
International Journal of Future Generation Communication and Networking

Vol. 9, No. 9 (2016), pp. 67-76

http://dx.doi.org/10.14257/ijfgcn.2016.9.9.06

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

End-to-end Dynamic Bandwidth Allocation Basedon User

in Software-Defined Networks

GengZhang
1
, Dahua Zhang

1
, Liang Zhou

1
 and Xi Liu

2

1
China Electric Power Research Institute of information and Communications

Research Institute，Beijing100192，China
1
Sichuan Electric Power Company of State Grid, Chengdu,china

Abstract

With the rapid development of Internet technology, more flexible applications appeared

and had a higher demand on dynamic allocation of network resources. However, allocating

network resources dynamically is difficult to achieve in current TCP/IP networks due to the

lack of programming interface of network devices for unified and effective control and

management. In recent years, a new network architecture -- software-defined networks

(SDN) emerged and it provides services providers or network managers an opportunity to

realize the goals. In this paper, a user-reservation-based end-to-end dynamic bandwidth

allocation procedure in SDN with OpenFlow protocol is proposed. Users can reserve

bandwidth and controller can allocation bandwidth dynamically to satisfy users’ demand.

Experiments are designed to verify the effectiveness of the allocation procedure. Results of

the experiment show that the allocation procedure works well.

Keywords: SDN, OpenFlow, dynamic bandwidth allocation

1. Introduction

In the past few years, internet technology evolves rapidly and more flexible applications

appeared.In this case, allocating network resources such as bandwidth dynamically is

becoming more and more important. For example, some users may require more bandwidth

in a short period of time for some special purposes, such as setting up a temporary video

conference. If they rent enough bandwidth for their special needs all the time, it would

cause waste of resources and increase in cost. Therefore, dynamic bandwidth allocation is

of great significance. In current TCP/IP networks, bandwidth can be dynamically assigned

theoretically, however, it doesn't work effectively or efficiently [1-2]. Devices used in

current networks like routers and other middle-boxes are difficult to undertake unified and

effective operation due to their proprietary. Therefore, dynamic bandwidth allocation is

almost impossible to achieve because of the great scale of today's networks and the

diversity of network devices. Besides, although some mechanisms such as Resource

Reservation Protocol (RSVP) can be used to reserve bandwidth [3], however, they are not

flexible enough to satisfy the demand. So it is quite complicated or even impossible for us

to allocate bandwidth dynamically for specific users in current networks. Recently, the

emergence of SD provides an opportunity to solve the problem.

SDN is a novel network architecture that is dynamic, manageable and programmable.

These features make it ideal for the high-bandwidth, dynamic nature of today's applications.

This architecture separate the control-plane and data-plane, enabling the network control to

become directly pr
1
ogrammable and the underlying infrastructure to be abstracted for

applications and network ser
2
vices[4-5].

1 This work is supported by Science and Technology Project of the StateGrid Corporation of China(Research on Global Energy Internet technology

system)
2 This work is supported by Science and Technology Project of the StateGrid Corporation of China(Research on Global Energy Internet technology

system)

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

68 Copyright ⓒ 2016 SERSC

Figure 1. Software-defined Network Architecture

As illustrated in Figure 1, the architecture of SDN consists of application layer, control

layer and infrastructure layer (data-plane). The physical separation of the control-plane and

data-plane is the best known principle of SDN. It postulates an external control-plane entity

universally called “controller” that carries out the control function extracted from

traditional network devices. With the separation, network intelligence and state are

logically centralized, and the underlying network infrastructure is abstracted from

applications. In this case, SDN lets networks managers configure, manage, secure and

optimize network resources very quickly via dynamic, automated SDN program which they

can write themselves [6-8]. This is the key feature of SDN – Programmability.

In SDN, the interface between control-plane and data-plane is called “southbound

interface”. It is the enabler for the externalization of the control-plane and therefore key to

the corresponding SDN principle [9]. Its realization is a standardized instruction set for the

networking hardware. The most well-known southbound interface is the OpenFlow [10-11].

Also, SDN enables the exchange of information with applications running on top of the

network. This information exchange is performed via an interface called “northbound

interface”. However, unlike southbound interface, standardized northbound interface does

not exist.

