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Abstract 

The majority of recent embedded systems are based on MPSoCs (Multi-Processors 

System on Chip) architectures. The topologies and the interconnections inside multi 

processors almost adopt NoCs (Networks on Chip) whose topology and task scheduling 

algorithm have a direct impact on its performances. In this paper, by using static data flow, 

a task scheduling algorithm which would automatically assign the application tasks onto 

different processors is proposed based on complex network. The goal of our algorithm is to 

replace the static data flow subnetwork by a single dynamic data flow actor such that the 

global performance in terms of latency and throughput is optimized. Through complex 

network, it greatly enhances the power of our algorithm in terms of avoiding deadlock, 

saving energy and providing for integration with more general models of computation. 

Experimental results show up to 60% performance improvement for real-world examples. 
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1. Introduction 

Multi-Processor System on Chips (MPSoCs) are becoming more and more important as 

implementation platform for embedded system. However, the high parallelism of multiple 

processors makes programming of MPSoCs a challenging task. There are different 

MPSoCs communication topologies and interconnection strategies inside multi-processors 

system on chip, namely point to point, buses and NOCs [1-2]. 

Network on chip (NoC)[3-6] is a communication subsystem on an integrated circuit 

(commonly called a "chip"), typically between intellectual property (IP) cores in a system 

on a chip (SoC). NoCs can span synchronous and asynchronous clock domains or use 

unclocked asynchronous logic. NoC technology applies networking theory and methods to 

on-chip communication and brings notable improvements over conventional bus and 

crossbar interconnections. NoC improves the scalability of SoCs, and the power efficiency 

of complex SoCs compared to other designs. 

Topology of NoC can be regular like“Spidergon”, “Mesh”, “Torus” and “Tree” or 

irregular. Topology of NoC has a direct impact on its performances [4]. Many regular 

topologies more or less inefficient have appeared. Irregular topologies are considered more 

realistic than regular ones with less constraints on network form [7]. Theses irregular 

topologies are always obtained by mixing different regular forms with hierarchical, hybrid 

or asymmetric way [4]. 

The type of topology (regular or irregular) goes with the scope of the MPSOC and 

nature of the cores used [8]. The regular topologies are suitable for general purpose 

architectures with homogeneous cores. Under these conditions (general architecture and 

homogeneous cores) regular topologies lead to a regular and predictable “layout”s. Instead, 

irregular topologies are more appropriate for MPSoC’s specific applications with 

heterogeneous cores and memories and having different sizes. For such systems, the 
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irregular architectures are more efficient than regular in term of energy consumption, area 

and performance. 

Mesh is a simple topology which allows access to all resources. Topology of a n*n 2D 

Mesh is defined as follows: 

(1) R = n*n routers; 

(2) Each router (except those on the sides) is connected to 4 neighbors’ routers and to a 

core (a processor or a memory) via its input/output channels; 

(3) An input/output channel consists of two point to point unidirectional 

communications between two routers or between a router and a resource. The number of 

communication channels of an n*n 2D Mesh is
23 2C n n  . 

The topology of 4*4 Mesh is shown as Figure 1. 

 

 

Figure 1. Mesh 4*4 Topology 

Some researches [9-11] show that irregular mesh networks are more beneficial to some 

embedded systems than regular ones. Some typical topologies of irregular mesh are shown 

as Figure 2. 

 

 

Figure 2. Topology of Irregular Mesh 

Mapping applications’ tasks onto NoC-based MPSoC platform have become the most 

important research field of MPSoC. In common approaches, tasks are loaded into the 

system at run-time. For dynamic mapping techniques, Smit [12] present a run-time task 

assignment algorithm that maps a task before all other tasks that need the scarce resources 

for heterogeneous multi-processor architectures. Faruque[13] present a run-time agent 

based distributed application mapping technique for large NoC-based MPSoC such as 

32*32 systems. Nollet [14] present the task migration mechanism which uses task 
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migration points as a point of reference for migrating a task from one processor to another. 

But there is still only little work on defining the right task scheduling model for MPSoCs, 

especially for irregular mesh NoC-based MPSoC. 

 

2. Related Work 

Dataflow models [15-16] of computation have been extensively studied in task 

scheduling algorithm. Static data flow (SDF) model is commonly used in task scheduling 

analyses. Despite extensive work on task scheduling from SDF models, these models can 

capture the parallelism that is available in a function and thus may be good candidates to 

represent function behavior. There is little existing work that addresses compositional 

representations for such models. Geilen [17] proposes abstraction methods that reduce the 

size of SDF graphs, thus facilitating throughput and latency analysis. 

