultan

Department of Software Engineering and Information System

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia, Serdang, Malaysia

gs36028@student.upm.edu.my, {novia,hayati,abakar}@upm.edu.my

Abstract

Dynamic reconfiguration of web services (WSs) is a method to replace WSs in service-

oriented architecture (SOA) software system during runtime. The method allows the

service requester to replace WSs in their system without interruption of other operations

in the system. However, dynamic reconfiguration is a difficult process and attempts to

handle the process appropriately are still lacking. In this paper, we propose a

middleware-based model to improve SOA dynamic reconfiguration service process

during runtime. The model is used as the main standard to outline the dynamic

reconfiguration of WSs that can handle quality of service (QoS) requirements and to

provide explicit mechanism during pre-, in-, and post-adaptation stages. A self-adaptive

tool was developed based on the model to support the dynamic reconfiguration of WSs

with minimum human intervention. Finally, an evaluation using an experiment is

conducted to evaluate the effectiveness of the model. The evaluation results show that the

model supported the dynamic reconfiguration of WSs effectively.

Keywords: dynamic reconfiguration, middleware, web services, SOA

1. Introduction

In service-oriented architecture (SOA), the notion of services made possible by

web services (WSs), which initially introduced by Jini technology [1]. In developing

Service-Based System (SBS) that composed by a set of WSs, the service requester

as a consumer of WSs may obtain WSs from either internally or third party.

Consequently, the capabilities and qualities of SBS will more depend on the quality

of the WSs. In dynamic of SOA, the SBS must be able to react to both user and

environment changes during static or operational settings. Thus, an adaptation

process is performed either by reconfigure the system and then restart it, or

reconfigure the system during operation. A static adaptation is about performing the

reconfiguration when the system can be shut down in order to make the required

changes. A dynamic adaptation, also known as dynamic reconfiguration [2] is about

performing the reconfiguration without stopping or restarting the system [3].

Several works that focus on dynamic reconfiguration are mainly aimed at the

service composition level and using middleware-based approach [4-9]. However,

these works only focus on certain stages of the dynamic reconfiguration process.

Thus, in this paper, we proposed a middleware-based model called Dynamic

REconfiguration of WS (DREWS) that intended to handle dynamic reconfiguration

service during runtime. The model handled functional as well as the quality of

service (QoS) requirements during dynamic reconfiguration service, and to provide

explicit mechanism during pre-, in-, and post-adaptation stages. We then developed

Received (October 28, 2018), Review Result (December 18, 2018), Accepted (December 24, 2018)

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

90 Copyright ⓒ 2018 SERSC Australia

a self-adaptive tool based on the model that supports minimum human intervention

during the dynamic reconfiguration process.

This paper is organised as follows: Section 2 provides some background of WS

dynamic reconfiguration in SOA; Section 3 described the model and its

implementation tool; Section 4 presents the evaluation of DREWS by using

experiment approach and a scenario, and finally, Section 5 provides concluding

thoughts.

2. Background

Valls et al., [4] described that a web-based system needs to modify their structure

in runtime due to changes that occur in an expected, i.e. upgrading the version of

system or unexpected situation, i.e. system failure. In SBS where it is composed of

a collection of services, the possibility of system changes during runtime is higher

because of several reasons, such as the unavailability of services [5,10]. As a result,

the modification is inevitable and dynamic reconfiguration is required to handle

service replacement. Krishnamurthy & Babu [7] categorised the need of dynamic

reconfiguration into two main situations: upgrading WS version and WS failure.

From SOA lifecycle perspective, a dynamic reconfiguration service process can be

categorized into three stages:

a. Pre-adaptation stage. The stage refers to the preliminary stage before service

reconfiguration is started. The main process involves in this stage is a selection

of WS among a set of WS candidates that offers the same functionalities.

b. In-adaptation stage. The stage refers to where the actual service reconfiguration

during runtime is started. The main process here is service reconfiguration and

other important features are required, such as handling blackout and error

exception, etc.

c. Post-adaptation stage. The stage refers to the preceding stage after service

reconfiguration is completed. The main process here is to ensure the new

adapted WS is able to be released to the real environment. Thus, important

features are required, such as rollback and restoration management, etc.