In this paper, we propose a user-reservation-based end-to-end dynamic bandwidth

allocation procedure in SDN. In the procedure, authorized users could send bandwidth

allocation requests to the controller if necessary. The controller receives the requests, using

an algorithm to calculate routes that can satisfy the demands of those users and then allocate

the bandwidth for them. The remainder of this paper is organized as follows. Section 2

presents the allocation procedure in detail, describing the specific implementation of each

step in the procedure. Section 3 evaluates and analyzes the effectiveness of the allocation

procedure and Section 4 concludes the paper.

2. Dynamic Bandwidth Allocation

In this paper, we consider dynamic bandwidth allocation in a pure SDN environment,

where all forwarding devices in data-plane are SDN-enabled. Besides, OpenFlow is used as

the southbound interface. Moreover, we assume that the network system is a single domain

SDN system, where all forwarding elements are controlled by one single controller.

2.1. Dynamic bandwidth allocation in SDN

The bandwidth allocation procedure is user-based in this paper. When a user needs

certain bandwidth, it sends a bandwidth allocation request packet to controller. Request

packet contains some requisite information such as the identification of the user itself, the

destination it wants to reach, how much bandwidth it needs, when it needs the service and

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 69

so on. Since host connects to forwarding devices, and it could not connect to controller

directly, one way for the request packet to arrive to controller is being in form of

“Packet-in”. Packet-in is one of the asynchronous message types in OpenFlow protocol

[12]. Generally, when switch received a packet that has no matched flow-entry, it

encapsulates the packet and sends it to the controller as a Packet-in message. We can

construct a packet with special IP address or special MAC address that would never be

actually used in the network to make sure that no matched flow-entry exists. In this case,

this specific packet will be encapsulated as a Packet-in message and delivered to the

controller. When receiving a packet-in message, controller check whether it is a bandwidth

allocation request or not. If not, just ignore it. If it is, the controller handles it, using

topology and bandwidth information to calculate a route for bandwidth allocation. Finally,

controller replies the allocation result to the host. The procedure can be presented in Figure

2 below.

Figure 2. Bandwidth Allocation Procedure in SDN

2.2. Implementation of Dynamic Bandwidth Allocation

The implementation of dynamic bandwidth allocation can be divided into two parts,

client-side module and controller-side module. Client-side module runs on host, sending

allocation request to ask for bandwidth. Controller-side module is a little more complicated.

It runs on the controller as a special application of it. It contains several functionality

including requests parsing, residual bandwidth and routecalculation, bandwidth allocation

and recovery.

2.2.1. Client-side module: User runs client-side module to send a bandwidth allocation

request to controller when needed. With the above analysis, constructing a packet with a

special IP or MAC address for asking bandwidth is required. Considering that when

constructing an internet layer datagram or a transport layer segment, the host firstly sends

an ARP (Address Resolution Protocol) request message to get the MAC address of the

special IP address. However, it would never get the reply normally. Then the request packet

would not be sent unless a special MAC is added to the ARP table in the host manually,

which is not practical. Therefore, we should construct a packet with specific MAC address.

Raw socket is able to realize such functionality. The structure of the request packet is as

followed in Figure 3.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

70 Copyright ⓒ 2016 SERSC

Figure 3. Request Packet Structure

The structure of the request packet is similar to Ethernet II Frame. In the first 48 bits (or

6 bytes), it is a peculiar MAC address. In fact, we can use some official reserved address

[13]. The next 48 bits is the MAC address of the host. Then, the following 16 bits is Ether

Type, which identifies as upper layer protocol encapsulating of the frame data, 0x8000 for

IPv4 datagram, and 0x0806 indicates ARP frame for example. And here, we use a special

type 0x0000 which is not actually used in internet to provide convenience for controller to

verify the request packet. Data in the request packet is in JSON (JavaScript Object Notation)

format. It contains several attributevalue pairs. The value of attribute “destination” means

the destination that the host wants to transmit data to, then “bandwidth” corresponds to how

much bandwidth the user needs, “start-time” and “end-time” present the time that the user

needs to use the bandwidth resources. After end-time, controller would recycle bandwidth

and wait for assigning to another user's request. Certainly, if need increases, we can add

other attribute-value pairs to provide more information like identification if the network

system requires further authentication. Furthermore, encryption can be undertaken for the

data for privacy protection.