Static data flow model include static dependence information, which is computed using 

alias analysis algorithms. In the worst case, overly conservative analysis yields completely 

connected dependence networks. Since there is only one complete graph given a number of 

vertices, this poor analysis effectively reduces the amount of information about the 

function. On the other hand, Dynamic data flow networks can be more detailed than Static 

data flow networks because they represent only observed dependence edges instead of 

potential dependence edges. Further, other dynamic information can be annotated in these 

networks. 

Dataflow models with deterministic actors, such as Kahn Process Networks [18] and 

their various subclasses, including SDF, are compositional at the semantic level. Actors 

can be given semantics as continuous functions on streams, and such functions are closed 

by composition. However, a dynamic schedule may degrade the performance by 

introducing scheduling overheads even in the schedules of static data flow networks. To 

permit the generation of an efficient schedule, a remedy could be the replacement of the 

static data flow graph by a single actor, for example, clustering all static data flow actors 

into a new actor. Unfortunately, existing algorithms might result in infeasible schedules or 

greatly restrict the clustering design space. 

In this paper, a new clustering approach for static data flow networks connected to 

dynamic data flow networks based on complex network would be proposed. In contrast to 

prior work, a more general actor can be generated which can have dynamic behavior. It 

allows expressing of a quasi-static schedule for the static data flow graph in order to avoid 

deadlocks which might occur when restricting to static schedules only. The quasi-static 

schedule can be automatically derived by our clustering approach and expressed in form of 

a finite state machine, which can be easily integrated into a dynamic schedule of all 

remaining actors mapped onto the same processor while reducing the overall scheduling 

overhead. 

 

3. Methodology and Problem Definition 

In this section, the problem that the paper is dedicated to is formally defined and 

introduces the necessary mathematical notations of methodology. 

Complex network is a graph (network) with non-trivial topological features that do not 

occur in lattices or random networks but often occur in real networks. We can use complex 

network to describe data flow model. 

Definition 1 (Data Flow Network): A data flow network is a directed network 

( , , )g A C L  containing a set of actors A  (vertices) and a set of channels C A A   

represented by the edges of the network. Additionally, the data flow network contains an 

initial fill level function 0:L C N ( 0N  denotes the set of non-negative integers) 

which associates with each channel ( , )src desta a C  its number of initial tokens. 
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Furthermore, we introduce a notion of so called actor input ports i I  and so called 

actor output ports o O  where .a I I  and .a O O  are the set of input and output ports 

of the actor a , the set of subnetwork input ports .rg I  and subnetwork output ports .rg O  

are defined, where .rg I  and .rg O  are actor input and output ports connected to the 

subnetworks. 

By mapping an application modeled by a data flow network ( , , )g A C L  onto an 

MPSoC, subnetworks of the data flow network are bound to the distinguished 

programmable processors. Communications between the subnetworks are bound to the on 

chip buses or networks on chip. The proposed clustering approach computes for a static 

data flow subnetwork rg  induced by the set of static data flow actors sA g . A bound 

onto a single processor of an MPSoC a composite actor ra  which replaces this subnetwork 

rg .This composite actor implements a data flow schedule which can vary from static 

over quasi-static to dynamic. 

Definition 2 (Clustering): Given a data flow network g  and a static data flow 

subnetwork rg  induced by all static data flow actors Sa A g  .Clustering replaces rg  

by a single actor ra , called composite actor, implementing a data flow schedule for 

the actors Sa A , resulting in a new data flow network 
'g , 

'. . { }r Sg A g A a A   , 

and 
'. . a Sg C g C C C   , where 1 2 1 2{ ( , ) . | }S S SC c a a g C a A a A       and aC  

is the set of edges connecting ra  with the remaining DDF actors . Sg A A , where 

' ' ' '

sin sin

' '

sin s

{( , ) . . | ( ( , ) . : )

( ( , ) . : )}

a src k src r k S

k r rc S

C a a g A g A a a a a g C a A

a a a a g C a A

        

      

Definition 3 (Cluster FSM): The cluster FSM of a composite actor ra  is a tuple 

0( , , , , )m Q q T N R  containing a finite set of states Q  and an initial state 0q Q ,a 

finite set of transitions ( , )src destq q T Q Q   , a guard function 
| . |

0: rg I
N T N  

specifying the precondition for the number of tokens required on each channel 

connected to the subnetwork input ports .rg I  to execute a transition, and finally an 

action function 
*: .rR T g A  encoding a static scheduling sequence for the actors 

.ra g A  of the subnetwork. 

With above notations, the subnetwork 
2,rg  can be replaced by a composite actor 

2,ra  as 

depicted in Figure 3. 

