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Abstract 

In this paper, we propose a robust blind multiuser detector for code-division multiple 

access (CDMA) systems against signature waveform mismatch (SWM) derived from the 

influences of time asynchronization or channel distortion. This blind detection method 

with SWM problem is formulated as blind source separation (BSS) model subject to the 

second-order cone (SOC) constraint. The resulting blind separation based on SOC 

programming problem is solved by approximate negentropy maximization using quasi-

Newton iterative methods. Theoretical analysis and simulation results show that the 

performance of the proposed blind detector is superior to those of the existing methods. 

 

Keywords: Code division multiple access (CDMA); Second-order cone programming; 

Blind source separation (BSS); Blind multiuser detector；Independent Component 

Analysis (ICA) 

 

1. Introduction 

In the past few years, blind source separation (BSS) technique has received 

considerable interests for its potential application to wireless communication systems [1-

30]. Especially, the research work of CDMA system with BSS technology is of great 

importance for anti-jamming in military communications (MILCOM) and satellite 

communications (SATCOM). The signal separation problem is decorated “blind” to 

reflect the lack of information concerning the source signals and mixing matrix (i.e. 

channel condition). The only prior information utilized is the often soundly justified 

assumption of statistical independence between the source signals. Thus, BSS is also 

known as independent component analysis (ICA) [1-3]. ICA is a statistical technique 

where the goal is to represent a set of random variables as a linear transformation of 

statistically independent component variables. By virtue of the ICA technique, the 

observed mixed signal can be decomposed into as a representation of meaningful sources, 

and the sources of interest can be extracted and recovered.  

There are some motivating reasons to use the means of ICA in the reception of a 

CDMA system [8-9]. First of all, ICA provides a near-far resistant receiver, being able to 

resist strong interferences.  Since ICA only requires the source signals to be statistically 

independent, but their strengths are allowed to differ. Secondly, ICA provides robustness 

against erroneous parameter estimation. Since ICA does not need that precise knowledge 

of the system’s parameters due to blind properties. Thirdly, ICA technique can combine 

with the existing receiver structure to establish hybrid receiver structures, which can be 

intelligently activated to improve performance. At last, the spectrum effectiveness of 

CDMA system can be enhanced due to eliminating (long) pilot sequence. That is to say, 

the crucial factor of employing blind detector is to avoid the requirements of a training 

sequence and the reduced loss of channel throughput. Therefore, blind detector is 
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attractive for the high spectrum effectiveness need of the future wireless communications 

[31]. 

Blind multiuser detection (BMUD) is known as blind con-channel interference 

suppression or blind interference cancellation [15, 27]. It has important application to the 

channel problem suffered by time-variant multipath fading and multiple-access 

interference (MAI). As far as we are concerned, we can divide the existing BMUD 

method into three types of blind multiuser detectors for CDMA system. The first type of 

blind detectors is based on accurate knowledge of the channel impulse response or the 

signature waveform of the user of interest at the receiver [4-6]. However, in the practical 

circumstances, a perfect estimation of the information of channel parameters cannot be 

conveyed to the receiver, leading to the degraded performance of the system accordingly. 

For example, the constrained minimum output energy (CMOE) based linear minimum 

mean square error (LMMSE) blind detector is proposed by Honig et al. in [6]. However, 

due to the presence of channel and data correlation matrix estimation errors, this blind 

multiuser detector has descent performance. The second type of blind multiuser detectors 

is the subspace-based blind detectors [7-8]. Those blind receivers are always based on 

second-order statistic (SOS) using eigenvalue decomposition (EVD) on the covariance 

matrix of the received signal. However, in this type of blind detectors, the orthogonality 

between the signal and noise subspaces is suffered serious damage due to correlated noise 

subspace [8-9].  

