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Abstract 

In order to study impacts of awareness on the propagation of a Bluetooth worm in 

smartphone networks, a novel propagation model is proposed. In this model, the 

smartphone network is regarded as a two-layer network composed of a social network 

layer in which the awareness diffuses and a physical network layer in which the Bluetooth 

worm propagates. It is shown by theoretical analysis and simulations that: (1) awareness 

cannot change the propagation threshold, but can mitigate Bluetooth worm in terms of 

decreasing the propagation speed and the final infection size; (2) the structure of the 

social network layer has a profound impact on such mitigation effects. That is, for smaller 

effective infection rate  , BA structure is always more effective than WS structure; while 

for larger   , there exists a critical value of social reinforcement of awareness 
cb  , 

beyond which BA  structure is more effective than WS structure, or else the reverse is 

true. In addition, the critical value 
cb  is larger with  increasing. 
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1. Introduction 

Smartphones, which constantly expands market share, along with the great 

improvement in functions, have become an integral of people everyday lives. According 

to the report of IDC (International Data Corporation) in 2014, smartphone shipments 

reached 1.3004 billion which grows 27.7% compared with that in 2013. Current 

smartphones provide not only the basic functions such as voice communication, SMS 

(short messaging service), and MMS (multimedia messaging service), but also Internet 

applications such as web surfing, online shopping, and email service. However, 

smartphones are also undergoing more and more attacks by virus/worms (e.g., Cabir and 

Zombie) and Trojans (e.g., Skulls and Mquito) [1-2]. For example, in 2010, more than 1 

million smartphone phone users in China were infected by the Zombie worm [2].  

The basic ways of virus/worms propagation are as follows [3]: (1) Through Bluetooth 

communication. Worms such as Cabir and ComWar can directly contaminate other 

reachable and vulnerable smartphones by Bluetooth connection. (2) By SMS and MMS. 

For example, ComWar also spreads by MMS, and Trojan such as FakeToken infects other 

smartphones by SMS. (3) By connection to Internet. For instance, smartphones often are 

infected with Trojan when connecting to Internet by using WIFI or 3G/4G technology. (4) 

Other infection ways such as files copy using USB interface. 

Recently, smartphone worm behaviors have been studied in many literatures using 

complex network theory[4] and basing on classical epidemic models such as SIS 

(susceptible-infected- susceptible)[5] and SIR (susceptible-infected-recovered)[6] in order 

to understand the mechanism of worm propagation deeply and further propose the control 

strategies effectively. For example, Rhodes et al presented an opportunistic transmission 

model for Bluetooth worms in the smartphone network of mobile population [7]. Cheng et 
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al studied propagation behaviors of the hybrid malware code that can infect other 

smartphones by means of both Bluetooth and MMS simultaneously [8]. Gao et al 

proposed a two-layer model to characterize the propagation of Bluetooth worm in the 

geographic network composed of cell towers and the propagation of SMS worm in the 

logical contact network composed of mobile phones [9]. Ramachandran et al formulated a 

comprehensive analytical model to explore dynamic behaviors of malwares propagation 

through Bluetooth, WLAN, MMS (or SMS) SMS, and downloads from the Internet [10].  

However, in the previous studies, the anti-virus responses of smartphone users have not 

been considered. In reality, when a new worm occurs, awareness also diffuses among 

smartphone users, and those who receive the awareness often take some protective 

measures on their smartphones to reduce the risk of being infected. So, in the present 

paper, a novel model for describing worm propagation is proposed by incorporating 

awareness. In our model, the smartphone network is regarded as a two-layer network 

composed of a social network layer in which awareness diffuses and a physical network 

layer in which a Bluetooth worm propagates. The results show that awareness cannot 

change worm propagation threshold, but can decrease the worm propagation speed as well 

as the final infection size. It is also shown that the structure of social network layer has a 

profound impact on worm mitigation, and such impact is closely related to the social 

reinforcement of awareness and the effective infection rate.  

