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Abstract 

The matched filter is often used for the radar receiving terminal, but such application 

in wideband radar may cause complex system and high cost. The adoption of 

compressed sensing can not only remove the matched filter and the high-speed analog-

digital converter, but also realize high-resolution radar imaging. In consideration of the 

sparseness of the radar target scene, a compressed sensing method used for chaotic 

radar is proposed in this article, wherein the chaotic frequency-modulated signal is 

generated by Bernoulli mapping and the randomness of such signal can be directly used 

for constructing the observation matrix. Meanwhile, the under-sampled echo signal can 

be used for radar scene reconstruction through the optimization technology. According 

to the simulation of stationary and non-stationary target radar scenes, compared with 

the matched filter processing technology, the proposed method has simple processing 

procedure and optimal performance, and the feasibility of this method is also verified by 

the simulation result. 
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1. Introduction 

High-resolution radar imaging technology is significant for radar target identification 

and feature extraction. According to radar imaging principle [1, 2], the distance 

resolution of the target depends on the bandwidth of the transmitted signal while the 

azimuth resolution relies on phase-coherent accumulation time. Constrained by Nyquist 

sampling theorem, the traditional wideband radar imaging system encounters such 

problems as high sampling rate, large data volume and echo data limitation. 

CS (Compressed Sensing) [3-7] theory provides a new approach for wideband radar 

imaging. This theory shows: for a sparse signal, the original signal can be accurately or 

approximately reconstructed through a few times of observations, namely through signal 

projection values. The result of the research on the electromagnetic scattering 

characteristics of the radar target shows [8] that the pulse response of the radar target in 

the high-frequency area can be described by a few important scattering centers, and the 

number of the important scattering centers obtained by the wideband radar is much less 

than the number of the samples needed for identifying these scattering centers. 

Obviously, the wideband radar target characteristics are consistent with CS requirements 

for signal sparseness. Therefore, the introduction of CS into the wideband radar imaging 

system can be expected to reduce data collection quantity, thus to relieve the data 

storage and processing pressure of the high-resolution radar. Meanwhile, the 

optimization algorithm can be used to realize the high-resolution imaging through a few 

pulse echo data. 

Besides compressed sensing, the selection of the radar signal directly influences the 

performance of the distance-Doppler imaging system. The application of the chaotic 
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signal for the radar system has many unique advantages, such as random noise 

characteristic, bandwidth and easy generation [9]. On the other hand, the frequency-

modulated signal has high imaging resolution, high output power, low cost, low 

interception, low interference probability, etc. 

 

2. Compressed Sensing 

The compressed sensing theory, proposed around 2000, has been rapidly developed in 

the subsequent several years. According to the compressed sensing theory, if a signal is 

sparse or is sparse under a certain transformation, then an observation matrix irrelevant 

to the transformation basis can be adopted to project the high-dimensional signal into the 

low-dimensional space and afterwards the nonlinear optimization problem can be solved 

in order to reconstruct the original signal at a high probability through a few observation 

data. In the theoretical framework, the sampling rate depends on signal structure and 

content rather than signal width. Additionally, CS theory mainly includes the following 

three aspects: sparse representation, unrelated sampling and accurate reconstruction of 

signal [10]. 

 

2.1. Observation Matrix 

The sparse representation of the signal is the precondition for applying the 

compressed sensing theory. Specifically, a real-valued one-dimensional discrete time 

signal x with limited length is regarded as 1N  vector in N
R and is recorded 

as [ ] , 1, 2 , ,x n n N , wherein any signal in N
R can be represented by the basis with 

1
{ }

N

i i 
 as the column vector. Then, signal x can be expressed as follows: 

1

N

i i

i

x s 



  或 x s                                                   (1) 

In the above formula, s is a 1N  column vector. 

We suppose that the description of signal x on basis is sparse to S ( is called as 

sparse matrix) and the condition S N can be met, namely: i
s in Formula (1) only 

has S nonzero coefficients. Different from traditional Nyquist sampling theory, the 

compressed sensing theory aims at non-adaptively and linearly observing the original 

signal x for M N times in order to obtain the observed signal y with the length as M . 

Therein, the observation process can be described as follows by a matrix: 

 y x   (2) 

In the above formula,  is an M N observation matrix; Formula (1) is put into the 

above formula to obtain the following linear observation equation: 

 y x s s        (3) 

In the above formula,    is an M N matrix. In many applications,  is a 

uniform random observation matrix, which does not depend on signal x . The schematic 

diagram of compressed sensing is as shown in Figure1. 