 

 
Figure 3. Replacing Subnetwork 

2 , r
g by the Composite Actor 

2 , r
a  

We use #i  to denote the number of available tokens on the channel connected to the 

actor input port i . From Figure 3 we can see that two transitions 1t  and 2t  are leaving the 

start state 0q . 1t  requires at least two tokens on input port 1i  denoted by the precondition 
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1# 2i   and executes the static schedule ( 2a ) whereas 2t  requires at least one input 

token on input port 2i  denoted by 2# 1i   and executes the static schedule ( 1a , 3a ). 

Using those definitions, we can represent static schedules, quasi-static schedules and 

dynamic schedules. 

 

4. Static Data Flow Clustering Algorithm Based on Complex Network 

In the section, a methodical way to construct the cluster FSM m  as defined in 

Definition 3 that represents a quasi-static schedule for a given static data flow subnetwork 

rg  is presented. The algorithm is that each output .ro g O  of rg might have a feedback 

by other data flow actors to each input .ri g I . Because any produced token on an 

output .ro g O  might cause through these feedback loops the activation of an actor 

.ra g A  in the same subnetwork. In particular, postponing the production of an output 

token may result in a deadlock of the entire system. Hence, the quasi-static schedule 

determined by our clustering algorithm guarantees the production of a maximum number 

of output tokens from the consumption of a minimal number of input tokens. However, our 

clustering algorithm requires that tokens produced by an output port depend on all input 

ports. Otherwise an unbounded accumulation of tokens may happen. Therefore, we need to 

define the following clustering condition: 

Definition 4 (Cluster Condition): A static data flow subnetwork rg  can be clustered 

by the given algorithm if the subnetwork disregarding its inputs and outputs is deadlock 

free itself and for each pair of actors ( , )src desta a possessing a subnetwork input and 

output port there exists a directed path 
*.rp g C  from actor srca  to actor desta . 

Our clustering algorithm can be divided into three steps: Preprocessing, Compute the set 

of input/output states and Construct the cluster FSM. The step 1 is used for computing 

some termination criteria for step 2 and step 3. Especially, the number of firings of each 

actor to bring the cluster back into its initial state as well as the number of consumed and 

produced tokens by these firings would be computed. 

Step 1.1 Compute the repetition vector 
min, rgr  for subnetwork rg , a positive integer 

min, ( )
rgr a  is assigned to each actor .ra g A . in the subnetwork denoting the minimal 

number of firings of a to return rg  back to its initial state. 

Step 1.2 Compute the input/output repetition vector 
min, rgn  which assigns to each input 

.ri g I  and each output .ro g O  the number of consumed tokens 
min, ( )

rgn i  or 

produced token 
min, ( )

rgn o  by firing each actor .ra g A  exactly 
min, ( )

rgr a  times.  

In order to avoid actor feedback loop, it is required that the resulting quasi-static 

schedule always produces a maximal number of output tokens with a minimal number of 

input tokens. Each end point of such a production is marked by an input/output state of the 

subnetwork. So the following three steps to determine the input/output states are proposed: 

Step 2.1 Compute for each output port o  the input/output dependency tuples encoding 

the minimal numbers of consumed tokens on the input ports to produce n tokens on o . For 

this propose, an input/output dependency function 
rgdep  is formally defined. 

Definition 5 (Input/Output Dependency Function): For given a subnetwork rg , the 

input/output dependency function 
rgdep : 

| . |

0 0. rg I

rg O N N   is a function that 

associates with a cluster rg , for each subnetwork output port .ro g O , and for a 
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requested number of tokens 0n N  a vector of minimal number of input tokens 

1 | . |2
( , , ... )

g Ir
i i i

n n n  consumed on each subnetwork input port .ri g I  to produce the 

requested number n  of tokens on the output port o . 

Step 2.2 Given 
rgdep , the so-called input/output dependency states ioQ  can be 

calculated. Each input/output state 
1 | . | 1 2 | . |2

( , , ... ), , ,...
g I g Or r

i i i o o on n n n n n  is a possible state of 

execution of the static actors .rg A  in a self-scheduled execution and is additionally a 

constraint to provide the maximum possible number of output actor firings for a 

minimum number of required input actor firings. Additionally, add the null 

input/output state ( )0,0,...0  which may be missing if the subnetwork can produce 

output tokens without consuming any inputs. The input/output state set can be 

defined as follows: 

Definition 6 (Input/Output State Set): 

1 | . | 1 2 | . |

1 | . |

1 | . |

2

2

20

( , , ... ) |

( , , ... )

, , ...

{(0,0,...0)} { , , ,...

