
International Journal of Future Generation Communication and Networking

Vol. 9, No. 9 (2016), pp. 181-190

http://dx.doi.org/10.14257/ijfgcn.2016.9.9.16

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

A New Static Data Flow Clustering Algorithm for Task Scheduling

of Irregular Mesh in NoCs Based on Complex Networks

Yue Liu1, MengMeng Cao1 and Kong Jie2

1Institute of Information Engineering, Kaifeng University, Kaifeng 475004, China
2Naval Academy of Armament, Beijing 100091, China
1852278078@foxmail.com, 213501275251@139.com

Abstract

The majority of recent embedded systems are based on MPSoCs (Multi-Processors

System on Chip) architectures. The topologies and the interconnections inside multi

processors almost adopt NoCs (Networks on Chip) whose topology and task scheduling

algorithm have a direct impact on its performances. In this paper, by using static data flow,

a task scheduling algorithm which would automatically assign the application tasks onto

different processors is proposed based on complex network. The goal of our algorithm is to

replace the static data flow subnetwork by a single dynamic data flow actor such that the

global performance in terms of latency and throughput is optimized. Through complex

network, it greatly enhances the power of our algorithm in terms of avoiding deadlock,

saving energy and providing for integration with more general models of computation.

Experimental results show up to 60% performance improvement for real-world examples.

Keywords: NoC, MPSoC, static data flow, task scheduling algorithm, complex network

1. Introduction

Multi-Processor System on Chips (MPSoCs) are becoming more and more important as

implementation platform for embedded system. However, the high parallelism of multiple

processors makes programming of MPSoCs a challenging task. There are different

MPSoCs communication topologies and interconnection strategies inside multi-processors

system on chip, namely point to point, buses and NOCs [1-2].

Network on chip (NoC)[3-6] is a communication subsystem on an integrated circuit

(commonly called a "chip"), typically between intellectual property (IP) cores in a system

on a chip (SoC). NoCs can span synchronous and asynchronous clock domains or use

unclocked asynchronous logic. NoC technology applies networking theory and methods to

on-chip communication and brings notable improvements over conventional bus and

crossbar interconnections. NoC improves the scalability of SoCs, and the power efficiency

of complex SoCs compared to other designs.

Topology of NoC can be regular like“Spidergon”, “Mesh”, “Torus” and “Tree” or

irregular. Topology of NoC has a direct impact on its performances [4]. Many regular

topologies more or less inefficient have appeared. Irregular topologies are considered more

realistic than regular ones with less constraints on network form [7]. Theses irregular

topologies are always obtained by mixing different regular forms with hierarchical, hybrid

or asymmetric way [4].

The type of topology (regular or irregular) goes with the scope of the MPSOC and

nature of the cores used [8]. The regular topologies are suitable for general purpose

architectures with homogeneous cores. Under these conditions (general architecture and

homogeneous cores) regular topologies lead to a regular and predictable “layout”s. Instead,

irregular topologies are more appropriate for MPSoC’s specific applications with

heterogeneous cores and memories and having different sizes. For such systems, the

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

182 Copyright ⓒ 2016 SERSC

irregular architectures are more efficient than regular in term of energy consumption, area

and performance.

Mesh is a simple topology which allows access to all resources. Topology of a n*n 2D

Mesh is defined as follows:

(1) R = n*n routers;

(2) Each router (except those on the sides) is connected to 4 neighbors’ routers and to a

core (a processor or a memory) via its input/output channels;

(3) An input/output channel consists of two point to point unidirectional

communications between two routers or between a router and a resource. The number of

communication channels of an n*n 2D Mesh is
23 2C n n  .

The topology of 4*4 Mesh is shown as Figure 1.

Figure 1. Mesh 4*4 Topology

Some researches [9-11] show that irregular mesh networks are more beneficial to some

embedded systems than regular ones. Some typical topologies of irregular mesh are shown

as Figure 2.

Figure 2. Topology of Irregular Mesh

Mapping applications’ tasks onto NoC-based MPSoC platform have become the most

important research field of MPSoC. In common approaches, tasks are loaded into the

system at run-time. For dynamic mapping techniques, Smit [12] present a run-time task

assignment algorithm that maps a task before all other tasks that need the scarce resources

for heterogeneous multi-processor architectures. Faruque[13] present a run-time agent

based distributed application mapping technique for large NoC-based MPSoC such as

32*32 systems. Nollet [14] present the task migration mechanism which uses task

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 183

migration points as a point of reference for migrating a task from one processor to another.