It is noted that many epidemic models with awareness have been proposed [6, 11-13]. 

Different from these studies our work focuses on how the structure of underlying network 

structure of awareness diffusion influences the Bluetooth dynamics. At the same time, we 

consider three features of awareness (a kind of information) diffusion (i.e.., memory 

effects, social reinforcement, and non-redundancy of contacts [14]) when discussing how 

and to what to extent the awareness diffusion mitigates worm. 

 

2. Network Model 

In general, connectivity of smartphones forms a two-layer network [8, 15]. One layer, 

named is called social network layer, in which the nodes denote smartphone users and the 

edges represent the social contacts between friends (or coworkers) contact. The other 

layer is physical network layer characterizing the physical connections between the 

limited-distance smartphones by using Bluetooth or WIFI. Here we assume that one user 

only has one smartphone (see Figure1). 

In the upper social network layer, the degree of each node is defined as the number of 

friends (or coworkers) of the node. So this kind of node degree is only related to the social 

relations of a node, not to its location. If we assume that the social relations of smartphone 

users are relatively fixed, the upper social network layer can be considered as a static 

network that each node degree does not change with time evolution.  

In the lower physical network layer, the degree of each node represents the number of 

Bluetooth connections to other nodes (smartphones) within the communication range. 

This kind of degree is only related to a node location, not to the smartphone user‟s social 

contacts. So, the mobility of a smartphone user can change the corresponding node‟s 

degree. So the physical network layer corresponds to a dynamical network that its 

topology structure changes with time evolution. For example, the degree of node in the 

upper social network layer is 5, and instead 2 in the lower physical network layer. 
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Figure 1. Sketch of a Two-layer Smartphone Network. The Upper Layer 

(Social Contact) Provides a Vector for Awareness Diffusion, and the Lower 
Layer (Physical Contact) Corresponds to the Network where the Bluetooth 

Worm Propagations 
 

3. Propagation Model 
 

3.1. Propagation process 

Here assume that a two-layer smartphone network is composed of N  nodes. The 

awareness information diffuses in the upper social network layer and the Bluetooth 

worm propagates in the lower physical network layer. The coupling dynamics 

process is as follows: (1) When smartphone i is infected with a Bluetooth worm, it 

infects the neighboring smartphone through Bluetooth connections in the physical 

network layer. (2) After a period of time，once the user of smartphone i finds the 

infection incident, he/she will send awareness information to his/her friends (i.e., 

neighboring nodes in the social network layer). At the same time, the worm is 

removed from and the system patches and anti-virus software are installed on 

smartphone i  in case it will be infected again. (3) Smartphone users those who 

receive the awareness will take some protective measures on their smartphones to 

reduce the risk of being infected. Repeat steps (1)~(3) until the system evolution 

reaches the steady state.  

 

3.2. Infection Rate 

Here infection rate ( )ijq t  is defined as worm infection probability along the 

Bluetooth connection between susceptible smartphone i  and infected smartphone j . 

Clearly, ( )ijq t depends on not only the vulnerability of smartphone i  but also the 

infectivity of worm from smartphone j . Similar to Ref. [12], it can be expressed as: 

( ) ( ) ( )ij i jq t V t T t , 0 ( ) 1iV t   and 0 ( ) 1jT t                             (1) 

where terms ( )iV t  and ( )jT t  represent the vulnerability of smartphone i and the 

infectivity from smartphone j at time t , respectively. In general, ( )jT t is only related 

to the function of a worm rather than the infection source (e.g., smartphone j ) and 

time t . Let ( )=jT t  , Equation (1) is rewritten as: 
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( ) ( )ij iq t V t                                                           (2) 

Let ( ) 1iV t   (maximal value of the vulnerability) correspond to the case of no 

awareness. In this case, ( ) ( )ij iq t V t can be simplified as ( )ijq t  which has been 

discussed in many literatures 
[7-10]

. 