The third type of blind multiuser detectors is the ICA based BSS detection, which is 

also referred to as ICA-based receivers [10-26]. The higher-order statistic (HOS) based 

ICA algorithms are used to deal with BSS of unknown sources from a mixed-up received 

signal. The ICA-based receivers are based on the assumption of the independence and 

non-Gaussianity of the sources. In many ICA-based receivers, the approximate 

negentropy maximizing based fast independent component analysis (FastICA) [1-2] and 

fourth-order cumulant based joint approximate diagonalization of eigen-matrices (JADE) 

[2] are always used to carry out blind separation work. For ICA-based blind detectors, 

two major problems are investigated by many researchers, i.e. external interference 

cancellation problem and internal interference cancellation problem [10-26]. In the 

external interference cancellation problem, the CDMA signal and external interference 

signal are mutual independence, which is modeled as ICA model based on two-sensor 

array [10-14]. Then ICA algorithm is executed blind separation to suppress external 

interference, following that the separated CDMA signal is implemented conventional 

detection for the desired user signal. For example, the work is in [10-14]. In view of the 

internal interference cancellation problem, the structure of the CDMA channel where all 

the users transmit their data poses a similarity to the BSS problem and prompts the use of 

ICA in this scenario [15-26]. Then the blind separation work can be carried out so that 

each user signal can be separated from the mixed signals. For example, the related works 

are shown in literature [15-26]. 

However, the ICA technique has inherent ambiguity problem. The ambiguity feature 

of any ICA method is that it is able to estimate a set of independent source signals, but 

the order of those will be unpredictable. Therefore, with regard to ICA-based receivers, it 

is not meaningful to apply ICA (FastICA or JADE) on its own to implement separation 

work directly. In order to overcome this problem, the literature [16, 17] proposes that the 

ICA part is incorporated as an add on to the existing MMSE or rake receiver, i.e. MMSE-

ICA and RAKE-ICA detectors. The two types of detectors are developed by modifying 

the classical FastICA algorithm based on the quasi-Newton iteration as well as the proper 

starting point initializing iterations. In literature [18] presents an algorithm to remove the 

indeterminacy in ICA solution by imposing a norm constraint based on the knowledge of 

the signature code of the desired user. The previous related ICA-based detectors first 

implement the centering and whitening steps and then select the appropriate starting point 

initializing iterations for obtaining the correct weight/filter vector. However, the above-
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mentioned ICA-based detectors are sensitive to the colored noise, which will lead to 

falling system’s performance. The reason is that the whitening based eigenvector 

projection is unable to decorrelate the mixed-up signals. Likewise, the SOS-based 

technique will fail under colored noise environment since some of correlated noise 

subspace diverges into the signal eigenvectors causing serious destruction to this 

orthogonality especially at low SNR [27-29]. 

In the literature [26], the authors propose a robust blind multiuser detector for CDMA 

systems based on second-order cone (SOC) programming. In [26], the worst-case 

performance optimization is utilized to overcome the SWM problem. Furthermore, the 

SOC programming is incorporated to as an add on to JADE blind separation algorithm, 

i.e. SOC-JADE. In addition to the statistical properties of fourth-order cumulant, SOC-

JADE has robust performance to SWM and colored noise. However, this proposed 

algorithm has higher computation complexity. Especially, when the number of users in 

CDMA system is large, the separation work is too consuming to adapt the real-time 

requirement in communications. Therefore, motivated by the channel environment 

encountered in many CDMA applications, the design of new blind multiuser detectors is 

attractive and appealing to satisfy further anti-interference requirements.  

In this paper, a new blind multiuser detector will be developed, which is based on 

approximate negentropy maximization subject to SOC constraint [26-28]. The proposed 

algorithm can be considered as a modified FastICA algorithm which is referred to as 

SOC-FastICA in this paper. The SOC-FastICA based blind detector is not only capable of 

dealing with the weight order ambiguity present in the classical ICA algorithm, 

converging on the correct solution subject to colored noise, but also has lower 

computation complexity. Theoretical analysis and computer simulations indicate that the 

performance of the proposed blind multiuser detectors is superior to those in existing 

literatures.  

The remaining of this paper is organized as follows. In Section 2, the ICA technique is 

reviewed. Section 3 describes the signal model for the CDMA system. Section 4 

illustrates the principle of blind detectors based on ICA and the proposed algorithm for 

blind multiuser detector respectively. Section 5 analyzes the computation complexities of 

proposed algorithm, and is compared with other existing blind detectors. Simulation 

results and discussions are shown in Section 6. Section 7 concludes this paper. 