But there is still only little work on defining the right task scheduling model for MPSoCs,

especially for irregular mesh NoC-based MPSoC.

2. Related Work

Dataflow models [15-16] of computation have been extensively studied in task

scheduling algorithm. Static data flow (SDF) model is commonly used in task scheduling

analyses. Despite extensive work on task scheduling from SDF models, these models can

capture the parallelism that is available in a function and thus may be good candidates to

represent function behavior. There is little existing work that addresses compositional

representations for such models. Geilen [17] proposes abstraction methods that reduce the

size of SDF graphs, thus facilitating throughput and latency analysis.

Static data flow model include static dependence information, which is computed using

alias analysis algorithms. In the worst case, overly conservative analysis yields completely

connected dependence networks. Since there is only one complete graph given a number of

vertices, this poor analysis effectively reduces the amount of information about the

function. On the other hand, Dynamic data flow networks can be more detailed than Static

data flow networks because they represent only observed dependence edges instead of

potential dependence edges. Further, other dynamic information can be annotated in these

networks.

Dataflow models with deterministic actors, such as Kahn Process Networks [18] and

their various subclasses, including SDF, are compositional at the semantic level. Actors

can be given semantics as continuous functions on streams, and such functions are closed

by composition. However, a dynamic schedule may degrade the performance by

introducing scheduling overheads even in the schedules of static data flow networks. To

permit the generation of an efficient schedule, a remedy could be the replacement of the

static data flow graph by a single actor, for example, clustering all static data flow actors

into a new actor. Unfortunately, existing algorithms might result in infeasible schedules or

greatly restrict the clustering design space.

In this paper, a new clustering approach for static data flow networks connected to

dynamic data flow networks based on complex network would be proposed. In contrast to

prior work, a more general actor can be generated which can have dynamic behavior. It

allows expressing of a quasi-static schedule for the static data flow graph in order to avoid

deadlocks which might occur when restricting to static schedules only. The quasi-static

schedule can be automatically derived by our clustering approach and expressed in form of

a finite state machine, which can be easily integrated into a dynamic schedule of all

remaining actors mapped onto the same processor while reducing the overall scheduling

overhead.

3. Methodology and Problem Definition

In this section, the problem that the paper is dedicated to is formally defined and

introduces the necessary mathematical notations of methodology.

Complex network is a graph (network) with non-trivial topological features that do not

occur in lattices or random networks but often occur in real networks. We can use complex

network to describe data flow model.

Definition 1 (Data Flow Network): A data flow network is a directed network

(, ,)g A C L containing a set of actors A (vertices) and a set of channels C A A 

represented by the edges of the network. Additionally, the data flow network contains an

initial fill level function 0:L C N (0N denotes the set of non-negative integers)

which associates with each channel (,)src desta a C its number of initial tokens.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

184 Copyright ⓒ 2016 SERSC

Furthermore, we introduce a notion of so called actor input ports i I and so called

actor output ports o O where .a I I and .a O O are the set of input and output ports

of the actor a , the set of subnetwork input ports .rg I and subnetwork output ports .rg O

are defined, where .rg I and .rg O are actor input and output ports connected to the

subnetworks.

By mapping an application modeled by a data flow network (, ,)g A C L onto an

MPSoC, subnetworks of the data flow network are bound to the distinguished

programmable processors. Communications between the subnetworks are bound to the on

chip buses or networks on chip. The proposed clustering approach computes for a static

data flow subnetwork rg induced by the set of static data flow actors sA g . A bound

onto a single processor of an MPSoC a composite actor ra which replaces this subnetwork

rg .This composite actor implements a data flow schedule which can vary from static

over quasi-static to dynamic.

Definition 2 (Clustering): Given a data flow network g and a static data flow

subnetwork rg induced by all static data flow actors Sa A g  .Clustering replaces rg

by a single actor ra , called composite actor, implementing a data flow schedule for

the actors Sa A , resulting in a new data flow network
'g ,

'. . { }r Sg A g A a A   ,

and
'. . a Sg C g C C C   , where 1 2 1 2{ (,) . | }S S SC c a a g C a A a A      and aC

is the set of edges connecting ra with the remaining DDF actors . Sg A A , where

' ' ' '

sin sin

' '

sin s

{(,) . . | ((,) . :)

((,) . :)}

a src k src r k S

k r rc S

C a a g A g A a a a a g C a A

a a a a g C a A

        

    

Definition 3 (Cluster FSM): The cluster FSM of a composite actor ra is a tuple

0(, , , ,)m Q q T N R containing a finite set of states Q and an initial state 0q Q ,a

finite set of transitions (,)src destq q T Q Q   , a guard function
| . |

0: rg I
N T N

specifying the precondition for the number of tokens required on each channel

connected to the subnetwork input ports .rg I to execute a transition, and finally an

action function
*: .rR T g A encoding a static scheduling sequence for the actors

.ra g A of the subnetwork.

