
International Journal of Future Generation Communication and Networking

Vol. 9, No. 9 (2016), pp. 169-180

http://dx.doi.org/10.14257/ijfgcn.2016.9.9.15

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

Single Digit Hash Boyer Moore Horspool Pattern Matching

Algorithm for Intrusion Detection System

Sakshi Sharma and Manish Dixit

Department of CSE& IT

MITS

Gwalior, India

Sharmasakshi1009@gmail.com and dixitmits@gmail.com

Abstract

During the past time information on internet increasing enormously which greed the

attacker and invite them for attack. In order to provide protection from illegal access the

concept of Intrusion Detection System (IDS) is introduced. Intrusion detection system

recognized as a powerful tool for identifying malicious attacks over the network. IDS

works on the concept of string matching with the help of Detection engine. Detection

engine of IDS uses String matching algorithm for comparing against malicious activities.

This comparison takes enough processing time nearly 70% of the whole IDS processing

time by improving performance of searching algorithm. In this paper, we proposed an

enhanced version of Hash-Boyer-Moore-Horspool string matching algorithm by adding a

single digit hash function for reduced the number of character comparisons and improve

the efficiency of IDS by reducing the number of false positive match.

Keywords: IDS, String Matching Algorithm, Hash Function, Malicious, Performance

Degradation, Pattern, Single Digit Hash Function.

1. Introduction

Network security is a largely growing area of concern for every network. The

continued growth of network traffic results in performance degradation. IDS is a concept

which tries to detect unwanted network traffic and malicious content such as Port

Scanning, Spoofing, Denial of Service attack due to these kind of activity's performance

of IDS became challenging and important [1].

IDS works on the two Detection method- Anomaly based Detection and Signature

based Detection. Anomaly based Detection finds unusual packet based on their behavioral

log activities [2]. It must be useful for new generated attack, but sometimes it result in

performance bottlenecks due to false alarm rates. Signature based detection finds attacks

based on the old log files so sometimes it fails to recognize a newly generated attack for

overcome this problem we need to update the rule policies time to time [11]. Signature

based IDS uses Pattern Matching algorithm for Deep packet examination. Packet

Matching Algorithm is the principal of IDS. It inspects each arriving packet against the

predefined rule policies this process results in slow down the system and time consuming

[12]. As day by day new attacks are created by the attacker therefore we need to update

our rule policies for this purpose, necessity of String Matching Algorithm occurs which

captures a maximum number of unwanted packets without the degradation of system

performance and take less time. Several Pattern Matching Algorithms present in current

scenario [3]. In this paper, we introduced a Single Digit Hash Boyer Moore Horspool

Algorithm to improve the performance by reducing the number of character comparison

and reduces false match.

mailto:Sharmasakshi1009@gmail.com
mailto:dixitmits@gmail.com

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

170 Copyright ⓒ 2016 SERSC

2. Related Work

2.1. Boyer Moore Algorithm

Boyer Moore Algorithm begins with the rightmost character and track pattern from

right to left. If there is a mismatch occurs, it uses two precalculated functions for shift the

window right. Two shift functions are- Good Suffix Shift and Bad Character Shift, but it

is difficult to analyze because the bad character shift is not very efficient for small

alphabets [4][5].

2.2 Boyer Moore Horspool Algorithm (BMH)

BMH is an enhanced version of the Boyer Moore Algorithm with a small

improvement. BMH uses only bad character shift table despite the fact, Boyer Moore uses

two tables- Good Suffix Shift and Bad Character Shift. Its search the pattern from left to

right and search values depends on the pattern size [9]. If the size of the pattern is larger

therefore shift value is also larger, due to this improvement BMH performs in a faster way

as compare to Boyer Moore. It has the low space complexity and easy to implement [6].

2.3. Hash Boyer Moore Horspool Algorithm (HBMH)

HBMH works on the basis idea of BMH with a little enhancement. It combined hash

fingerprinting with BMH. The hash fingerprints are calculated in the same way the Karp-

Rabin Algorithm [10]. This method reduces the number of character comparison at each

time and reduces the comparison time, but there is still require some enhancement to

improve false alarm rate and its characters comparison speed with new hash function [7].