 

2. Independent Component Analysis 

Independent component analysis (ICA) is a statistical technique which involves the 

task of computing the mixing projection of a set of components as a linear transformation 

of statistically independent component variables. The main application of ICA is blind 

separation problem, which has become an appealing field of research in statistical signal 

processing related communications [1, 24]. The increasing interest in ICA is mainly due 

to emerging new practical application areas, where the assumption of independence is 

both powerful and realistic, which making it possible to find meaningful source signals or 

independent component from the data to be analyzed in a completely blind manner [16-

18]. In the conventional ICA method, the data model is described as follows. 

Consider a set of C  measured signals ( ) ( ) ( ) ( )1 2
, , ,

T

C
m y m y m y mé ù= ê úë û

y K  are 

instantaneous linear combinations of a set of K  mutually independent unknown source 

signals ( ) ( ) ( )1
, ,

T

K
m b m b mé ù= ê úë û

b K . In its simplest form, the ICA/BSS problem 

accepts the following matrix model.  

    ( ) ( ) ( )m m m= +y Gb n                                               (1) 

whereG is an unknown full rank mixing matrix, ( )mn  is a realization of a noise process. 
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If the mixing matrixG is non-singular, ( )my  is a stationary ergodic random sequence, 

and no more than one Gaussian distributed sources is present in the mixture, forcing the 

statistical independence of the outputs yields the sources as follows 

( ) ( )m m=z Wy                                                    (2) 

where W  is referred to as separation matrix. Since the scale and the order of the 

components of ( )mb  do not affect their statistical independence, satisfactory separation 

is characterized by a global matrix =C WA with a non-mixing structure, that is, with a 

single non-null element per row and per column. This is an inherent feature of any ICA 

method is that the original scaling and arrangement cannot be estimated from the mere 

independence assumption. Although it is unimportant in blind separation problem, it 

should not to be ignored in communication systems. A schematic description of the ICA 

mathematical model is shown in Figure1. 
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Figure 1. Schematic Description of the ICA Model  

3. CDMA System Model 

A CDMA channel is characterized by the fact that there is no separation between the 

users in the frequency domain or in the time domain. In CDMA, each user uses its own 

code sequence (or signature sequence) to spread its narrowband information signal before 

transmission. The signature sequence is user specific, thus identifies each user in the 

system. The signal received at the receiver in continuous time domain can be represented 

as 

   ( ) ( ) ( ) ( )
1

M K

k k k k
i M K

y t A b i s t iT n tt s
= - =

= - - +å å                            (3) 

where ( )y t  is the received signal; 
k

A  is the thk user’s channel gain; ( ) 1, 1
k

b i é ùÎ - +ê úë û
 is 

the thi  data symbol transmitted by the thk  user; ( )k
s t  is the deterministic signature 

waveform assigned to the thk user in the channel; T  is the inverse of the data rate or the 

symbol time interval; 
k

t  is the relative offset of thk user, which depends on channel 

spread; 
2s  is the noise power spectral density; ( )n t is the additive white Gaussian noise 

(AWGN) with unit power spectral density; K and 2 1M +  are the number of users and 

observed symbols in a block, respectively. In the above system model it is assumed that 

the data symbols are independent, identically distributed (i.i.d) random variables. 

In this paper, we focus on a synchronous CDMA system model. However, the method 

can be extended to an asynchronous CDMA system by extending the observation interval. 

Note that the detrimental affect of channel distortion or timing asynchronism can also be 

incorporated into signature waveform mismatch problem which will be discussed in the 

following section. The simplified one-shot (i.e. one symbol period) synchronous CDMA 

model is given by: 
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         ( ) ( ) ( )
1

K

k k k
k

y t A b s t n ts
=

= +å                                              (4) 

The first processing task in the receiver is sampling the continuous-time received data. 