3. The Model

In this section, we discuss DREWS, a middleware-based model to support

dynamic reconfiguration of WSs during runtime. DREWS consists of three main

processes: (i) Manage Adaptation Process (MAP), (ii) Selection Process (SP) and

(iii) Reconfiguration Process (RP). The three processes are supported by the

Connection and Log Recorder (CLR), a repository that holds reconfiguration data

(Figure 1).

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

Copyright ⓒ 2018 SERSC Australia 91

Figure 1. DREWS Model

DREWS underlie the dynamic reconfiguration process with the following tasks:

WS selection, WS replacement, and WS verification. WS selection is a task in the

pre-adaptation stage to validate a set of WS candidates which provides similar

functionalities and to find the best WS among the WS candidates. The functional

and QoS aspects are primary concerns to further constrain and select the best WS

for a valid service reconfiguration. WS replacement is a task in the in -adaptation

stage to reconfigure the existing WS by replacing and rerouting the WS with the WS

chosen during the WS selection. The chosen WS is either provided by the same

service provider of the previous WS or by different service providers. Finally, WS

verification is a task in the post-adaptation stage to verify the proper binding of

replacement WS to SBS. In order to conduct all of the processes, DREWS has to

support two main attributes: functional attributes and QoS attributes.

The details of DREWS components are described below:

a. The MAP has two roles, first is to act as task manager to distribute tasks

between SP and RP. Second, to verify reconfiguration status after the complete

configuration of WS. The MAP is interacting with SP and RP processes with

four steps as follow:

i. Receive adaptation request. The SBS sends a reconfiguration request to the

MAP to conduct dynamic reconfiguration service.

ii. Receive validation feedback. The step is performed after receiving a validation

feedback from the SP that indicates a WS has been selected. The feedback

contains WS Definition Language (WSDL) URL of the selected WS.

iii. Verify reconfiguration status. The MAP receives a reconfiguration status from

RP which indicates the status of success or failure. Based on the status, the

selected WS connectivity checks to ensure that it is connected properly to the

SBS.

iv. Release WS. MAP release system blocking and sent reconfiguration result status

to the SBS. In a situation of adaptation request is upgrading service and

reconfiguration result is failed, DREWS going to rollback to the previous WS

connection.

b. The SP is a process to conduct web service selection for finding and validating

suitable WS for replacement. The new WS is selected from a set of WS

candidates registered in the CLR. Dynamic service environments cause some

difficulties in service selection [11]. Two important factors are considered, i.e.,

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

92 Copyright ⓒ 2018 SERSC Australia

functional requirement and QoS to find the suitable new WS [12]. The SP is

conducted at the pre-adaptation stage of dynamic reconfiguration process with

four main steps:

i. Get WS candidates. When receiving requests from the MAP, SP starts to get the

WS candidates information from the CLR.

ii. Get WS requirements. The reconfiguration requirements are retrieved from the

CLR. The requirements that consist of functional and QoS aspects are

determined by the service requester.

iii. Compare WS candidates and WS requirements. WS candidates that represented

by WSDL file are compared with WS requirements. There are two types of

requirements are compared: functional requirements and QoS.

iv. Choose WS replacement. The step is to deliver a most suitable WS based on the

scoring values of the WS candidates. The highest score WS is sent to the MAP

as the SP end result.

c. The RP main purpose is to conduct service reconfiguration during runtime. The

process occurs during in-adaptation stage which requires a support from CLR.

Before conducting reconfiguration process, RP will block incoming request to

prevent operation failure when the reconfiguration process is conducted and

backup existing configuration as error handling when reconfiguration failure

occurred. RP consists of four main steps:

i. Get WS connection info. The MAP passes an input to the RP that contains the

URL of the selected WS. The URL enables the RP to retrieve the selected WS

WSDL file.

ii. Block incoming process. During reconfiguration, incoming requests to invoke

the existing WS are put on hold. This step is executed to prevent operation

failure during the reconfiguration process.

iii. Backup existing connection. In this step, the existing WS connection is copied,

backed-up and stored into CLR.

iv. Update configuration file. The final step is to replace the existing connection

information that resides in the CLR by information that was collected from the

WSDL file of the new WS.

d. The CLR is a repository that used by DREWS to retrieve and record the WS

information for reconfiguration service purpose. The CLR is located separately

from DREWS to ensure the service requesters can manage the CLR dynamically

without affecting DREWS main structure. There are five main functions of the

CLR:

i. Storing WS path file. This file is a parent file where it is used by DREWS to call

all other files stored in CLR.

ii. Storing WS configuration information. WS configuration information resides in a

serviceconfig file with the aims to minimise connection dependency between

SBS and WS.

iii. Storing WS requirements. WS requirements that consist of functional

requirement and QoS is recorded in CLR.

iv. Storing WS candidates. The CLR is used to store the WS candidates. When SP is

started the WS candidate file going to be used to access URL of the WS

candidates.