With above notations, the subnetwork
2,rg can be replaced by a composite actor

2,ra as

depicted in Figure 3.

Figure 3. Replacing Subnetwork

2 , r
g by the Composite Actor

2 , r
a

We use #i to denote the number of available tokens on the channel connected to the

actor input port i . From Figure 3 we can see that two transitions 1t and 2t are leaving the

start state 0q . 1t requires at least two tokens on input port 1i denoted by the precondition

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 185

1# 2i  and executes the static schedule (2a) whereas 2t requires at least one input

token on input port 2i denoted by 2# 1i  and executes the static schedule (1a , 3a).

Using those definitions, we can represent static schedules, quasi-static schedules and

dynamic schedules.

4. Static Data Flow Clustering Algorithm Based on Complex Network

In the section, a methodical way to construct the cluster FSM m as defined in

Definition 3 that represents a quasi-static schedule for a given static data flow subnetwork

rg is presented. The algorithm is that each output .ro g O of rg might have a feedback

by other data flow actors to each input .ri g I . Because any produced token on an

output .ro g O might cause through these feedback loops the activation of an actor

.ra g A in the same subnetwork. In particular, postponing the production of an output

token may result in a deadlock of the entire system. Hence, the quasi-static schedule

determined by our clustering algorithm guarantees the production of a maximum number

of output tokens from the consumption of a minimal number of input tokens. However, our

clustering algorithm requires that tokens produced by an output port depend on all input

ports. Otherwise an unbounded accumulation of tokens may happen. Therefore, we need to

define the following clustering condition:

Definition 4 (Cluster Condition): A static data flow subnetwork rg can be clustered

by the given algorithm if the subnetwork disregarding its inputs and outputs is deadlock

free itself and for each pair of actors (,)src desta a possessing a subnetwork input and

output port there exists a directed path
*.rp g C from actor srca to actor desta .

Our clustering algorithm can be divided into three steps: Preprocessing, Compute the set

of input/output states and Construct the cluster FSM. The step 1 is used for computing

some termination criteria for step 2 and step 3. Especially, the number of firings of each

actor to bring the cluster back into its initial state as well as the number of consumed and

produced tokens by these firings would be computed.

Step 1.1 Compute the repetition vector
min, rgr for subnetwork rg , a positive integer

min, ()
rgr a is assigned to each actor .ra g A . in the subnetwork denoting the minimal

number of firings of a to return rg back to its initial state.

Step 1.2 Compute the input/output repetition vector
min, rgn which assigns to each input

.ri g I and each output .ro g O the number of consumed tokens
min, ()

rgn i or

produced token
min, ()

rgn o by firing each actor .ra g A exactly
min, ()

rgr a times.

In order to avoid actor feedback loop, it is required that the resulting quasi-static

schedule always produces a maximal number of output tokens with a minimal number of

input tokens. Each end point of such a production is marked by an input/output state of the

subnetwork. So the following three steps to determine the input/output states are proposed:

Step 2.1 Compute for each output port o the input/output dependency tuples encoding

the minimal numbers of consumed tokens on the input ports to produce n tokens on o . For

this propose, an input/output dependency function
rgdep is formally defined.

Definition 5 (Input/Output Dependency Function): For given a subnetwork rg , the

input/output dependency function
rgdep :

| . |

0 0. rg I

rg O N N  is a function that

associates with a cluster rg , for each subnetwork output port .ro g O , and for a

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

186 Copyright ⓒ 2016 SERSC

requested number of tokens 0n N a vector of minimal number of input tokens

1 | . |2
(, , ...)

g Ir
i i i

n n n consumed on each subnetwork input port .ri g I to produce the

requested number n of tokens on the output port o .