Here we assume chip rate sampling, which means C  equal-spaced samples are taken 

from successive time intervals of T seconds, whereC is the processing gain. Sampled 

data is then processed a window of a specific size. This is because symbol of desired and 

interfering transmissions fall entirely to one symbol interval in synchronous 

communication. After matched filtering and chip rate sampling, the received signal ( )my  

for thm  symbol can be expressed as a 1C ´  vector: 

    ( ) ( ) ( ),
1

K

k m k k
k

m A b m ms
=

= +åy s n                                         (5) 

where
k

s  is the 1C ´  vector representation of thk  user’s signature sequence and ( )mn  

is the 1C ´  Gaussian noise vector. Assume that the channel gain of the user signal is not 

changing relative to bits, therefore
,k m k

A A= .  In the remaining sections we will assume 

that the user 1 is the desired user and the signature code of the desired user is assumed to 

be known. For example, in the CDMA downlink scenario, the prior signature information 

of detected user is known in advance. 

 

4. Blind Detector based on Second-order Cone Programming 
 

4.1. The Principle of Blind Detector Based on ICA  

In this subsection, the principle of ICA-based blind detector for CDMA system is 

illustrated. The representative ICA-based blind detector for CDMA system is shown in 

Figure 2. The received CDMA signals can be formulated as the mixed observation signals 

in blind separation model. The effect of channel distortion or timing asynchronization can 

be formulated as the mixing matrix in blind separation model. Based on this viewpoint, 

the source signals can be separated or extracted from the received signals using ICA-

based blind separation technique. Considering the equation (5), the basic ICA-based BSS 

model can be acquired as follows,  

 

 

User1User1

User2User2





UserKUserK 

Channel1Channel1

Channel2Channel2

ChannelKChannelK

 

ICA

&

Identification

ICA

&

Identification

User1User1

User2User2

UserKUserK

1b

n
2b

Kb

1b̂

2b̂

ˆ
Kb

y

1c

2c

Kc

Source Signals
Mixing Matrix

Separating Matrix
Separated Signals

Observed Signals

Noise

 

Figure 2. CDMA System Model Based On ICA-Based Blind Detector 
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. 
( ) ( ) ( )

( ) ( )
1 1 2 2 1

, , ,
K K KC K

m A A A m m

m m

s

s
´´

é ù= +ê úë û
= +

y s s s b n

Gb n

K
                  （6） 

In ICA-based CDMA model in (6), ( )my  is the thm  observed data vector, G is an 

unknown full rank mixing matrix, ( )mb  is an unknown non-Gaussian source vector. The 

goal is to estimate the source ( )mb given only the observations ( )my and the assumption 

of the independent sources. That is to say, the estimated source signals =z Wy are 

independent and each of them can be used to represent one of the sources. The ICA 

technique is always based on higher-order statistical (HOS) to formulate cost function. 

The HOS-based ICA algorithm is actually an unsupervised or neural network learning 

rule transformed into an efficient fixed-point iteration [1, 2]. Afterward, specific features 

of the received mixed-up signals will be extracted by maximizing their approximate 

negentropies. Next the principle of the maximizing approximate negentropies will be 

illustrated so that the separation matrix and source signals can be obtained for blind 

detection of CDMA systems. 

The basic processing of blind separation is to find a certain signal tap and 

makes
H

k
=z w y  , where the vector w  is a certain signal tap-weight vector inW  and 

the superscript H denotes the complex conjugate transposition. This inference is that 

making the cost function based on the maximum of non-Gaussian is given by as follows 

[1, 2].  

( )
2

H

k
J E G

í üæ öï ïï ï÷ç= ì ý÷ç ÷çï è øïï ïî þ
z w y                                                (10) 

Then, maximizing (10) subject to unit variance constraint { }
2

1HE =w y , the weight 

vector w  of the classical complex-valued FastICA can be obtain the optimization 

problem. 

    { }
2 2

maximze , . .E 1H HE G s t
í üæ öï ïï ï÷ç =ì ý÷ç ÷çï è øïï ïî þw

w y w y                               (11) 

It has been demonstrated through stability analysis that almost any nonquadratic, even 

function can be regarded as a cost function for non-Gaussianity maximization. For super-

Gaussian signals, a suitable choice of the G function is a smooth, even function with fast 

computation, such as [1, 27]  

     
2

log 0.1 HG
æ ö

÷ç= + ÷ç ÷çè ø
w y                                                  (12) 

Independent components with super-Gasussian distribution tend to be found first. 