2.2.2. Controller-side module:Controller-side module works as follows in Figure 4.

Figure 4. Request Allocation Procedure in Controller

When controller receives a packet-in message, it parses the packet and inspects the MAC

address and Ether Type of the packet. If the packet is an allocation request, it gets request

information, including destination, bandwidth, start time and end time of service and sends

it to request handler waiting for processing. The request handler uses information of request,

topology and bandwidth to process the allocation request, determining whether the request

can be accepted or not due to the limitation of bandwidth resource. If the request can be

satisfied and accepted, the module then controls switches via OpenFlow to allocate

bandwidth and sends successful-reply to the user and the result is sent to the bandwidth

information database for updating in the meantime. Otherwise, controller module replies

“failed” to the host.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 71

A. Acquisition of Topology Information

Since bandwidth allocation is end-to-end in this paper, we ought to calculate a route from

the source to the destination. For this reason, topology information must be obtained. At

present, all implementations of controller contain topology discovery functionality.

However, the topology which their build-in function gets is partial since only switches'

topology is gained, but no hosts. Without the connection information of hosts, route is

unable to be got. Inspired by build-in topology discovery function in controller, we use

Link Layer Discovery Protocol(LLDP，IEEE 802.1AB) to discover hosts and obtain global

topology. In order to achieve this, we assume that hosts could transmit LLDP frame.

Moreover, the LLDP frame transmitted by host takes its own IP address as a TLV. After the

frame is sent, it goes to the switch that the host connects to. Then it would be delivered to

controller as packet-in message. Note that the packet-in message contains information of

the switch, so we can find out the switch and the port that the specific host connects to. In

this way, with switches' topology provided by controller itself, global topology information

can be gained. Besides, a periodical inspection is taken to check whether the connection

between host and switch is alive or not. For example, if an LLDP frame is sent in every 30

seconds by hosts, then the inspection period can be set to 32 seconds. If controller has not

received a LLDP frame from a host that was once discovered in 32 seconds, then we draw

conclusion that the link between host and switch is down and host is disconnected.

B. Acquisition of Bandwidth Information

Only when there is enough bandwidth for reserved can the allocation request be accepted

and the allocation procedure be executed, so bandwidth information should be acquired

before allocation request is processed. We can easily obtain link capacity information by

calling API provided by controller since this functionality is supplied by OpenFlow. Since

bandwidth allocation is reservation-based, we need to calculate bandwidth that has been

assigned or reserved in the specific time that the user asked for bandwidth allocation. Then

we can get the amount of the residual bandwidth and send this information to route

computation module described below to obtain a route for the request.

In order to achieve this, results of requests that have been processed should be stored. If

a request can be accepted, the following information is store: start-time, end-time, amount

of bandwidth and the route. For convenience, parameters are defined as follow to describe

the procedure of calculating residual bandwidth:

Definition:

n Number of requests that have been accepted

E Set of links between switches

i↔j Link between switchi and switch j

RH={rhk} Set of previous requests that have been accepted

stk Start-time of request rhk

etk End-time of request rhk

bk Bandwidth of request rhiasked for

routek

Route for allocating bandwidth for request rhk.routek

= (i1
k
↔ j1

k
, i2

k
↔ j2

k
…il

k
↔jl

k
), means routek consists

of link i1
k
↔ j1

k
, i2

k
↔ j2

k
…il

k
↔jl

k
.

st0 Start-time of current request

et0 End-time of current request

b0 Bandwidth of current request asked for

R={rij}n×n

Residual bandwidth matrix. rij represents the residual

bandwidth of link i↔j. Initially, rij is the link capacity

of i↔j. Andrij = 0 ifi↔jnot in E

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

72 Copyright ⓒ 2016 SERSC

Procedure of Calculating Residual Bandwidth
for rhk in RH:

if stk≤st0<etk:

 for i↔j in routek:

 rij = rij - bk

 endfor

endif

endfor

After the procedure, R is the residual bandwidth matrix that can be used for route

computation.

C. Route Calculation

Since users asked for end-to-end bandwidth, a route should be obtained for bandwidth

allocation. Note that centralized controlled is the most important superiority of SDN and

this special characteristic makes it easy for network optimization, we can use this feature to

find a “best” route for bandwidth allocation.In this session, a route calculation algorithm

which can find a shortest route that has enough bandwidth for allocation is proposed.