In following, we focus on the expression of ( )ijq t  in the case of considering 

awareness. To this end, two reasonable assumptions are proposed here. One is that 

awareness diffusion in social network layer can reduce the vulnerability of 

susceptible smartphones, and another is that awareness diffusion follows three rules
 

[14]
: (i) Memory effects: smartphone users can remember the total number of their 

having received awareness information contacts; (ii) Social reinforcement: the 

increasing of awareness information enhances the users‟ protective reaction; (iii) 

Non-redundancy of contacts: the infected smartphone users send the awareness 

information to their neighbors only once.  

On the basis of above two assumptions, we define that ( )
( ) ib t

iV t e


 ( 0 1b  ), 

where parameter b  captures the social reinforcement effect and the memory effect 

is embodied by ( )i t (i.e., the cumulative number of smartphone user i  receiving 

awareness by the end of time t ). Inserting the expression of ( )iV t  into Equation (2), 

we have 
( )

( ) ib t

ijq t e
 

                                                   (3) 

Figure2 shows worm infection rate q  as a function of   for different b . It is easy 

to see that q gradually becomes smaller with the increasing of parameters   and b .  
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Figure 2. The Impact of Parameters b  and  on Worm Infection Rate 

q with 0.5   

 

3.3. Mathematical Model and Analysis 

The worm propagation model is formulated based on the classical epidemic model 

SIR. In this model, all smartphones are assumed to be one of three states in any 

time: 

Susceptible (S): The susceptible smartphones are those who have not been 

infected by Bluetooth worms, but are vulnerable to Bluetooth worms and could be 

infected when contacting with an infected smartphone.  

Infected (I): The infected smartphones are those who carry Bluetooth worms and 

can infect the susceptible smartphones.  

Recovered (R): The recovered smartphones are those who used to be infected by 

Bluetooth worms, and now are clear of the Bluetooth worms and immune to the 

same type of worm by installing system patches and anti-virus software.  
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A Bluetooth worm propagates in lower physical network layer by wireless 

Bluetooth connection established between phones in limited distance. Mobility of 

phone users impacts connectivity of the physical network.  Currently, there are three 

basic mobility patterns: Random Walk
 [16]

, Levy Flight
 [17]

, and Random Waypoint
 

[18]
. To make an easy for analysis and focus on the impact of awareness on worm 

propagation, we here consider the simplest mobility pattern of Random Walk 

described as follows: each phone user i  is randomly located position coordinate 

(
ix ,

iy ) in a L L  plane with periodic boundary conditions. In each moving moment, 

phone user i  randomly selects his/her speed and angle from system wide predefined 

ranges [ , ]min maxv v and [ , ]   respectively, where 
minv  is the minimum speed and

maxv  is 

the maximum speed. The mathematical model of Random Walk can be described by: 

( 1) ( ) cos ( )

( 1) ( ) sin ( )

i i i i

i i i i

x t x t v t

y t y t v t





  


  
                                                (4) 

Where ( ( )ix t , ( )iy t ) and ( ( 1)ix t  , ( 1)iy t  ) are respectively position coordinates in 

time step t  and time step +1t . 

Let ( )S t , ( )I t  and ( )R t  denote respectively the number of the susceptible, the 

infected, and the recovered phones at time step t  with ( )+ +S t I(t) R(t) N being a 

constant. Based on Mean-Field approach and similar to Reference [17], the 

mathematical model of worm propagation is formulated: 

          

- ( )
( 1) ( ) ( )[1 (1 ( )) ] ( )

( 1) ( ) ( )                                        

( 1) ( 1) ( 1)                          

( )= ( ) ( )                                     

ib t

i

i t + i t s t e i t i t

r t r t i t

s t i t r t

t f A r t

  







    

  

     

          









                        (5) 

where 2( ) ( ) /s t S t L , 2( ) ( ) /i t I t L  and 2( ) ( ) /r t R t L  are the density of the susceptible, 

the infected, and the recovered phones in plane L L . Exponent 2r  indicates the 

area covered by Bluetooth communication with r  denoting the communication 

radius. The value of ( )i t depends on the social network layer structure A  and the 

infected density ( )r t  in physical network layer. Near the critical point ( ( ) 1i t = ), we 

Taylor expand the first sub-equation in Equation (5) and ignore the high order terms 

to derive the following equation. 

