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Abstract 

A developable surface is a surface that can be flattened onto a plane without 

distortion, neither in angle nor in area. In mathematics, it is a collection of points with 

zero Gaussian curvature. The developable surfaces are of vital importance in modern 

industry modeling, whereas current business modeling software could only transfer a 3D 

model into an approximation of a developable surface. In this way, a methodology that 

could directly generate developable surfaces with no intermediate transformation is in 

need. This paper illustrated a modeling method based on dynamic programming, and 

further proposed a method for variational developable surface design. Finally, algorithm 

in this paper would be verified as valid and practicable by some design cases. 

 

Keywords: developable surface, graphics and image processing, graphic modeling, 

dynamic programming. 

 

1. Introduction 

A developable surface is a surface that can be flattened onto a plane without stretching 

or compressing [1]. Recently, research fellows have been concentrating on the design of 

developable surface for years. Roles of developable surface in production and daily life, 

such as building design, clothing manufacturing, lathe machining, etc., are absolutely 

significant. Otherwise, in the field of computer graphics and computer-aided design 

(CAD) including origami, architecture and industrial surface design, the developable 

surface is also inevitable. 

Discrete developable surfaces are pieces of grid developable surface, with the shape of 

triangle or quadrangle, who subdivide the measure of developable surface ultimately [2]. 

As the concern of practical software like CAD arose, studies on discrete developable 

surfaces focus on the design of triangular or quadrangular developable grids that could 

satisfy the developable measures exactly or approximately [3]. Developable surfaces 

modeling could be divided into two categories- approximate modeling and extract 

modeling. These two modeling categories is to maximize the develop ability of surface, 

but the former method does not reach a final model that strictly under constrains, while 

the later one does. At first, this paper demonstrated an extract modeling method for 

developable surfaces [4]. By observing its recursive nature, an algorithm with dynamic 

programming was constructed. 

 

2. Developable Surface Modeling Techniques 
 

2.1. Dynamic programming method 

In this section, an interpolation method of developable surface on polygon 

boundary was introduced based on the theory of dynamic programming. As can be 

proved that a developable surface must be a ruled surface simultaneously, a 



International Journal of Future Generation Communication and Networking 

Vol. 9, No.9, (2016) 

 

 

322   Copyright ⓒ 2016 SERSC 

common method for developable surface interpolation is boundary triangularization  

[5-8]. But the boundary triangularization grow its patterns exponentially with the 

number of sample points on boundary, it could be infeasible in practice. Due to the 

recursive nature of dynamic programming, this study presented a global optimal 

solution for calculation [9]. This solution makes the complicated design of 

developable surface come true by simplifying calculation process.  

Suppose that P  is a closed polygon who approximating a closed curve in a three-

dimensional space. Its vertexes are recorded anti-clockwise by ( 1,2,..., )iP i m . 

Line segment i jPP  is short donated as ,i j  and named rung. Without considering 

the endpoints, any line segment ,i j  is absolutely involved in polygon P  (shown 

in figure 1-(a) and (b)) [6]. A rung consisting of points with a same tangent plane is 

called an untwisting rung. If all rungs of a grid surface are untwisted, this surface is 

called a discrete developable surface. In any rungs ,i j , we generally set i j . 

The twisting degree of any rungs ,I i j  is defined to be ( )w l : 

   
( ) 1

i j i j i j

j i i j

t P P t P P
w l

P P P P

   
  

 
                                  (1) 

In this equation, it ,
jt represents the unit tangent vector of 

jP , iP respectively. For 

any triangularization T  of P , ( ) ( )W T w e  is the total twist of T , while e  is a 

side of T . Specially, ( )D P represents the minimum of all ( )W T  values, and the 

corresponding triangularization T   is the optimal triangularization of P . 

Since P  is a simple polygon, it could always be divided into two parts by a rung 

,l i j . Setting ( )P l  represents the half involving vertex 1iP , while ( )P l  is 

the other half [7]. According to the common rule of C language, i  means i+1, 

i  means 1i  . Supposing rung l  is one of three sides of the optimal 

triangularization of P , and it is the optimal rung. Then the equation below is true 

[8] 

      ( )D P D l D l w l   
                     

(2) 

 

Figure 1. The Polygon is Divided into Two Parts of P(i+) and P(i-) by a 
rung <i,j>. 

(a)Two bridge triangles of <i,j> 
(b)Visible point Pk of rung <i,j> 
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For each vertex iP , ( )L i  indicates a rung set rooting in iP . Generally speaking, 

( ) 3L i m  . Any triangularization of P  inevitably include either a range in ( )L i  

or ,i i  . By applying equation (2) with each rung in ( )L i  and ,i i  , a 

minimum ( )D P  could be found, and the corresponding triangularization is the 

optimal one. To avoid exponential processing time, this study adopted a guideline 

of dynamic programming presenting in (3) and (4). 