Step 2.2 Given
rgdep , the so-called input/output dependency states ioQ can be

calculated. Each input/output state
1 | . | 1 2 | . |2

(, , ...), , ,...
g I g Or r

i i i o o on n n n n n is a possible state of

execution of the static actors .rg A in a self-scheduled execution and is additionally a

constraint to provide the maximum possible number of output actor firings for a

minimum number of required input actor firings. Additionally, add the null

input/output state ()0,0,...0 which may be missing if the subnetwork can produce

output tokens without consuming any inputs. The input/output state set can be

defined as follows:

Definition 6 (Input/Output State Set):

1 | . | 1 2 | . |

1 | . |

1 | . |

2

2

20

(, , ...) |

(, , ...)

, , ...

{(0,0,...0)} { , , ,...

. : max(

{ | (,) ()})}

g I g Or r

g Ir

g Ir

i i i

i i i

i i i

r

r

io o o o

g r o

g

n n n n n n

n n n dep

n n n

Q

o g O n

n N dep o n



 

  

 

Each input/output dependency state is a point in the n-dimensional Euclidean vector

space
| |

0
I OA A

N


 where each dimension represents the number of firings of a subnetwork

input or output actor, respectively. The initial state is then trivially the all zero vector

representing the fact that in the beginning no actor of the subnetwork has fired.

Definition 7 (Cluster State Space): The state space Q of a cluster is defined as the

least fixpoint
' ' '

1 2 1 2({max(,)} , })ioQ lfp Q q q q q Q Q Q     which enlarges

'Q starting from ioQ by adding the pointwise maximums of all pairs of input/output

states from
'Q until no more new states are created.

After computing the input/output states, the cluster FSM can be constructed by

ordering the input/output states and computing the transitions between input/output

states.

Step 3.1 Compute the partial order 1 2n n on
'()lfp Q where

1 2n n iff

1 2. . : () ()r rp g I g O n p n p    .

Step 3.2 Compute the state set Q of the cluster FSM m by generating a state

q Q for each input/output state n not greater than or equal to the input/output

repetition vector.

Step 3.3 Compute the transition set T of the cluster FSM m by generating a

transition t T for each tightly ordered pair of input/output states.

Step 3.4 Compute the guard function N of the cluster FSM m by generating a

guard function value ()N t encoding the minimal number of tokens on each

subnetwork input port to enable the transition t from each tightly ordered pair of

input/output states.

Step 3.5 Compute the action function ()R t of the cluster FSM m .

Finally, for each transition on the basis of the partial repetition vector, a single processor

schedule is computed by a version of the scheduling algorithm to support partial repetition

vectors. This schedule is assigned to ()R t and is one of the schedule phases of the

resulting composite actor replacing the static data flow subnetwork rg .

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 187

5. Results

In order to illustrate the benefits of our clustering algorithm, we have applied it and

synthetic dataflow networks to an mp3 decoder, which works on irregular mesh of NoCs.

In order to evaluate the methodology more thoroughly, we also applied it to generate four

different SDF networks G2, G3, G5 and G7 with 60 actors each. All four networks have

the same properties except the degree of connectivity. The average input/output degree of

each actor in G2 is 2, in G3 it is 3, in G5 it is 5, and in G7 it is 7. Based on these four

networks, test cases G2-ND, G3-ND, G5-ND and G7-ND have been constructed randomly

by marking a variable number ND of actors as dynamic. For each test case, the settings ND

= 6, 12, 18, . . ., 54, 60 have been considered, and for each setting, ten instances have been

generated. The ten different instances per setting are used to compute average results in the

experiments.

The first observation is that the size of the clusters satisfying the cluster condition

depends not only on the number of dynamic actors in the network but also on the

connectivity degree. From Figure 4. we can see that a lower degree of connectivity leads to

a smaller number of static actors that can be clustered.

Figure 4. Average Number and Standard Deviation of Static Actors that can
be clustered

Then, our proposed clustering approach was applied for computing quasi static

schedules and was used during software synthesis. Our proposed clustering approach has

another advantage when comparing it with the FSM approach on the basis of the required

compile time. In these results, compile time of our clustering approach is always a small

fraction of compile time of the FSM approach, which is shown as Figure 5. This

significantly extends the area of applicability of clustering during embedded software

synthesis.

Figure 5. Average Compile Time of the FSM Approach and our Approach

In embedded systems, the available amount of memory is typically constrained. Hence,

we tested both clustering approaches with given code size constraints which have been set

to 150% of the memory requirements of the previously computed dynamic schedules. The

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

188 Copyright ⓒ 2016 SERSC

average speedup is shown in Figure 6. It can be seen that in all cases our proposed

approach are better than the FSM approach.