 ( )2( 1) ( ) ( ) ( ) ( )ib t
i t + i t r e s t i t i t

 
                                   (6) 

Inserting the fourth sub-equation in Equation (5) into Equation (6), we obtain 
2 ( ) ( )( 1) ( ) ( ) ( ) ( )bf A r ti t + i t r e s t i t i t                                   (7) 

In fact, in the initial time step 0t  , we have 2(0) = /s N L  and (0)=0r . If 

(1) (0)i i , the Bluetooth worm will break out finally, or it will die out. Thus, we 

derive a critical propagation threshold:  

c 2

1
=

r


 
                                                        (8) 

where = /    is called effective infection rate 
[12,16]

.  

It can be seen from Equation (8) that awareness diffusion cannot alert the 

propagation threshold. 

 

4. Simulation Results  

To validate the theoretical results obtained in Section 3, we have performed some 

Monte Carlo simulations on two-layer networks. Firstly, two two-layer networks are 

created with each network size 1000N  . The two networks have the same physical 

network layer that corresponds to a random dynamical network, and the distinct 
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social network layers with the same averaged degree of nodes (one is BA free -scale 

network and the other is WS small network). 

For WS network, we set the reconnected probability 0.2p   and the averaged 

degree 6k  . The method of creating WS network can be found in Ref [19]. For 

BA network, we set
0 3m m  , where

0m is the initial size of the network and 

m denotes the number of added edges in each step. Thus the final created BA 

network has the averaged degree 6k  . The method of creating BA network can be 

found in Ref [20]. 

In our simulations，the communication radius of Bluetooth protocol 1r  , and 

the number of initial infected smartphones (0)=10I  if not otherwise specified. In the 

initial step, 1000 smartphones are random located in a L L two-dimensional plane 

with periodic boundary conditions. In the following time steps, each smartphone i  

randomly moves with a velocity 
iv drawn uniformly from [ , ]min maxv v . 
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Figure 3. Theoretical Threshold Versus Simulated Thresholds ( 0.05  , 

=0minv  and =Lminv ) 

Figure 3 compares the comparison of the propagation threshold obtained by MC 

simulations with that the numerical solution of Equation (8). To be clear, =0b  

corresponds to the case of no awareness. From Figure 3, we can see that the 

simulated curves almost agree with the theoretical curve regardless of considering 

awareness ( 0b  ) or not ( =0b ) and the structure of social network layer is WS or 

BA. This validates the result that awareness cannot change the worm propagation 

threshold. 

To explore worm behaviors with awareness above threshold ( c  ), we further 

perform MC simulations with parameters 50L  , 0.5  , 0.5  , 0.01  , =0minv  and 

=50maxv . In this case, we have =50  and 0.8c  . 
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Figure 4. Time Evolution of ( )R t and ( )v t  

In Figure 4, we show that the time evaluation of the infection size ( )R t and the 

worm propagation speed ( )v t  ( ( )= ( ) ( ) ( ( 1) ( 1))v t I t R t I t R t     ) for given different 

b ((a) awareness diffusion on WS network; (b) awareness diffusion on BA network).  

The values of ( )R t  and ( )v t  in the case of considering awareness diffusion ( 0b  ) 

are always smaller than those in the case of no awareness ( =0b ) whether the social 

network layer is WS network (Figure 4 (a)) or BA network (Figure 4 (b)). This 

means that awareness diffusion can mitigate Bluetooth worm in terms of decreasing 

the propagation speed and infection size. It is also shown that the larger the social 

reinforcement b is, the better such worm mitigation effect is.  