3. Proposed Method

In this segment, we describe the procedure for improving the HBMH algorithm by

adding a single digit hash function to work along with the shift table of the BMH

algorithm. This hash function converts the string pattern into a numeric value. It can be

calculated using the following hash function.

11[1]*(m)2+w12[1]*(m+1)2+w21[2]*(m+2)2+w22[2]*(m+3)2+…

 +wn1[n]*(m+n-1)2+wn2[n]*(m+n)2]

 Where m=1, n= last index number

The single digit hash function helps to reduce the number of character comparison in

overall string as compare to previous used hash function thus, it saves the comparison

time. Here, we take the example for explain the main idea behind using the single digit

hash function for this algorithm.

Suppose we have the text (TSOSPOTRPOSTSTOPORV) and the pattern (POST). The

HBMH starts by designing the Bad Characters Table bmBc by using given pattern just

like used in BMH. Here, Bad character table used to hold the shifting value of each

character. This gives the number of shift values, shifted by characters after each

comparison executed between the text and pattern [8]. Consequently, the Algorithm is

executed to find the match between the text and pattern. It matches the hash of the pattern

from the hash generated for text, if the hash of text and pattern matches, then we match

each character otherwise we skip the text. It reduces the number of comparison if there is

mismatch so HBMH shift to the next comparison, according to the right most mismatches

character which is (s=1) by using the Bad character shift table shown in fig.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 171

A O P R S T V

bmBc(a) 2 3 4 1 4 4

Hash(TSOS)=1687 Window Text

T S O S P O T R P O S T S T O P O R V

Mismatch

Hash(POST)=1206

Figure 1. HBMH Matching Process for Text and Pattern

The algorithm starts the comparison of the hash of text(1687) against the hash of

pattern(1206). As there is no matching between the hash, then algorithm move ahead

without check the remaining text its move forward 1 character using the Bmbc table(s=1

shift value) again, it repeat the same procedure but hash of POTR(1206) match with the

hash of POST(1206). Then it starts to compare characters of string which does not match.

It results in false match and 4 comparisons. In the next step hash match occurs (POST

against POST). This time true match occurs and 4 more comparisons counted. Same

process runs consequently; in this case, Algorithm takes more time to check the false

alarm and performs a large number of string matches with more time if the pattern size is

large. As shown in figure.

T S O S P O T R P O S T S T O P O R V

 False match

Hash(p)=Hash(T)

Figure 2. HBMH Matching Process for False Match (POTR)

T S O S P O T R P O S T S T O P O R V

 True match

 Hash(p)=Hash(T)

Figure 3. HBMH Matching Process for True Match (POST)

T S O S P O T R P O S T S T O P O R V

 False match

Hash(p)=Hash(T)

Figure 4. HBMH Matching Process for False Match (PORV)

From above example, we clearly found that there is wasted effort and time in each false

comparison between the characters of the text (TSOSPOTRPOSTSTOPORV) and the

pattern (POST).

There are a large number of incoming packets and rule policies used in IDS. It’s a time

consuming process for applying check on each incoming packet, so there is a need of the

algorithm which performs check with minimum time and false alarm rate. For this

purpose, we implement a single digit HBMH (SDHBMH) to overcome the drawback of

HBMH algorithm. This single digit hash function algorithm converts each character of

text and pattern into digit. By using an improved hash function which results in reduce

P O S T

P O S T

P O S T

P O S T

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

172 Copyright ⓒ 2016 SERSC

number of character comparison and false alarm rate, which improve the performance of

the IDS.

T S O S P O T R P O S T S T O P O R V

 True match

 Hash (p) =Hash(T)

 1171=1171

Figure 5. SDHBMH Matching Process for True Match

As shows in the above example, the hash of text (POST) is 1171 and the hash of

pattern (POST) is 1171. So the hash of text and pattern are equal, then we compare the

characters of the text and pattern. There are match of characters occurs. It reduced the

number of false match as compared to HBMH which reduce the false alarm rate and

results in performance improvement of IDS.

A O P R S T V

bmBc(a) 2 3 4 1 4 4

Hash (TSOS) = 1227 Window Text

T S O S P O T R P O S T S T O P O R V

Mismatch

Hash (POST) = 1171

Figure 6. SDHBMH Matching Process for Text and Pattern

From above figure, we see that there are comparison between the window text (TSOS)

and pattern (POST). The SDHBMH will shift the pattern by 1 position by using the value

of S given in shift table. After that, SDHBMH will calculate the hash value for next text

window (SOSP) and then comparison occurs between the text and pattern this process

continue until the text window ended. In the given table we show the matching process

comparison of HBMH and SDHBMH.