 

 

Figure 1. Schematic Diagram of Compressed Sensing 
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In the compressed sensing theory, it is very important to design an observation matrix 

with good performance. Two types of observation matrixes are available: random 

observation matrix and determined matrix. The observation matrix shall be selected 

according to the two basic principles: un-correlation and RIP (Restricted Isometry 

Property). Namely:  in Formula (2) needs to meet RIP principle. For any S sparse 

signal x and constant ( 0 ,1)  , the following condition shall be met [11]: 
2

2

2

2

1 1
x

x

 


                                                      (4) 

If is fully irrelevant and can meet RIP principle, then s information will be included 

in y . In this way, the original signal can be accurately reconstructed at a high 

probability. RIP and un-correlation principles can be met at a high probability through 

selecting the random matrix as the observation matrix. 

 

2.2. Reconstruction Algorithm 

The reconstruction algorithm aims at adopting the low-dimensional observed 

signal y to accurately reconstruct the original high-dimensional signal x . At present, the 

reconstruction algorithm is mainly divided into three types: 1) 1
l -norm based convex 

optimization algorithm; 2) 0
l -norm based greedy algorithm; 3) Combinational 

algorithm. The convex optimization algorithm is adopted in this article for radar scene 

reconstruction. Compared with other algorithms, the convex optimization algorithm is 

based on 1
l -norm for solution and has good reconstruction effect. 

 

3. Chaotic Imaging Radar based on Compressed Sensing 
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Figure 2. Diagram of Compressed Sensing Chaotic Radar 

The compressed sensing chaotic radar system framework is as shown in Figure 2. 

After frequency modulation, the chaotic sequence is taken as the transmitted radar signal 

for forming the observation matrix, and the received echo is operated with the 

observation matrix to obtain the observed signal. Afterwards, the optimization algorithm 

is adopted to reconstruct the radar scene through the observed data. 

The radar echo can be written as the convolution of the transmitted signal and the 

scene function, namely: 

 ( ) ( ) * ( ) ( ) ( )
R T T

S t S t t S t d    




     (5) 
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In the above formula, ( )
R

S t is the radar echo, ( )
T

S t is the transmitted signal and ( )t is 

the scene scattering function. Through discretization, the above formula can be written 

into a form of matrix multiplication [12]: 
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[ 2 ] [ 2 ] [1] 0
[1]
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            (6) 

 

The chaotic signal has random noise characteristic, the autocorrelation function is 

approximate to function, and the cross-correlation function is approximate to 0. Ever 

since the 90s of the last century, many scholars have researched the application of chaos 

in radar signal design and proven the feasibility of the application of chaos in radar 

signal design. Therein, the research is mainly focused on the following two aspects: 

chaotic phase-coded signal and chaotic frequency-modulated signal. In the application of 

the chaotic sequence for frequency modulation, only the sequence generated by 

Bernoulli mapping can be adopted to obtain ideal autocorrelation characteristic [13]. 

Therefore, the chaotic sequence generated by Bernoulli mapping is adopted in this 

article, and Formula (7) is adopted to generate Bernoulli sequence. 

 
[ ] 1, [ ] 0

[ 1]
[ ] 1, [ ] 0

B n n
n

B n n

 


 

 
  

 

 (7) 

Therein, the parameters used for generating the sequence are as follows: 

 
1 .7

[0 ] [ 1 / 2 ,1 / 2 ]

B





 
 (8) 

After Bernoulli sequence is generated, the discrete chaotic function can be obtained 

according to the following formula: 

 
1

[ ] [ ]

n

k

x n k



   (9) 

After frequency modulation, the above sequence is taken as the transmitted radar 

signal [ ]s n . The chaotic frequency-modulated signal is generated by Formula (10): 

 [ ] R e{ ex p ( 2 [ ])}s n A j K x n  (10) 

In the above formula, A is signal amplitude, K is modulation index and [ ]x n is the 

discrete chaotic function. The time-domain waveform of the chaotic frequency-

modulated signal is as shown in Figure 4, and the autocorrelation function is as shown in 

Figure 4. 
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Figure 3. Chaotic Frequency Modulation of Bernoulli 
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Figure 4. Autocorrelation Function of Chaotic Frequency Modulation 

4. Simulation and Result Analysis 
 

4.1. Stationary Target Simulation 

The transmitted radar signal is convoluted with the target to obtain the echo signal. In 

order to represent the convolution operation by matrix multiplication, the chaotic 

frequency-modulated signal [ ]s n is shifted to form the columns of the matrix. Due to the 

similar noise characteristic of the chaotic frequency-modulated signal, the matrix can be 

used as the observation matrix in the chaotic radar system based on compressed sensing. 