             , , , , , ,D P i j Min D P i j w i j D P i j w i j
 

              

(3) 

             , , , , , ,D P i j Min D P i j w i j D P i j w i j
 

          

(4) 
Now introduce a similar recurrence algorithm to obtain the optimal triangularization. 

In this term, three sides of a triangle could be all rungs. To get the goal, an assumption 

should be made that there exists a plane B that any triangularizations of p are monotonic 

about it. In addition, any vertexes kP  are supposed to be visible for a rung if 

, , ,i k k j  are all rungs. Thus, the triangle 
i k jPP P  is totally involved in P  except 

three vertexes. Let 
( )iV  be the collection of all visible rungs for iP , we get an accordingly 

tenable rule for recurrence as follows： 

             , , , , , , : ( ) ( )D P i j Min D P i k w i k D P k j w k j k V i V j
 

             

(5) 

Apparently, the set L  for any vertexes is still valid. Applying equation (2) on 

each rung in lL , combining the recurrence rule (5), an optimal triangularization for 

p could be obtained. 

 As for a multiply connected domain bounded by several curves (Figure 2(a)), one or 

more artificial cut (Figure 2(b)), or several optimal segments connecting vertexes of the 

surface, could transfer it into some simply connected regions with ease. In this way, 

methods mentioned above could be valid to find the optimal triangularization for each 

simply connected region. Thus, the optimal triangularization for a multiply connected 

domain is completed. 

 

 

Figure 2. A Multiply Connected Domain in (a) and an Artificial Cut in (b) 
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2.2. Variational Interpolation Methods 

Interpolation and approximation are central questions of the Computer Aided 

Geometric Design (CAGD). To make it simple, interpolation requires a strict pass of a 

surface through the given interpolation point, while approximation does not. But the 

Variational Developable Surface Interpolation (VDSI) is different from those two. For 

one thing, it claims the surface to approximate some interpolation points within a certain 

region. For another, it needs the surface to go through the remaining points at the same 

time. In other word, the VDSI is a hybrid of both interpolation and approximation. 

 

Figure 3. Modify the Polygon by Adjusting Vertex Positions within Limits. 
Pi’ Stands the Adjusted Position of Pi 

Suppose that C is a simply smooth closed boundary curve approximated by a 

closed polygon p. As shown in figure 3, the smooth boundary curve C is 

approximated by a polygon  1 2, ,..., mP P P P , some of whose vertexes, like iP  are 

removable within certain region. One important goal of this section is to find a 

developable surface that is more proper to interpolate a given boundary curve  [10]. 

So the twisting degree ( )w l  of rung i could be treated as a function of some 

vertexes. 

If the new positions of moveable points  1 2, ,..., nP P P n m  are recorded as 

 1 2', ',..., 'nP P P n m , within the appointed boundary  , the optimization function 

is： 

 

                                                                                                                                                

(6) 

 

 

In which T  is any triangularization of the points set. 

 

3. Experimental Results and Illustration 

This section first introduced the modeling system according to dynamic 

programming for designing a developable surface. Processing design with flexible 

interactions is more convenient to developable surface modeling with dynamic 

programming. Purpose of this modeling system is to present a simple and easy tool 

that the non-professionals could apply to make developable surface models they 

need in practice. The modeling system is shown in Figure 4. It can be seen that the 

user-designed closed curves are presented on the left half of system screen. They 

are poly-line presentations of the automatically recorded moving paths of a brush or 

a mouse. Then the presentations would be simplified with Douglas-Pucker methods 
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and approximated by a sample line B. This tool is so practicable that non-

professional users could edit curves, say insert or remove points, easily by handling 

control point. Thus a multiply connected domain is graphed. On the right half part 

of screen, there is a render window for space R in which users could move the 

vertexes for further adjustment. However, adjustment here is restricted to along the 

vertex normal only. Specially, the 2D curve projection on x-y plane is exactly that 

drew by users. Adjustment in both half screens would be continually operated until 

a satisfactory image presents. Once the boundary curves were designed, the 

dynamic programming methods introduced before would come into effect to 

interpolate the discrete developable surface. 

 

 

Figure 4. The Developable Surface Modeling System 

3.1. Developable Surface Design for Multiply Connected Domains 

There is a multiply connected region p on a special surface. The optimal ruled surface 

is drawn by interpolating a developable surface piece on p using methods mentioned 

above. These methods tend to minimize the change of tangent plane, and the optimal 

triangularization is not restricted as a bridge one [11]. Corresponding Gauss image 

demonstrates that surfaces rebuilt by methods in this paper shows better developability 

than the commonly rebuilt ones. 

 

3.2. Design for Composite Developable Surfaces 

Methods in this paper could reconstruct developable surface by interpolating certain 

given boundary curves. By this way, composite developable surfaces may be constructed 

as follows. 