. : max(

{ | ( , ) ( )})}

g I g Or r

g Ir

g Ir

i i i

i i i

i i i

r

r

io o o o

g r o

g

n n n n n n

n n n dep

n n n

Q

o g O n

n N dep o n



 

  

 
 

Each input/output dependency state is a point in the n-dimensional Euclidean vector 

space 
| |

0
I OA A

N


 where each dimension represents the number of firings of a subnetwork 

input or output actor, respectively. The initial state is then trivially the all zero vector 

representing the fact that in the beginning no actor of the subnetwork has fired. 

Definition 7 (Cluster State Space): The state space Q  of a cluster is defined as the 

least fixpoint 
' ' '

1 2 1 2( {max( , )} , } )ioQ lfp Q q q q q Q Q Q      which enlarges 

'Q starting from ioQ  by adding the pointwise maximums of all pairs of input/output 

states from 
'Q  until no more new states are created. 

After computing the input/output states, the cluster FSM can be constructed by 

ordering the input/output states and computing the transitions between input/output 

states. 

Step 3.1 Compute the partial order 1 2n n  on 
'( )lfp Q  where 

1 2n n iff  

1 2. . : ( ) ( )r rp g I g O n p n p    . 

Step 3.2 Compute the state set Q  of the cluster FSM m  by generating a state 

q Q  for each input/output state n  not greater than or equal to the input/output 

repetition vector. 

Step 3.3 Compute the transition set T  of the cluster FSM m  by generating a 

transition t T  for each tightly ordered pair of input/output states. 

Step 3.4 Compute the guard function N  of the cluster FSM m  by generating a 

guard function value ( )N t  encoding the minimal number of tokens on each 

subnetwork input port to enable the transition t  from each tightly ordered pair of 

input/output states. 

Step 3.5 Compute the action function ( )R t  of the cluster FSM m . 

Finally, for each transition on the basis of the partial repetition vector, a single processor 

schedule is computed by a version of the scheduling algorithm to support partial repetition 

vectors. This schedule is assigned to ( )R t  and is one of the schedule phases of the 

resulting composite actor replacing the static data flow subnetwork rg . 
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5. Results 

In order to illustrate the benefits of our clustering algorithm, we have applied it and 

synthetic dataflow networks to an mp3 decoder, which works on irregular mesh of NoCs. 

In order to evaluate the methodology more thoroughly, we also applied it to generate four 

different SDF networks G2, G3, G5 and G7 with 60 actors each. All four networks have 

the same properties except the degree of connectivity. The average input/output degree of 

each actor in G2 is 2, in G3 it is 3, in G5 it is 5, and in G7 it is 7. Based on these four 

networks, test cases G2-ND, G3-ND, G5-ND and G7-ND have been constructed randomly 

by marking a variable number ND of actors as dynamic. For each test case, the settings ND 

= 6, 12, 18, . . ., 54, 60 have been considered, and for each setting, ten instances have been 

generated. The ten different instances per setting are used to compute average results in the 

experiments. 

The first observation is that the size of the clusters satisfying the cluster condition 

depends not only on the number of dynamic actors in the network but also on the 

connectivity degree. From Figure 4. we can see that a lower degree of connectivity leads to 

a smaller number of static actors that can be clustered. 

 

 

Figure 4. Average Number and Standard Deviation of Static Actors that can 
be clustered 

Then, our proposed clustering approach was applied for computing quasi static 

schedules and was used during software synthesis. Our proposed clustering approach has 

another advantage when comparing it with the FSM approach on the basis of the required 

compile time. In these results, compile time of our clustering approach is always a small 

fraction of compile time of the FSM approach, which is shown as Figure 5. This 

significantly extends the area of applicability of clustering during embedded software 

synthesis. 

 

 

Figure 5. Average Compile Time of the FSM Approach and our Approach 

In embedded systems, the available amount of memory is typically constrained. Hence, 

we tested both clustering approaches with given code size constraints which have been set 

to 150% of the memory requirements of the previously computed dynamic schedules. The 
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average speedup is shown in Figure 6. It can be seen that in all cases our proposed 

approach are better than the FSM approach. 

 

 

Figure 6. Average Speedup respecting Code Size Constraints 

6. Conclusion 

In this paper, we presented a clustering approach for static data flow subnetworks based 

on complex network. The proposed clustering algorithm computes a quasi-static schedule 

and reduces the scheduling overhead for one processor of MPSoC. Through our clustering 

approach, the scheduling of these subnetworks can be coordinated with enclosing system 

representations in a way that systematically exploits the predictability and efficiency of the 

static data flow model. Future work will focus on optimal clustering techniques, i.e.,  to 

generate an efficient representation of the cluster FSM state space for synthesis and to 

identify which actors should be clustered in order to minimize the scheduling overhead. 
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