For a stationary target, the target parameters mainly include distance and scattering 

coefficient. The objects with different scattering coefficients are randomly placed to 

simulate the radar scene, as shown in Figure 5, wherein the x-axis represents the 

distance between the target and the radar, and the y-axis represents the scattering 

coefficient of the target. In order to apply the compressed sensing theory in the 

simulation, the observed signals shall be less than the sample points of the convolution 

result, and this can be realized through the down-sampling observation matrix. For the 

compressed sensing, the columns of the observation matrix need to meet the un-

correlation principle. The correlation of the columns of the observation matrix after 

down-sampling is as shown in Figure 6. 
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Figure 5. Scene with Five Stationary Targets 
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Figure 6. Autocorrelation of Columns from Observation Matrix 

For a stationary target, the radar scene is reconstructed through the convex 

optimization technology mentioned in section 2.2. As shown in Figure 7, the compressed 

sensing technology can be adopted to accurately reconstruct the radar scene through the 

under-sampled points. Additionally, the radar scene recovered by the matched filter is as 

shown in Figure 8. Obviously, many noises are introduced therein during the application 

of the matched filter for radar scene recovery and enough sample points are required to 

be obtained in the echo. 
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Comparison between the Signal Recovered by CS and Original Signal
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Figure 7. Comparison between the Signal Recovered by CS and Original 
Signal 
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Figure 8. Matched Filter Results 

4.2. Dynamic Target Simulation 

For a dynamic target, Formula (11) is adopted to generate the transmitted signal: 

 [ ] R e { e x p ( 2 ( [ ] ))}
d

s n A j K x n f   (11) 

In the above formula, A is signal amplitude, K is modulation index, [ ]x n is discrete 

chaotic function, and d
f is Doppler frequency. The parameters for generating Bernoulli 

sequence for the dynamic target are the same as those for the stationary target. As 

mentioned above, the chaotic frequency-modulated signal generated thereby shall be 

rearranged to form the observation matrix. Different from the stationary target, for the 

non-stationary target, all distance signals shall be shifted at each Doppler frequency in 

order to form the observation matrix, as shown in Figure 9. 
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Observation Matrix

 

Figure 9. Observation Matrix used for Non-stationary Targets 

For a dynamic target, the target parameters mainly include distance and Doppler 

frequency, and such target can be simulated through the points in a two-dimensional 

plane, wherein the x-axis represents the distance and the y-axis represents Doppler 

frequency of the target. The two-dimensional scene generated by the random placement 

of the targets is as shown in Figure 10. In order to apply the compressed sensing, the 

scene shall be vectorized into one-dimensional vector. This vector is used to repeat all 

possible distances for each Doppler frequency. The scene in Figure 10 is vectorized into 

the vector as shown in Figure 11, namely: the scene including 100 rows and 100 

columns in Figure 10 is vectorized into a one-dimensional vector with the length as 

10,000. 
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Figure 10. Scene with Multiple Targets 
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Vectorized Version of Scene
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Figure 11. Vectorized Version of Scene 

Similarly to the stationary target, in order to apply the compressed sensing, the down-

sampling operation shall be implemented for the observation matrix and the received 

signal. At the receiving terminal, the convex optimization technology is adopted for 

radar scene recovery, as shown in Figure 12. The comparison between the signal 

recovered by CS and the original signal is as shown in Figure 13, and the radar scene 

recovered by the matched filter is as shown in Figure 14. Obviously, the matched filter 

has introduced many noises, and such interference may cover the target or bring 

difficulty in distinguishing the targets very close to each other. 
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Figure 12. CS Recovered Scene 
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Comparison between the Signal Recovered by CS and Original Signal
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Figure 13. Comparison between the Signal Recovered by CS and Original 
Signal 

Matched Filter Result

 

Figure 14. 3-Dimensional Plot of Recovered Scene using Matched Filter 

 

5. Conclusion 

A compressed sensing method used for improving the resolution of the chaotic radar 

is proposed in this article. The chaotic sequence generated by Bernoulli mapping is 

taken as the transmitted signal after frequency modulation, wherein this signal has 

random noise characteristic, the fuzzy function thereof is approximate to “thumbtack” 

form and can be directly used for generating the observation matrix. Meanwhile, the 

stationary and non-stationary target radar scenes are simulated in this article, and the 

simulation result is also compared with the scene recovered by the matched filter. For a 

stationary target, the radar scene includes the distance and the scattering coefficient of 

the target, and the echo signals are down-sampled after passing the observation matrix, 

and the optimization technology is also adopted to recover the radar scene according to 

the received signals in the down-sampling process. Compared with the matched filter 

method, the compressed sensing method has the features of small data volume and good 

anti-noise performance. For a non-stationary target, the radar scene includes the distance 

and the speed of the target. In such case, the matched filter can recover the radar scene 



International Journal of Future Generation Communication and Networking 

Vol. 9, No.8, (2016) 

 

 

Copyright ⓒ 2016 SERSC  43 

but also introduces many noises at the same time, thus making the target difficult to 

identify. In comparison, even under the condition of down-sampling the received 

signals, the compressed sensing method can accurately recover the radar scene. The 

simulation result shows that the chaotic radar system based on compressed sensing has 

simple structure and small data processing workload and does not need any matched 

filter or high-speed analog-digital converter, thus very applicable to the wideband high-

resolution radar. 
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