Table 1. Shows the Matching Comparison of HBMH and SDHBMH

Number of

steps

Text

data

Matching result for

HBMH

Matching result for

SDHBMH

1 TSOS Not match Not match

2 SOSP Not match Not match

3 POTR False match Not match

4 POST Match Match

5 STOP False match Not match

6 PORV False match Not match

P O S T

P O S T

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 173

3.1. Algorithm for SDHBMH Pattern Matching

Step 1: Capture the packet.

Step 2: Perform decoding on the packet.

Step 3: Applying Preprocessing on the packet.

Step 4: Take the text string and pattern string from the packet based on the rule and

Computes

 the Single Digit Hash Function using function .

Step 5: Apply Boyer Moore Horspool Algorithm.

Step 6: If both hash value are not equal.

Step 7: Goto step 4

 Else

Step 8: Compare the String.

Step 9: If both string are not equal.

Step 10: Goto step 4

 Else

Step 11: Generate the Alert.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

174 Copyright ⓒ 2016 SERSC

3.3 Flow Chart of Proposed Algorithm

 Figure 7. SDHBMH Flow Chart

Above flowchart is used to show the process flow algorithm in IDS aspect. Firstly

decoder captures the packet from distinct network interfaces (like PPP, Ethernet etc.) and

sends it for the preprocessing. Then preprocessor perform defragmentation on packets,

categorization of data based on interfaces, decode HTTP URL after these processes

preprocessor send the selected Text string to the Detection engine where we apply rule

and give the pattern string in rule. Pattern string is the content which we want to find in

our network data. After this we perform single digit hashing on the pattern and text data

and apply Boyer Moore Horspool method for comparing the hash value of the text and

pattern if both are matched, then we compare string character by character if both string

Packet

Decoder

Preprocessing

Text String

Perform Single Digit

Hashing

Apply Boyer

Moore Horspool

Compare Hash Value

Pattern

Text

Text

Rules

If Both Hash

are Equal

Compare the String

If Both Text

are Equal

Generate Alerts

D

E

T

E

C

T

I

O

N

E

N

G

I

N

E

Yes

Yes

No

 No

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 175

are matched then generates the alert. And in the case of mismatching of hash value or

string we move to the starting phase of detection engine where we move according to the

Boyer Moore algorithm and again apply the hash function and repeat the process until

whole data is detected.

3.2. Code Implementation

int hash (int exval[], int c)

 { // exval [], is an array which contains extracted single digit from string.

 int i,j; // int c, count of total extracted digit from string

 j=1;

 int sum=0;

 for (i=c-1;i>=0;i--)

 {

 sum= sum+(exval[i]* pow(j,2));

 j++;

 }

 return sum;

}

4. Implementation of SDHBMH

String matching algorithm is the heart of the ids. Its mainly consists of two phases;

preprocessing phase and searching phase. SDHBMH also has these two phases [7].

Preprocessing phase

1. Change signature string to bytes in array form.

2. Create a 2-dimensional bmBc table.

3. Decides how to move a proper position in the search.

4. Values of table are fixed during the searching process.

5. Calculate the numeric value of text and pattern.

Searching phase

1. Calculate the hash function for value comparison.

2. Compare text from right to left at each point.

3. If a mismatched occurs.

4. Move to the next to the last character of the current text window for executing the

next matching process.

4.1. Rule used in Snort for String Pattern Detection

Given figure shows the incoming packet format in real world. We perform analysis on

this kind of captured packet format.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

176 Copyright ⓒ 2016 SERSC

Figure 8. Capture Packet Format in Snort

alert tcp $HOME_NET any <> $EXTERNAL_NET any (msg:"Match the string";

flow:from_client; content:"POST"; http_method; classtype:string-detect; priority:10;

sid:1000000; rev:1;)

Figure 9. Rules File in Snort

The above rule is used to detect the string in snort packet, and generates the output

which shown below.