To achieve distinct convergent points, a Gram-Schmidt-like orthogonalization 

technique is generally applied after every iteration step to separate the signals of each 

user. Available information can be used to solve the problem of weight order ambiguity, 

either by indirectly choosing appropriate close point initializing ICA iterations or by 

directly adding the additional constraint [14-20]. The proposed idea which imposes the 

additional SOC constraint in the classical complex-valued FastICA algorithm and then 

initializes iterations using the desired spreading code could attain interference 

suppression and adaptive technique for blind detection over the condition of channel 

distortion and time asynchronisms in CDMA systems. 
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4.2. Blind Detector Subject to SOC Constraint 

Taking into account some actual factors, the actual received signature waveform can 

be modeled as ( )ˆ
k k k k

A= +s s e  , where ke is the mismatch error vector. Note 

that kA can be estimated by matching the channel output power with 
2

k
s [26].  In this 

way, we obtain the following normalized received signature waveform: 

k k k
= +s s e                                                          (13) 

Clearly, 
2

k
e  is a measure of the magnitude of signal waveform mismatch (SWM). The 

distortion can be due to asynchronism or multipath fading [26]. For example, in the case 

of timing asynchronism, we can use Taylor approximation to bound ( ) ( )t tt+ -s s   , 

where t  is the timing offset. Hence, the signal waveform mismatch error is easily bound 

by BC t= - £e s s , where B  is the upper bound for the derivative of the 

continuous signature waveform ( )ts  , and C is the spreading factor. In a multipath 

environment with an L -tap channel response h , the actual received signature waveform 

is 
k k
= Äs s h  . Hence, we can obtain the following bound on the mismatch error vector: 

   ( )
k k k k k

k idea

idea
L

= - £ Ä -

£ Ä -

£ -

e s s s h s

s h h

h h

                                  (14) 

where
idea

h denotes the ideal channel response. If the channel has a main line of sight 

component and small multipath components, then
idea

-h h will be small. Without loss 

of generality, suppose that user 1 is our desired user whose signature waveform is 

expressed as
1

s . We assume the distortion error 
1

e  in the desired signal waveform can be 

bounded by some constant 0d > , that is, 
1

d£e . The size of d  can be estimated, for 

example (14). The actual received signal waveform
1

s  can be described as a vector in the 

set 

   ( ) { }1 1 1 1 1 1
,S d d= = + £s s s e e                                          (15) 

Consider the equation (5), (6) and signature waveform mismatch, then yielding 

   ( ) ( ) ( ) ( )1 1 1
2

K

k k k
k

desired user noise
Interference

m A b m A b m ms
=

= + +åy s s n
14442 4443 1442 443

1444442 444443

                          (16) 

From (16), the first term is the desired user, the second and third terms are the 

interference vector and noise vector with regard to desired user. For constraint 

satisfaction, the weight vector w must satisfy
1

1H ³w s  for all vectors [26-28]. Such a 

constraint guarantees that the data symbols of user 1 can be taken from the mixture, 

regardless of how its signal waveform is mismatched, while the error is bounded by d . 

Now suppose that the weight constraint is enforced; the main goal will be to find a 

vector w  that maximizes the cost function
2

HE G
í üæ öï ïï ï÷çì ý÷ç ÷çï è øïï ïî þ

w y . Then, the problem of worst-

case design of the ICA detector based on approximate negentrogy maximization can be 
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formulated as  

2

1 1
maximze , . . 1H HE G s t for d

í üæ öï ïï ï÷ç ³ £ì ý÷ç ÷çï è øïï ïî þw
w y w s e                      (17) 

The problem in (17) can be rewritten as  

      
1

2

1
maximze , . .min 1H HE G s t

d£

í üæ öï ïï ï÷ç ³ì ý÷ç ÷çï è øïï ïî þw e
w y w s                           (18) 

The ICA formulation introduces the additional SOC Programming condition, which has 

infinitely many nonconvex quadratic constraints on w . According to the derivation of [28, 