In this paper, network system can be modeled as an undirected graph G=<N, E>. And

here comes the definition of the model.

Definition:

N Set of switches

n Number of switches

E Set of links between switches

i↔j Link between switchi and switch j

R={rij}n×n

Residual bandwidth matrix. rij represents the

residual bandwidth of the direct connection between

switchi and switch j.rij = 0 ifi↔j not in E

b Bandwidth that the host request

A={aij}n×n
Adjacency matrix. aij is the distance between switch

i and switch j and aij = infinity ifi↔j not in E

RA={raij}n×n
Improved adjacency matrix. raij = aij ifrij – b ≥

0 ;raij = infinity ifrij – b < 0

Route Computation Algorithm for Bandwidth Allocation
1. get R, r, A

2. compute RA:

for i = 1:n

 for j = 1:n

 if rij - b ≥0:

 raij= aij

 else :

 raij= Infinity

 endfor

endfor

3. call Dijkstra(RA, source, destination)

Dijkstra(RA, source, destination) is Dijkstra algorithm[14] implementation. It returns

the shortest path between source and destination in graph RA if paths exist, otherwise it

returns NULL.

The algorithm for bandwidth allocation returns the shortest path that has adequate

bandwidth for allocation from the source to the destination, and returns NULL if the

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 73

residual bandwidth is inadequate for the request.

After the allocation request is processed, we store the result in the bandwidth

information database. When dealing with the next request, previous allocation information

is taken out to calculate residual bandwidth.

D. Bandwidth Allocation

OpenFlow-enable switch has the feature to assign bandwidth by setting Qos and Queue

for a specific flow. Therefore, end-to-end bandwidth allocation can be achieved by setting

the flow to transmit packets from a host to another with Qos and Queue.

Since bandwidth allocation is reservation-based, bandwidth should be allocation at the

start-time the request asked and would be recycled after the end-time. In this case,

controller has to maintain two timers, one for start-time and the other for end-time. When

start-time of a request comes, timer for start-time sends out notification and controller calls

the allocation function to accomplish bandwidth allocation.Besides, when end-time comes,

timer for end-time would inform controller to delete Qos and Queue, cancelling the

bandwidth allocation.

We suppose that the structure of the path returned by route calculation algorithm is

showed as follows:
PATH = [(switcha1, portb1), (switcha2, portb2)…(switchak, portbk)]

The Bandwidth Allocation Process

for (switch, port) in PATH:

1. Add Qos for port of switch

2. Add a Queue for Qos, set min_rate and max_rate of the Queue equal to b

(b is the value of requested bandwidth)

3. Add a flowentry, specify in_port, eth_src, eth_dst in match field and

OUTPUT, SET QUEUE in action field

endfor

3. Experimental Result

Experiment has been designed to check the effectiveness of the bandwidth allocation

procedure proposed in this paper.

Experiment uses topology shown in Figure 5: one controller, two OpenFlow-enabled

switches and two hosts.

Figure 5. Topology of Experiment

There are several popular open source SDN controllers such as NOX [15],

Floodlight[16], Ryu[17] and Opendaylight[18]. In consideration of continuous availability,

functional completeness and simplicity of development, we choose Ryu as our

experimental SDN controller in this paper. Openvswitch[19] (ovs) is used as

OpenFlow-enabled switch. The IP address of host1 is 192.168.1.1 and host2 is 192.168.1.3.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

74 Copyright ⓒ 2016 SERSC

To test the allocation result, we use iperf[20] to measure the bandwidth between host1 and

host2.

In the testing process, we run client-side module in host1, asking for 10Mbps bandwidth

to host2. After that, we run iperf program to test the bandwidth between host1 and host2.

Then we change the value of bandwidth, asking for 100Mbps. The results are as follows:

Figure 6. Result of Bandwidth Allocation

The left picture in Figure 6 is the result of asking for 10Mbps and the other one is the

result of asking for 100Mbps. We can find out that the procedure works well.

4. Conclusion

In this paper, we have shown how to achieve end-to-end dynamic bandwidth allocation

based on user in software-defined networks with OpenFlow protocol. After having

described the implementation steps and scheduling model in detail, we have designed an

experiment to verify effectiveness of the procedure. Our experimental results have shown

that the allocation procedure is effective.