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

Copyright ⓒ 2018 SERSC Australia 93

v. Logging reconfiguration activities. The entire process of service reconfiguration

is stored in a log file.

3.1. DREWS Attributes

DREWS has to support two main attributes to perform dynamic reconfiguration

of WS as described below:

a. Functionalities Attributes. WSDL file contains information about WS parameter,

data connectivity, binding, functionalities of WS, and message exchange

protocol [13]. It acts as an interface to invoke WS from the SBS. The main

purpose of WSDL is to support DREWS SP and RP processes. In SP, WSDL file

is used to validate WS functionalities, i.e., WS can calculate the shipping price.

While in RP, WSDL file is used to get the WS functionalities and connectivity.

WS functionalities are represented by <operation> tag in WSDL file.

b. QoS Attributes. The WSDL file describes all information related to WS

functionalities, connectivity and messages exchange but does not contain any

information related to QoS. QoS attributes are a crucial part of WS where it

determines user satisfaction when using the WS [14]. Therefore, DREWS has

includes the QoS attributes by extending WSDL file to include QoS

descriptions. DREWS supports four main QoS attributes that commonly used by

service requester to find suitable WS [15] as described below:

i. Service reputation. The reputation of WS is evaluated by service requesters that

used the WS previously.

ii. Availability. The attribute is to ensure the WS is available in their location or

the WS is available when required.

iii. Response time. Service requester must ensure that the new WS response time is

better or at least same with the existing WS.

iv. Throughput. When selecting a new WS, one of consideration is the WS must

able to receive many requests for its operation at the same time without

prejudice the WS performance.

3.2. The DREWS Tool Support

In this section, the tool support underlying the DREWS model is discussed. The

tool is developed using J2EE and Apache CXF [16]. DREWS tool consists of four

main components which provide feature as dynamic reconfiguration service

executor and supported by a file repository as shown in Figure 2:

a. Adaptation Manager (AM). A component to interact with SBS and WS. This

component distributes, manages and monitors the overall dynamic

reconfiguration process.

b. Service Selection Agent (SSA). A component to find and validate a new most

suitable WS to be adapted.

c. Service Reconfiguration Agent (SRA). A component to conduct reconfiguration

service during runtime by replacing existing WS with the new selected WS from

SSA.

d. File Repository. A repository to store several different files and specifications

that include WS path properties, WS candidates, WS requirements, service

configuration properties and log file.

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

94 Copyright ⓒ 2018 SERSC Australia

Figure 2 DREWS Tool Architecture

4. Evaluation

An experiment has been conducted to evaluate the effectiveness of DREWS in

handling dynamic reconfiguration during pre- (i.e., find WS, identify functionalities,

identify QoS and calculate QoS), in- (i.e., conduct reconfiguration) and post- (i.e.,

test connectivity and release WS) adaptation by comparing between DREWS and

Manual Reconfiguration (MR) of WS with two main objectives. First, to observe the

correctness and difficulty of both methods to conduct dynamic reconfiguration

service. Second, to compare their reconfiguration time. The manual approach is a

way to evaluate the system by using test case that has prepared manually and

execute them to identify defects in the system [17]. Ten peoples who working and

experience in software development are invited to become participants as shown in

Table 1. In the MR approach, the participants are required to conduct similar

processes that DREWS conducted but using human intervention.

Table 1. Demography of Participants

Number of software

developers

Experience in

system

development

Experience in

SOA

development

Experience in WS

integration and

configuration

5 1-2 2 0

5 3-5 0 0

4.1. The Scenario

Courier Online System (COS) has been developed based on SOA to evaluate

DREWS. COS is a system that handles courier shipment daily operations from

ordering shipment, checking shipment cost and tracking shipment delivery with

developed its modules by using WS. Figure 3 shows the COS system architecture

that choreographs and coordinates three different services into a workflow to

establish the business processes. In addition, the COS considers relevant QoS

aspects in delivering these services to their customers. Thus, a set of QoS

requirements is specified and stored in the repository. The COS uses Apache CFX to

interact with the DREWS tool that separates the COS with WS reconfiguration

settings. Thus, it allows the COS submits independent reconfiguration requests to

DREWS tool during system runtime.