29], it can be easily shown that in the case of a sufficiently small uncertainty (i.e., where 

the uncertainty radius
1

Hd £ w s w  ), the left-hand side of the constraint in (18) can 

be rewritten as  

  ( )
1

1 1 1
min H H

d
d

£
+ = -

e
w s e w s w                                         (19) 

Using (19) and taking into account that the cost function in (17) is not affected by an 

arbitrary phase rotation of w , the problem of (18) can be described in this form: 

2

1
maximze , . . 1H HE G s t d

í üæ öï ïï ï÷ç - ³ì ý÷ç ÷çï è øïï ïî þw
w y w s w                         (20) 

If the cost function in (20) is maximized, the inequality constraint in (20) is satisfied, 

which means that, while maximizing the cost function in (20), the equality constraint 

1

H d k- =w s w  is satisfied, where 1k ³  . Then, an extra constraint { }1
Im H

w s  

can be omitted because the equality constraint 
1

H d k- =w s w guarantees that the 

value of 
1

H
w s  is real-valued and positive. Using the equality constraint, the weight 

vector w is obtained by rewriting the convex optimization problem of (20) as  

2 2

12

1
maximze , . .H H HE G s t k

d

í üæ öï ïï ï÷ç - =ì ý÷ç ÷çï è øïï ïî þw
w y w s w w                      (21) 

This solves the optimization problem of worst-case performance by maximizing the 

approximate negentropy subject to the SOC constraint. The constrained optimization 

problem in (21) will be derived by the quasi-Newton iteration. Newton’s method is based 

on the Lagrangian function 

   ( )
2 2

0 12

1H H HJ E G m k
d

æ öí üæ öï ï ÷ï ï ç÷ç ÷= - - =çì ý÷ç ÷÷ç ç ÷ï è øï çè øï ïî þ
w w y w s w w                      (22) 

Where
0

m is a Largrange multiplier. The pre-whitening step is omitted in order to simplify 

writing..  To use the approximate Newton iteration, the weight-updating algorithm is 

described as  

 

( )

( )( )( )

( ) ( )

{ } ( ) ( )

2

0 1 1 12

2 2
2

0 1 1

1
2

2 1

H H T

H H H H T

J

J p

E g

E E g g

m k
d

m d

*

Ñ
= -

Ñ Ñ

é ùæ ö æ ö
÷ ÷ ê úç ç - - -÷ ÷ç ç÷ ÷ç ç ê úè ø è ø ë û= -

í üæ öï ï é ùï ï÷ç¢+ - -ì ý÷ç ê ú÷çï è øï ë ûï ïî þ

w
w w

w

y w y w y s s w s w

w

yy w y w y w y s s I

  (23) 

The euqation can be further simplified by multiplying both sides of (23) by 
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( ) ( )( )11 2 J-- Ñ Ñ
y

R w . When a sufficiently small
0

m is chosen, it can be easily shown 

that the left-hand side of the equality in (23) w  multiplying ( ) ( )( )11 2 J-- Ñ Ñ
y

R w  

can be set as g=w w , where 
2 2 2

H H HE g gg
í üæ ö æ öï ïï ï÷ ÷ç ç¢= - + Îì ý÷ ÷ç ç÷ ÷ç çï è ø è øïï ïî þ

w y w y w y ¡ . Then, 

projecting w  through ( )1p + ¬
y

w w wR w  could enforce the unit variance 

constraint { }
2

1HE =w y  after each ICA iteration. The scalar factor g  will not affect 

the convergence point. Finally, it can be explicitly simplified as  

( )( ) ( ) ( )

( ) ( ) ( )

2 2
1

2 2
1

1

H H H

H H

E p g p E g p

p g p p m

*
-

-

í ü í üæ ö æ öï ï ï ïï ï ï ï÷ ÷ç ç= - +ì ý ì ý÷ ÷ç ç÷ ÷ç çï ï ï ïè ø è øï ï ï ïî þ î þ
æ ö

÷ç¢ +÷ç ÷çè ø

y

y

w R y w y w y w y

w y w y w R s

 (24) 

( )1 Hp + ¬
y

w w w R w   

Where
2

0
2m mk d= . Finally, the desired weight vector with unit variance constraint in 

the proposed method is as follows.  