References

[1] Z. Chunyue, H. Jiuchuan and Z. Hongke, “A dynamic measurement-based bandwidth allocation scheme

with QoS guarantee”, Signal Processing, 2004, Proceedings. ICSP '04. 2004 7th International Conference

on IEEE, vol. 3, (2004), pp. 2640-2642.

[2] L. Enhui, “Method, apparatus, edge router and system for providing QoS guarantee”, US, US7903553 B2,

(2011).

[3] P. Thulasiraman and Y. Sagir, “Dynamic bandwidth provisioning using Markov chain based RSVP for

unmanned ground networks”, Cognitive Methods in Situation Awareness and Decision Support

(CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on IEEE, (2014), pp. 130-136.

[4] Open Networking Foundation, Software-Defined Networking (SDN) Definition,

https://www.opennetworking.org/sdn-resources/sdn-definition

[5] M. Jarsche, T. Zinner, T. Hossfeld, P. T. Gia and W. Kellerer, “Interfaces, attributes, and use cases: A

compass for SDN Communications Magazine”, IEEE, vol. 52, no. 6, (2014), pp. 210-217.

[6] I. F. Akyildiz, A. Lee, W. Pu, L. Min and C. Wu, “A roadmap for traffic engineering in SDN-OpenFlow

Networks”, Computer Networks, vol. 71, no. 3, (2014), pp. 1–30.

[7] S. Tomovic, N. Prasad and I. Radusinovic, “SDN control framework for QoS provisioning”,

Telecommunications Forum Telfor (TELFOR), (2014).

[8] J. Michael, H. Tobias, D. Franco, B. Raffaele, B. Roberto and C. Alessro, “SDN-Enabled

Energy-Efficient Network Management”, Green Communications: Principles, Concepts and Practice.

John Wiley & Sons, Ltd, (2015), pp. 323-338.

[9] T. Nadeau and K. Gray, “SDN: Software Defined Networks”, O’Reilly Media, (2013).

[10] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson and J. Rexford, “OpenFlow:

Enabling Innovation in Campus Networks”, AcmSigcomm Computer Communication Review, vol. 38,

no. 2, (2008), pp. 69-74.

[11] Open Networking Foundation, OpenFlow Switch Specification

https://www.opennetworking.org/sdn-resources/onf-specifications/OpenFlow

[12] Open Networking Foundation, OpenFlow Switch Specification Version 1.3.3 (Protocol version 0x04)

October 18, 2013 page: 29

[13] Group MAC address assignments for standards use,

“http://www.ieee802.org/1/files/public/docs2007/admin-jeffree-standard-group-mac-address-assignmets

-0307.pdf

https://www.opennetworking.org/sdn-resources/onf-specifications/OpenFlow
http://www.ieee802.org/1/files/public/docs2007/admin-jeffree-standard-group-mac-address-assignments-0307.pdf

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 75

[14] E.W.Dijkstra. A note on two problems in connexion with graphs.Numerischemathematik 1.1 (1959):

269-271.

[15] NOX“http://www.noxrepo.org/nox/about-nox/”

[16] Floodlight “http://www.projectfloodlight.org/floodlight/”

[17] Ryu “http://osrg.github.io/ryu/”

[18] Opendaylight“http://www.opendaylight.org/”

[19] Openvswitch “http://openvswitch.org/”

[20] Iperf “https://iperf.fr/”

Authors

GengZhang, he is a Senior Engineer at China Electric Power

Research Institute. He lives in No.15, Xiaoying East Road, Qinghe,

Haidian District, Beijing, China, 100192. His Research Interests:

SDN, Energy Internet, Video Communication.

Dahua Zhang, she is a Senior Engineer at the China Electric

Power Research Institute. She lives in No.15, Xiaoying East Road,

Qinghe, HaidianDistrict, Beijing, China, 100192. Her Research

Interests: Information technology of power, Informatization

planning.

http://www.noxrepo.org/nox/about-nox/
http://www.projectfloodlight.org/floodlight/
http://osrg.github.io/ryu/
http://www.opendaylight.org/
http://openvswitch.org/
https://iperf.fr/

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

76 Copyright ⓒ 2016 SERSC