 
(a) Original Surface Grid Model 
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(b) After Optimization of Planar Network 

 
(c) The length of the relative error of cloud 

Figure 5. Variational Interpolation Method to Optimize Unicom more 
Surface Area 

 
(a) Original Surface Grid Model 

 
(b) After Optimization of Planar Network 
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(c) The Length of the Relative Error of Cloud 

Figure 6. Variational Interpolation Method to Optimize Half Spherical 
Surface 

There are continuous vertex sequences for boundaries of two 

surfaces  1

1 1 1,..., nP b b ,  1

2 2 2,..., nP b b . If some points in these two sequences are 

coincident, in other words 1 2

i jb b , these two boundaries could be combined as one with 

a vertex sequence. 

                               1 1 1 1

1 2 2 11 2 ..., , ,..., , ,...i j j iP P b b b b                                               

(7) 

Figure 6 illustrates an example of a developable surface interpolating a smoothly 

connected boundary. As shown in Figure 7, this synthetic boundary is made up of 

intersecting boundaries of three cones. The optimal triangularization operation in this 

paper, as well as a commonly used bridge triangularization optimization, is given by 

Figure 7(a) and 7(b), respectively. The figure images apparently prove a superior result of 

methods in this paper. Furthermore, this example also claims limitations of the optimal 

bridge triangularization in special cases with unusual structures that overcame by the 

optimal triangularization. 

 

 
(a) Original surface grid model 
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(b) After optimization of planar network 

 
(c) The length of the relative error of cloud 

Figure 7. Variational Interpolation Method to Optimize Special Surface 

3.3. Quadrangular grid transformations for the optimal developable surface 

In industrial field, both quadrangular grids and triangular grids are commonly accepted 

representations for discrete surfaces. The optimal triangularization could be transformed 

as follows to reach a quadrangular grid to initially input the optimal PQ grid calculation. 

Suppose that the optimal triangularization of p is ( , )G V E , in which V P . For 

each vertex v V , it is a candidate vertex if the degree deg( ) 3v  . A side e E  with 

two candidate vertex is called a candidate side of e. The dihedral angel of each candidate 

side ce  is presented as ( )Dih ce .. The following describes the process of transforming 

the optimal triangularization G  into a quadrangular grid in detail. 

1. Calculate the degree of each vertex of G, and find out all candidate vertexes. 

2. Screen out all candidate sides to allocate in a heap h. For each candidate side, 

give a weight of ( )Dih ce . 

3. If h is not null, 

3.1 Find out a candidate side ce  with the minimum degree value. 

3.2 Refresh h by digging out ce  from E. 

4. Refresh G, and recalculate all candidate vertexes. 

5. For each candidate vertex v, 

5.1 Make 2 copies of deg( )v  for v, and put these copy points in a v-centered interval 

 ,  . 

5.2 Partially refresh the other copy of v to force its degree value to be 3. 
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(a) Original surface grid model 

 

 
(b) After optimization of planar network 

 
(c) The length of the relative error of cloud 

Figure 8. Variational Interpolation Method to Optimize Raised Surface 

Figure 8 presents two outcomes of transforming from the optimal triangularization to 

quadrangular grid. But it also releases that the quadrangular grids generated by methods 

in this paper may contain few polygons. 

 

3.4. Aesthetic and Architectural Designs 

This draft system also provides a convenient modeling tool for developable surface 

design in the field of aesthetics and architecture. Models of a surface of revolution in 

Figure 9 consist of 4 and 12 quasi pieces of developable surface, respectively. A student 

spent about 75 minutes to design all 36 quasi pieces of developable surface of a 

hemisphere model in Figure 10, and then generated 2304 triangles according to the 

optimal triangularization. 
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(a) Original surface model    (b) The initial unfold grid   (c) Optimization unfold results 

 
(d) Initial length of relative error of cloud (e) Optimized length of relative error of cloud 

Figure 9. An Optimization Example of Revolution Surface 

   
(a) Original surface model    (b) The initial unfold grid   (c) Optimization unfold results 

 
(d) Initial length of relative error of cloud  (e) Optimized length of relative error of cloud 

Figure 10. An Optimization Example of Hemisphere Surface 

4. Conclusion 

This paper introduced a dynamic programming method to generate discrete 

developable surface for interpolation on certain surface boundaries. In contrast with the 

previous methods, this algorithm distributed whole process of developable surface design 

into three stages. First, interactively design the surface boundary conditions in system. 

Second, interactively modify the curve shapes. Third, generate discrete developable 

surface automatically. Different from the previous modeling on strip, this interactive draft 

interface allows users to design surface efficient and effectively. In this study, a lot of 

cases have verified the resentful outcomes of the algorithm. 
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