Step 1.  After centering y , take a small initial vector ( ) 1
0 0.01=w s  . Let iteration 

number 0p = . 

Step 2. Update 

( )( ) ( ) ( )

( ) ( ) ( )

2 2
1

2 2
1

1

H H H

H H

E p g p E g p

p g p p m

*
-

-

í ü í üæ ö æ öï ï ï ïï ï ï ï÷ ÷ç ç= - +ì ý ì ý÷ ÷ç ç÷ ÷ç çï ï ï ïè ø è øï ï ï ïî þ î þ
æ ö

÷ç¢ +÷ç ÷çè ø

y

y

w R y w y w y w y

w y w y w R s

 

( )1 Hp + ¬
y

w w w R w  

Where { }HE=
y

R yy  is the data correlation matrix andg  andg¢denote the derivatives 

of G andg  , respectively. 

Step 3. Check the convergence of ( )pw  . If the error measure is 

( ) ( )
1

1
C

i ii
w p w p e

=
+ - >å  , where e  is the terminating error value, let 1p p= +  and 

go back to step 2. Otherwise, output the vector ( )pw  .  

According to classical FastICA, the step that projects w  through 

( )1 Hp + ¬
y

w w w R w  could enforce the unit variance 

constraint { }
2

1HE =w y after each step. 

In veiw of the blind separation of CDMA system, a modification of the classical 

FastICA has been proposed that omits the complex pre-whitening step and directly 

incorporates the SOC constraint into the correct solution. In CDMA system, the proposed 

SOC-FastICA detection is developed to combat small-to-medium, norm-bounded SWM 

under colored noise. It is noteworthy that the proposed blind detector can be implemented 

by choosing a proper value for m  without estimating d  . Due to the algorithmic 
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parameter m  (including to the Lagrange multiplier
0

m ), the parameter k  , and the 

unknown SWMd  ), the proposed SOC-FastICA possesses the capability of self-adjusting 

computation against SWM. Self-adjusting computation refers to a model of computing 

where computations can automatically respond to changes in varying SWM d  , which 

means that parameter m can be kept a proper constant under varying circumstances by 

using self-adjusted 
0

m  and k  for ICA iterations. The proposed algorithm is nonsensitive 

to SWM for CDMA systems. 

 

5. Comparison of Computational Complexity 

The computational complexities of the proposed detector in (24) (including projection) 

are about ( )2O C M  ( )M C?  in total, M is the length of data. The computational 

complexity of the proposed detectors will then be compared with the CMOE detector, the 

subspace-based MMSE detector, the MMSE-ICA detector, and SOC-JADE. The 

evaluation of the CMOE detector including autocorrelation matrix 
y

R  and its inverse 

operation 
1-

y
R has the complexity of order. ( ) ( ) ( )2 2 2O C M O C O C M+ =   In the 

subspace-based MMSE detector, the EVD of autocorrelation matrix has the complexity 

of ( ) ( )2 2O C M O C K+  , and the complexity of the projection of the desired signature 

waveform onto signal subspace is ( )2O C . Thus, the final complexity of the subspace-

based MMSE is of order ( )2O C M  . Besides, in the MMSE-ICA, the computational 

complexities of autocorrelation matrix, prior subspace estimation, pre-whitening of the 

received data, and each unit-gain-based ICA iteration are ( )2O C M  , ( )O CK  , 

and ( )O KM  , respectively [17]. Thus, the final complexity of the MMSE-ICA is of 

order ( )2O C M . The computational complexities of the SOC-JADE detector are 

about ( )4O C M in total. The computation burden is mainly dominated by the computation 

of cumulants [32]. Obviously, the computation complexity of SOC-JADE is higher than 

the proposed blind detector. 

 

6. Simulations and Discussions 

To demonstrate the effectiveness of the proposed blind detector, we conduct simulation 

experiments to evaluate the performance for CDMA systems compared with those of the 

existing blind detectors, which include the CMOE detector, subspace-MMSE detector, 

MMSE-ICA detector and SOC-JADE detector. Consider a CDMA system under colored 

noise environment, using the following parameters. The additive colored noise is 

modeled by a moving average (MA) process and generated by applying a white Gaussian 

noise sequence to a corresponding finite impulse response (FIR) filter with transfer 

function ( ) 11H a -= -z z , where a  is the correlation coefficient.  We test the 

performance of our proposed algorithm on asynchronous or distorted channel CDMA 

systems. The effect of asynchronism or distorted is described as a SWM problem. 