Figure 6. Average Speedup respecting Code Size Constraints

6. Conclusion

In this paper, we presented a clustering approach for static data flow subnetworks based

on complex network. The proposed clustering algorithm computes a quasi-static schedule

and reduces the scheduling overhead for one processor of MPSoC. Through our clustering

approach, the scheduling of these subnetworks can be coordinated with enclosing system

representations in a way that systematically exploits the predictability and efficiency of the

static data flow model. Future work will focus on optimal clustering techniques, i.e., to

generate an efficient representation of the cluster FSM state space for synthesis and to

identify which actors should be clustered in order to minimize the scheduling overhead.

References

[1] P. Pande, “Evaluation of MP-SoC Interconnect Architectures: A Case Study”, Proceedings of the 4th

IWSOC, (2004).

[2] H. Lee, “On-Chip Communication Architecture Exploration: A Quantitative Evaluation of Point-to-Point,

Bus, and Network-on-Chip Approaches”, ACM Transactions on Design Automation of

ElectronicSystems, vol. 12, no. 3 (2007).

[3] L. Bennini, “Networks on chips: A new paradigm for component based MPSoC design”, American

Scientific Publishers, vol. 11, no. 9, (2004).

[4] T. Bjerregaard, “A Survey of Research and Practices of Networkon-Chip”, ACM Computing Surveys, vol.

7, no. 38, (2006).

[5] F. Karim, “An interconnect architecture for networking systems on chips”, Micro IEEE, vol. 5, no. 22,

(2002).

[6] A. Zitouni, “A Generic and Extensible Spidergon NoC”, World academy of science, engineering and

technonogy, vol. 7, no. 31, (2007).

[7] L. Bononi, “Simulation and Analysis of Network on Chip Architectures: Ring, Spidergon and 2D Mesh”,

Proceedings of the conference on Design, automation and test in Europe: Designers’ forum, (2006).

[8] K. Srinivasan, “An Automated Technique for Topology and Route Generation of Application Specific

On-Chip Interconnection Networks”, Proceedings of the 2005 IEEE/ACM International conference on

Computer-aided design, (2005).

[9] P. Meloni, “Routing Aware Switch Hardware Customization for Networks on Chips”, Proceedings of

Nano-Networks, (2006).

[10] D. Bertozzi, “NoC Synthesis Flow for Customized Domain Specific Multiprocessor Systems-on-Chip”,

IEEE transactions on parallel and distributed systems, vol. 2, no. 16, (2005).

[11] D. Bertozzi, MinRoot and CMesh, “Interconnection Architectures for Network-on-Chip Systems”, World

Academy of Science, Engineering and Technology, vol. 7, no. 54, (2009).

[12] G. J. Smit, “Multi-core architectures and streaming applications”, Proceedings of International Workshop

on System Level Interconnect Prediction. (2008).

[13] M. A. Faruque, “Adam: run-time agent-based distributed application mapping for on-chip

communication”, Proceedings of the DAC, (2008).

[14] V. Nollet, “Centralized run-time resource management in a network-onchip containing reconfigurable

hardware tiles”, Proceedings of the DATE, (2005).

[15] A. Edwards and O. Tardieu, “SHIM: A Deterministic Model for Heterogeneous Embedded Systems”,

Proceedings of the EMSOFT, (2005).

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 189

[16] A. A. Jerraya, A. Bouchhim and F. P étrot, “Programming Models and HW-SW Interfaces Abstraction

for Multi-Processor SoC”, Proceedings of the DAC, (2006).

[17] M. C. W. Geilen, “Reduction of Synchronous Dataflow Graphs”, Proceedings of the Design Automation

Conference, (2009).

[18] G. Kahn, “The semantics of a simple language for parallel programming”, Proceedings of the IFIP

Congress, (1974).

Authors
Yue Liu, he received his Master degree of Henan University in

2010.He is a lecturer at the Institute of Information Engineering. His

main research interests include complex networks, embedded system.

Meng Meng Cao, she received her Master degree in software

engineering from Tongji University in 2008. Her main research

interests include embedded system, complex networks, artificial

intelligence and electrical engineering.

Kong Jie, he was born in 1965. He received the M.E. degree in

software engineering from Huazhong University of Science and

Technology, Wuhan, China in 2007. He is currently a senior engineer

with the Naval Academy of Armament, Beijing, China. His research

interests are embedded system, software engineering, database

technology and computer network technology.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

190 Copyright ⓒ 2016 SERSC