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

Copyright ⓒ 2018 SERSC Australia 95

Figure 3. The COS System Architecture

4.2. Result and Discussion

The first experiment was executed by using the MR approach. The results showed

that all participants could execute all tasks completely and correctly, but with

different levels of difficulty as shown in Figure 4. The results show the most

difficult task was to conduct pre-adaptation stage where they need to identify WS

functionalities and QoS, calculate QoS value its total score. The accuracy of

calculation depends on the participants understanding and skill based on the

formulas given. The difficulty level of the other tasks varies, but they agree that the

process from beginning until the end take quite long and the operator need to

understand the whole reconfiguration process before they can conduct

reconfiguration service.

Figure 4. MR Service Execution Result

The next experiment is to conduct an experiment by executing the COS and

triggering the DREWS tool. The results showed the DREWS tool could conduct the

dynamic reconfiguration service automatically. The participants only needed to

monitor the processes and they did not need to do complicated calculation and

configuration. As a result, all participants agreed the DREWS tool has abilities to

accomplish all tasks and processes correctly and easily. As shown in Figure 5, all

participants gave the highest score to all tasks execution that indicates DREWS able

to conduct dynamic reconfiguration service effectively as compared to MR

approach.

0

1

2

3

4

P
ar

ti
ci

p
an

ts

Reconfiguration Features

Manual Reconfiguration

Very Difficult

Difficult

Neutral

Easy

Very easy

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

96 Copyright ⓒ 2018 SERSC Australia

Figure 5. DREWS Tool Reconfiguration Service Result

The reconfiguration time is an important factor in WS reconfiguration because

during reconfiguration, the system cannot receive any request to execute the specific

operation due to unreachable WS [18]. After the participants executed both

approaches, it showed that the reconfiguration service time, which conducted by

DREWS tool significantly faster compared to manual approach as shown in Figure

6. The Table 2 shows that the average time that needed by the participants to

conduct MR is 798.6 second. While, DREWS tool only needs average 0.62 seconds

to conduct same processes.

Figure 6. Reconfiguration Time – DREWS Tools vs MR

The evaluation also discovers the most consuming time in the MR process was to

find suitable WS for replacement. As a conclusion, the comparison between MR

service and the DREWS tool showed that the DREWS tool is able to conduct

dynamic reconfiguration service effectively compared to MR method. Additionally,

the DREWS also able to prevent any incoming request during the reconfiguration

process that helps to reduce operation failure during the reconfiguration process.

Besides, the DREWS is able to handle reconfiguration failure by using rollback

mechanism and provide useful information for the user's references.

Table 2. Reconfiguration Time

Reconfiguration

methods

Max. time

(second)

Min. time

(second)

Average time

(seconds)

MR 1080 660 798.6

DREWS 1 0.3 0.62

5. Conclusion

This paper presents a middleware-based model called DREWS to handle dynamic

reconfiguration of WS during runtime without turning off the system. The model

handled dynamic reconfiguration service during pre-, in- and post-adaptation stages.

0
2
4
6
8

10
12

P
ar

ti
ci

p
an

ts

Reconfiguration Features

DREWS Very Difficult

Difficult

Neutral

Easy

Very easy

960
720

900
660 636

900
720

1080

660 750

0.5 1 1 0.5 0.3 0.5 1 0.5 0.5 0.4

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

S
e
c
o

n
d

Participant

Reconfiguration time

Manual

DREWS

http://www.sersc.org/journals/IJGDC/

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

Copyright ⓒ 2018 SERSC Australia 97

A tool based on the DREWS model is developed and illustrated in COS. For the

evaluation purposed, the experiment has been conducted by comparing the DREWS

with MR approach. The results show DREWS has abilities to conduct dynamic

reconfiguration of WS effectively without human intervention.

Acknowledgement

The authors are grateful to Universiti Putra Malaysia and the Ministry of Higher

Education, Malaysia Government via the FRGS grant for support of this research.

References

[1] Oracle, (2016), http://www.oracle.com/technetwork/articles/javase/soa-142870.html. Date accessed:

04/06/2016.

[2] P. Grace, “Dynamic Adaptation”, Middleware for Net. Eccentric and Mobile Apps, (2009), pp. 285-302.

doi:10.1007/978-3-540-89707-1_13.