Timing asynchronism or distorted channel is modeled through the presence of SWM 

as in (13), where ( )20,
k

N se : . Consider CDMA systems using Gold codes of 
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length 31C =  with the number of users 7K = . For the system with 7K = users the 

interference-to-signal ratio (ISR) is set to be  

1

20 log 20 , 2, ,k
A

ISR dB k K
A

æ ö
÷ç ÷ç= = =÷ç ÷÷çè ø

K   

where
k

A  denotes the received signal amplitude (or from the channel gain) of the thk user. 

This case shows a severe near-far effect. The 1000 symbols are tested in the simulation in 

order to satisfy the speed of convergence of all the schemes. The results for 7K = users 

are shown in Figure 3, Figure 4 and Figure 5. We test this system with 

mismatch 0.3d =  . Notice that d  is the upper bound on the SWM realization at each 

random run. We experimented with different d values and results seem to be the same 

qualitatively. Figure 3 assumes that the valued is known to the detector and we use this 

value ( )d d=  in the SOC formulation in (20). Figure 4 and Figure 5 show the 

performance of the proposed method when  is overestimated and underestimated, 

respectively. It can be seen that the proposed detector is robust to errors in estimating the 

SWM bound. However, the subspace-based MMSE and MMSE-ICA detectors are much 

more sensitive to the correlated coefficient than the others since parts of the variation of 

the noise subspace diverge into the signal eigenvectors causing serious destruction to this 

orthogonality. The blind CMOE cannot capture the desired symbols and diverges after 

decoding. The SOC-JADE and the proposed blind SOC-FastICA has better performance 

than other blind detectors. Although the SOC-JADE has a bit of BER performance better 

than that of the proposed SOC-FastICA due to cumulant properties, the SOC-JADE has 

higher computation complexity than others. Therefore, the proposed blind detector has 

superior performance to other blind detectors. The proposed blind detector is promising 

scheme for real-time blind interference suppression. 
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Figure 3. BER versus SNR, Comparison of Different Blind Detectors, 

0.3d =  and 0.3d =   
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Figure 4. BER versus SNR, Comparison of Different Blind Detectors, 

0.3d =  and 0.5d =  
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Figure 5. BER versus SNR, Comparison of Different Blind Detectors, 

0.3d =  and 0.1d =   

In order to describe the robustness of the proposed blind detector, the bit error ratio (BER) 

as a function of SWM mismatch is shown in Figure 6 in SNR =12 dB. From the Figure 6, 

we can know that the propose scheme is robust to the SWM problem. In Figure 7, the 

BER as a function of different symbol numbers is shown for different detector in 

SNR=15 dB. We can know that the proposed blind detector acquires effective 

performance compared with other detectors.  
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Figure 6. BER versus Differentd , Comparison of different Blind Detectors 

1000 1100 1200 1300 1400 1500

10
-4

10
-3

10
-2

10
-1

Symbol Number

B
E

R

 

 

CMOE

Subspace-MMSE

MMSE-ICA

SOC-FastICA

SOC-JADE

 

Figure 7. BER versus Different Symbol Number, Comparison of Different 
Blind Detectors 

7. Conclusions 

As a power technique, ICA can offer additional interference suppression capability, 

since also independence of the source signals is utilized. ICA can mitigate the 

performance drops due to erroneous timing and channel estimation problem. As a 

motivation, in this paper, the ICA-based blind detector for CDMA system is proposed 

based on approximate negentropy maximization using SOC programming. The proposed 

blind SOC-FastICA detector can provide robustness against SWM problem and possesses 

low computation complexity to achieve better performance than the existing blind 

detectors. Simulation results have demonstrated that the effective performance of the 

proposed SOC-FastICA detector is obtained. The proposed blind detector is appealing 

and attractive for the requirements of anti-interference in the future work. 
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