Then these rules are running in IDS mode, as shown in given figures. Which capture

the whole network traffic and generates the alert file for the matched string.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 177

Figure 10. Snort Run in IDS Mode for Packet Capturing

Figure 11. Alert File Generation

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

178 Copyright ⓒ 2016 SERSC

5. Result Analysis

As we shown in the given example. If we apply HBMH and SDHBMH algorithm on

(TSOSPOTRPOSTSTOPORV). We notice that the performance of SDHBMH is better as

Compare to HBMH. SDHBMH reduces the number of comparison and reduce the false

alarm rate with minimum time. There are 12 comparisons using the HBMH and

SDHBMH has only 4 comparisons. This shows that SDHBMH improve the performance

of network security applications such as IDS in a faster way.

0

2

4

6

8

10

12

14

HBMH SDHBMH

Character Comparison

Character Comparison

Figure 12. Performance Comparison of HBMH and SDHBMH

6. Conclusion

As the use of internet growing constantly and traffic on the network increases

tremendously and uses network security systems so there is need of developing an

efficient and fast string matching algorithm arises for finding the malicious patterns in the

network traffic. Internet is the main need of every organization so security of the internet

is also a major issue. We can solve this issue by using IDS. IDS analyze the incoming

packets against the malicious activities. It uses pattern matching algorithm for this

purpose and apply rule policies. In this work, we have suggested a new approach for

string matching which improve the IDS performance and efficiency by reducing the

character comparison time and also minimize the false match. Proposed work gives a

single digit hash function which results in performance improvement over the HBMH.

SDHBMH execution is faster than the HBMH algorithm. SDHBMH is good for IDS

because it provides a faster method for packet content comparison in real world with

minimum wrong alert.

References

[1] Mahdinia, Payam, Mehdi Berenjkoob, and Hedayat Vatankhah. "Attack signature matching using

graphics processors in high-performance intrusion detection systems." In Electrical Engineering (ICEE),

2013 21st Iranian Conference on, pp. 1-7. IEEE, 2013.

[2] Hasan, Awsan A. "Multi-Pattern Boyer-Moore-Horspool Algorithm based Hashing Function for

Intrusion Detection System." Lecture Notes on Information Theory Vol 1, no. 2 (2013).

[3] Gupta, Vibha. "Pattern Matching Algorithms for Intrusion Detection and Prevention Systems." PhD

diss., Thapar University Patiala, 2014.

[4] Zhao, Dongcan, Xiaomin Zhu, and Tong Xu. "Improvement of algorithm for pattern matching in

intrusion detection." In Broadband Network & Multimedia Technology (IC-BNMT), 2013 5th IEEE

International Conference on, pp. 281-284. IEEE, 2013.

[5] Boyer, Robert S., and J. Strother Moore. "A fast string searching algorithm."Communications of the

ACM 20, no. 10 (1977): 762-772.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

Copyright ⓒ 2016 SERSC 179

[6] Horspool, R. Nigel. "Practical fast searching in strings." Software: Practice and Experience 10, no. 6

(1980): 501-506.

[7] Awsan Abdulrahman Hasan and Nur Aini Abdul Rashid " Hash - Boyer-Moore - Horspool String

Matching Algorithm for Intrusion Detection System." IPCSIT vol.35(2012) , Singapore.

[8] Qiao, Jiaxing, and Hua Zhang. "Improvement of BM algorithm in intrusion detection system."

In Software Engineering and Service Science (ICSESS), 2015 6th IEEE International Conference on, pp.

652-655. IEEE, 2015.

[9] Charras, Christian, and Thierry Lecroq. Handbook of exact string matching algorithms. King's College,

2004.

[10] Karp, Richard M., and Michael O. Rabin. "Efficient randomized pattern-matching algorithms." IBM

Journal of Research and Development 31, no. 2 (1987): 249-260.

[11] Sharma, Sakshi, and Manish Dixit. "A Review on Network Intrusion Detection System Using Open

Source Snort." International Journal of Database Theory and Application 9, no. 4 (2016): 61-70

[12] Kelly, James. "An Examination of Pattern Matching Algorithms for Intrusion Detection Systems." PhD

diss., Carleton University Ottawa, 2006.

International Journal of Future Generation Communication and Networking

Vol. 9, No.9, (2016)

180 Copyright ⓒ 2016 SERSC