[3] A. D’Ambrogio, “Model-driven quality engineering of SBS”, G. A. Tsihrintzis, M. Virvou & L. C. Jain

(Eds.), Multimedia services in intelligent environments: Software development challenges and

solutions (2010), pp. 81-103, doi:10.1007/978-3-642-13355-8_6.

[4] M. G. Valls, I. R. Lopez and L. F. Villar, ILAND: An Enhanced Middleware for Real-Time

Reconfiguration of Service Oriented Dist. Real-Time Systems. IEEE Transactions on Industrial

Informatics IEEE Trans. Ind. Inf., vol. 9, no. 1, (2013), pp. 228-236. doi:10.1109/tii.2012.2198662.

[5] H. Gomaa, & K. Hashimoto, “Dynamic self-adaptation for dist. service-oriented transactions”, Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), (2012), pp. 11-20.

doi:10.1109/SEAMS.2012.6224386.

[6] V. Krishnamurthy and C. Babu, “Dynamically reconfiguring services in SOA apps.: A pattern-based

approach”, Proc. of the 17th European Conference on Pattern Languages of Programs, Germany. , vol.

6, (2012), pp. 1-13. doi:10.1145/2602928.2603082

[7] K. Lin, M. Panahi and Y. Zhang, “The Design of an Intelligent Accountability Architecture’, Int. Conf.

on E-Business Engi. (2007), doi:10.1109/icebe.2007.4402087.

[8] K. Lin, J. Zhang and Y. Zhai, “An Efficient Approach for Service Process Reconfiguration in SOA with

End-to-End QoS Constraints”, “Conf. on Commerce and Enterprise Comp”, (2009),

doi:10.1109/cec.2009.87.

[9] K. Lin, J. Zhang, Y. Zhai and B. Xu, “The design and implementation of service process reconfiguration

with end-to-end QoS constraints in SOA”, SOCA Service Oriented Comp. and Apps., vol. 4, no. 3,

(2010), 157-168. doi:10.1007/s11761-010-0063-6.

[10] J. L. Fiadeiro and A. Lopes, “A model for dynamic reconfiguration in SOA”, Softw Syst Model

Software & Systems Modeling, vol. 12, no. 2, (2012), pp. 349-367. doi:10.1007/s10270-012-0236-1.

[11] S. Maheswari and G. R. Karpagam,“Comparative Analysis of Semantic WS Selection Methods”, Indian

Journal of Sc. and Tech., vol. 8, no. 3, (2015), p. 159. doi:10.17485/ijst/2015/v8i1/60499

[12] Y. Gong, L. Huang, F. Jiang and K. Han, “An approach to WS dynamic replacement”, Int. J. of Grid and

Dist. Comp., vol.7, no. 1, (2014), pp.1-12. doi:10.14257/ijgdc.2014.7.1.01

[13] WS Description Language (WSDL) 1.1., (2001), https://www.w3.org/TR/wsdl. Date accessed:

18/12/2013.

[14] Y. Li, X. Zhang, Y. Yin and J. Wu, “QoS-Driven Dynamic Reconfiguration of the SOA Based

Software”, Int. Conf. on Service Sc. (2010), doi:10.1109/icss.2010.58.

[15] M. Karimi, F. S. Esfahani, and N. Noorafza, “Improving Response Time of WS Composition based on

QoS Properties”, Indian J. of Sc. and Tech., (2015), vol. 8, no. 16. doi:10.17485/ijst/2015/v8i16/55122.

[16] Apache CXF, Apache CXF: An Open-Source Services Framework, (2016). http://cxf.apache.org/. Date

accessed: 10/03/2016.

[17] R. M. Sharma, “Quantitative analysis of automation and manual testing”, IJEIT, vol. 4, no. 1, (2014),

pp. 252-257.

[18] U. Brinkschulte, E. Schneider and F. Picioroaga, “Dynamic real-time reconfiguration in dist. Systems”,

Timing issues and solutions, (2005), ISORC. doi:10.1109/ISORC.2005.25.

http://www.sersc.org/journals/IJGDC/
http://dx.doi.org/10.14257/ijgdc.2014.7.1.01

International Journal of Grid and Distributed Computing

Vol. 11, No. 3 (2018)

98 Copyright ⓒ 2018 SERSC Australia

http://www.sersc.org/journals/IJGDC/