Moreover, we compare time evolution of ( )R t and ( )v t  for b =0.2 and 0.5 when 

awareness diffuses respectively on BA network and WS network. Note that when 

b =0.2, values of ( )R t and ( )v t affected by BA network are lower than those affected 

by WS. So we can say awareness diffusing on BA network layer mitigates worm 

better than on WS network (see Figure 5 (a)). However, with the increasing of 

b ( b =0.5), the reverse is true (see Figure 5 (b)). In other words, there exists a 

critical value of b leading to the emergence of phase transition on worm mitigation 

effect.  
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Figure 5. The Impact of Social Network Layer Structure on ( )R t  and ( )v t  

(the Inset) 
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Figure 6. The Final Infection Size as a Function of the Social 
Reinforcement b  

In order to derive the critical point, In Figure 6, we further report how the final 

infection size R changes with the social reinforcement b . Clearly, the infection curve 

affected by WS network drops slowly in the case of 0.3b  , but drops fast (almost 

exponential speed) when 0.3b  . By contrast, the infection curve affected by BA 

network always decline slowly (almost linear relationship). As a result, the two 

curves intersect at point 0.35b  meaning the critical value of b is about 0.35. This 

indicates that worm mitigation effect relates to not only the social network structure 

but also the values of social reinforcement b . 

Here we stress that the curves in Figure 6 are derived in the case =50 . To further 

understand deeply the general result, more simulations are made in Figure 7 for 

more general values of c  . 
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Figure 7. Final Infection Size as a Function of the Social Reinforcement 
b for different   

As Figure7 shows, for the smaller   (e.g., =5 in Figure 7(a)), BA structure 

always has better mitigation effect than WS structure no matter b  being any value. 

However, with the increasing of   value, there exists a critical value cb , below 

which BA structure is more effective, and above which the WS structure is more 

effective (see Figure 7 (b)-Figure 7 (d)). Moreover, the larger  value is, the larger 

cb  value is. Therefore, when evaluating how the topological structure of the 

underlying social network layer of awareness diffusing influences the mitigation 

effect, the factors of both social reinforcement b and effective infection rate  must 

be considered.  
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Figure 8. Comparison of Worm Mitigation Effect between WS Structure 
and BA Structure 

To derive a general result of 
cb , we introduce quantity R  as follows:  

WS BA WS

BA BA

= = 1
R R R

R
R R


                                           (9) 

Where 
WSR and BAR are respectively the final infection size impacted by WS network 

and that by BA network. So, 0R  means that BA network has the better worm 

mitigation effect than WS network. Otherwise (i.e., 0R  ), the opposition is true. In 

Figure8, we report R as a function of b and  where the blue color denotes 

0R  and red color denotes 0R  . We also can draw the same conclusions as that 

from Figure7. 

 

5. Conclusion 

In this paper, we have proposed a novel propagation model to character the 

coupled dynamical process of Bluetooth worm and awareness on a two-layer 

smartphone network. One layer is the social network layer in which awareness 

diffuses and the other is the physical network layer in which the Bluetooth worm 

propagates. We have shown that awareness diffusion cannot change the propagation 

threshold, but can mitigate its propagation in terms of decreasing propagation speed 

and the final infection size. More important, we also have fond that the social 

network layer structure in which awareness diffuses has a great impact on worm 

mitigation: (a) BA structure is always more effective on worm mitigation than the 

WS structure for smaller effective infection rate; (b) there exists a critical value of 

the social reinforcement for larger effective infection rate, beyond which BA 

structure is more effective than WS structure, or else the reverse is true; (c) the 

critical value gradually becomes larger with the transmission rate increasing.  

The present finding points out the importance of considering awareness on 

modeling correctly Bluetooth worms‟ propagation in smartphone networks. Note 

that our results, exception to the propagation threshold, are mainly obtained using 

Monte-Carlo simulations due to complexity of theoretical analysis . So how to derive 

more theoretical results is our future work. 
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